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ABSTRACT Intrinsically disordered proteins and protein regions make up a substantial fraction of many proteomes in which
they play a wide variety of essential roles. A critical first step in understanding the role of disordered protein regions in biological
function is to identify those disordered regions correctly. Computational methods for disorder prediction have emerged as a core
set of tools to guide experiments, interpret results, and develop hypotheses. Given the multiple different predictors available,
consensus scores have emerged as a popular approach to mitigate biases or limitations of any single method. Consensus
scores integrate the outcome of multiple independent disorder predictors and provide a per-residue value that reflects the num-
ber of tools that predict a residue to be disordered. Although consensus scores help mitigate the inherent problems of using any
single disorder predictor, they are computationally expensive to generate. They also necessitate the installation of multiple
different software tools, which can be prohibitively difficult. To address this challenge, we developed a deep-learning-based pre-
dictor of consensus disorder scores. Our predictor, metapredict, utilizes a bidirectional recurrent neural network trained on the
consensus disorder scores from 12 proteomes. By benchmarking metapredict using two orthogonal approaches, we found that
metapredict is among the most accurate disorder predictors currently available. Metapredict is also remarkably fast, enabling
proteome-scale disorder prediction in minutes. Importantly, metapredict is a fully open source and is distributed as a Python
package, a collection of command-line tools, and a web server, maximizing the potential practical utility of the predictor. We
believe metapredict offers a convenient, accessible, accurate, and high-performance predictor for single-proteins and
proteomes alike.
SIGNIFICANCE Intrinsically disordered regions are found across all kingdoms of life, in which they play a variety of
essential roles. Being able to accurately and quickly identify disordered regions in proteins using just the amino acid
sequence is critical for the appropriate design and interpretation of experiments. Despite this, performing large-scale
disorder prediction on thousands of sequences is challenging using extant disorder predictors due to various difficulties,
including general installation and computational requirements. We have developed an accurate, high-performance, and
easy-to-use predictor of protein disorder and structure. Our predictor, metapredict, was designed for both proteome-scale
analysis and individual sequence predictions alike. Metapredict is implemented as a collection of local tools and an online
web server and is appropriate for both seasoned computational biologists and novices alike.
INTRODUCTION

Although it is often convenient to consider proteins as nano-
scopic molecular machines, such a description betrays many
of their functionally critical features (1–3). As an extreme
example, intrinsically disordered proteins and protein re-
gions (collectively referred to as IDRs) do not adopt a fixed
three-dimensional conformation (4–8). Instead, IDRs exist
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in an ensemble of different conformations that are in ex-
change with one another (9–11). Despite the absence of a
well-defined structured state, IDRs are integral to many
important biological processes (12,13). As a result, there
is a growing appreciation for the importance of disordered
regions across the three kingdoms of life (6,12,14,15).

A key first step in exploring the role of disorder in biolog-
ical function is the identification of disordered regions.
Although IDRs can be formally identified by various bio-
physical methods (including nuclear magnetic resonance
spectroscopy, circular dichroism, or single-molecule spec-
troscopy), these techniques can be challenging and are
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The metapredict disorder predictor
generally low throughput (16–18). As implied by the name,
the ‘‘intrinsically’’ disordered nature of IDRs reflects the
fact that these protein regions are unable to fold into a
well-defined tertiary structure in isolation. This is in contrast
to folded regions, which under appropriate solution condi-
tions adopt macroscopically similar three-dimensional
structures (19–21). The complexities of metastability in pro-
tein folding notwithstanding, this definition implies that this
intrinsic ability to fold (or not fold) is encoded by the pri-
mary amino acid sequence (22–24). As such, it should be
possible to delineate between folded and disordered regions
based solely on amino acid sequence.

The prediction of protein disorder from amino acid
sequencehas receivedconsiderableattention forover20years,
driven by pioneering early work by Dunker et al. (6–8,25,26).
Since those original bioinformatics tools, a wide range of dis-
order predictors have emerged (27–30). Accurate disorder
predictors offer an approach to guide experimental design,
interpret data, and build testable hypotheses. As such, the
application of disorder predictors to assess predicted protein
structure has become a relatively standard type of analysis,
although the specific predictor used varies depending on avail-
ability, simplicity, and scope of the question.

There are currently many disorder predictors that apply
different approaches to predict protein disorder. These range
from statistical approaches based on structural data from the
protein data bank, to biophysical methods that consider local
‘‘foldability,’’ to machine learning-based algorithms trained
on experimentally determined disordered sequences (31–
38). However, using any individual predictor can be problem-
atic; each predictor has specific biases and weaknesses in its
capacity to accurately predict protein disorder, which can
introduce systematic biases into large-scale disorder assess-
ment (39). As such, an alternative strategy in which many
different predictors are combined to offer a consensus disorder
score has emerged as a popular alternative to relying on any
specific predictor (40–44). Consensus scores report the frac-
tion of independent disorder predictors that would predict a
given residue as disordered: for example, a score of 0.5 reports
that 50% of predictors predict that residue to be disordered.

Although using consensus scores mitigates the limitations
of any single predictor, calculating consensus scores is
computationally expensive and necessitates the installation
of multiple distinct software packages. To alleviate this
challenge, consensus disorder scores can be precomputed
and held in online-accessible databases (42,45–47).
Although precomputed scores are an invaluable resource
to the scientific community their application is limited to
a small subset of possible sequences. Furthermore, obtain-
ing, managing, and analyzing large datasets of precomputed
consensus predictions can be a daunting task, especially if
only a subset of sequences are of interest.

To address these challenges, we have developed a fast, ac-
curate, and simple-to-use deep learning-based disorder pre-
dictor trained on precomputed consensus scores from a
range of organisms. Our resulting predictor, metapredict,
is platform agnostic, simple to install, and usable as a
Python module, a stand-alone command-line tool, or as a
stand-alone web server. Metapredict accurately reproduces
consensus disorder scores and is sufficiently fast such that
for most bioinformatics pipelines, precomputation of disor-
der is no longer necessary, and disorder can be computed in
real-time as analysis is performed. In addition to consensus
disorder prediction, metapredict also provides structure con-
fidence scores based on AlphaFold2-derived predictions of
folding propensity, a related but complementary mode of
sequence annotation. Metapredict can be installed in sec-
onds, is incredibly lightweight, and has no specific hardware
requirements. Taken together, metapredict is a high-perfor-
mance and easy-to-use disorder predictor appropriate for
computational novices to seasoned bioinformaticians alike.
MATERIALS AND METHODS

Training metapredict using PARROT

To create metapredict, we used PARROT (Protein Analysis using RecuRrent

neural networks On Training data), a general-purpose deep learning toolkit

developed for mapping between sequence annotations and sequence (48).

PARROT was used to train a bidirectional recurrent neural network with

long short-term memory (LSTM) on the disorder consensus scores from the

MobiDB database for each residue for all of the proteins in 12 proteomes

(see Supporting materials and methods for details) (Fig. 1) (48–50). The eight

disorder predictors used to generate the consensus scores in the MobiDB data-

basewere IUPred short (34), IUPred long (34), ESpiritz (DisProt, NMR, and x

ray) (31), DisEMBL 465 (28), DisEMBL hot loops (28), and GlobPlot (51). In

total, metapredict was trained using almost 300,000 individual protein se-

quences. ForAlphaFold2-basedpredictions, the per-residuepredicted local dif-

ference test (pLDDT) score from21differentproteomeswere usedas input (see

Supporting materials and methods for details) (52,53). The pLDDT score re-

flects the confidence AlphaFold2 has in the local structure prediction.

Recurrent neural networks are well-suited for protein sequence machine

learning tasks due to their ability to directly parse sequences of variable

length without modification (54). Bidirectionality is a common modifica-

tion of recurrent neutral networks and is particularly relevant in the context

of sequence-based prediction because it ensures that the entire local

sequence (both N- and C-terminal) is accounted for when making the dis-

order prediction of a particular residue. Finally, LSTM networks are another

common modification of recurrent neutral networks that have seen wide-

spread adoption in machine learning tasks because of their improved ability

to retain long-range information over the course of training (50). Conse-

quently, bidirectional LSTMs have emerged as a powerful class of deep

learning model for sequence-based predictions (48,55–57).

To determine the optimal threshold to delineate disordered and ordered re-

gions, we systematically varied the cutoff score used to classify IDRs (Figs.

S4–S8). This analysis revealed that a broad range of cutoffs (between 0.2

and 0.4) gave approximately equivalent performance, such that a cutoff of

0.3 offered a good balance between true positives and false negatives. As

such, IDRs identified by metapredict with the default setting can be treated

as relatively high-confidence, at the expense of missing some cryptic disor-

dered regions.
Usage and features

Metapredict is offered in three distinct formats (Fig. S9). As a download-

able package, it can be used either via a set of command-line tools or as
Biophysical Journal 120, 4312–4319, October 19, 2021 4313



FIGURE 1 Overview of metapredict. Consensus scores are taken from 420,660 proteins distributed across 12 proteomes. Metapredict was developed by

training a bidirectional recurrent neural network (BRNN) on this data, leading to a set of network weights that allow the prediction of any possible consensus

sequence score.

Emenecker et al.
a Python module. Command-line predictions include functionality to

directly predict disorder from a UniProt accession, save disorder scores

as a text file, and predict disorder for multiple sequences within an FASTA

file. The Python module includes the ability to predict per-residue

consensus disorder scores or delineate continuous IDRs. Complete docu-

mentation is available at http://metapredict.readthedocs.io/. In addition,

we offer a web server appropriate for individual protein sequences, which

is available at http://metapredict.net.
Performance

On all hardware tested (which included a laptop from 2012), metapredict

obtained prediction rates of �7000–12,000 residues per second (see Sup-

porting materials and methods for further details). A single 300-residue pro-

tein takes �25 ms, and the human proteome (20,396 sequences) takes

�21 min. Importantly and unlike some other predictors, the computational

cost scales linearly with sequence length (Fig. S6) (58).
RESULTS

Evaluating metapredict accuracy in comparison
to existing predictors

Given the large number of protein disorder predictors avail-
able, multiple groups have investigated different approaches
to measure their accuracy (27,59–61). Here, we used metrics
from two recent studies, allowing us to compare directly
with many previously evaluated predictors.

We first evaluated metapredict using the protocol devel-
oped for the Critical Assessment of Protein Intrinsic Disor-
der experiment (CAID; 652 sequences). CAID is a biennial
event in which a large set of protein disorder predictors are
assessed using a standardized dataset and standardized met-
rics (27). CAID uses a curated dataset of 646 proteins from
DisProt, a database of experimentally validated disordered
regions (62). As such, evaluation using CAID’s standards
offers a convenient route to benchmark metapredict against
the state of the art.

In keeping with the assessments developed by CAID, we
evaluated metapredict in its capacity to predict disorder
across two distinct datasets (DisProt, DisProt-Protein Data-
base (PDB)) as well as its ability to identify fully disordered
4314 Biophysical Journal 120, 4312–4319, October 19, 2021
proteins (27). Although DisProt contains only true positive
disordered regions, DisProt-PDB contains true positive and
true negative regions, making it more appropriate for robust
validation of discriminatory predictors (27). To maintain
consistency with CAID, we used the F1-score (defined as
the maximum harmonic mean between precision and recall
across all threshold values; Eq. S3) to compare metapredict
against other predictors (27). The F1-score of metapredict
in the analysis of the DisProt dataset ranked 12th highest
out of the 38 predictors originally assessed (Fig. 2 A).

DisProt contains protein subregions that have been experi-
mentally validated as disordered. However, as noted in the
original study, it is possible, if not likely, that there are other
subregions from those same proteins which, although not yet
annotated as such, are in fact disordered (27). The DisProt-
PDBdataset addresses this limitationand includes only protein
regions that are unambiguously annotated as either disordered
or ordered based on extant experimental data (27). In exam-
ining the performance of metapredict in predicting disorder
on theDisProt-PDBdataset, we found thatmetapredict ranked
11th among all of the disorder predictors assessed (Fig. 2 B).

The last analysis that we carried out from the CAID
experiment was the capacity of metapredict to identify fully
disordered proteins. In this context, the CAID experiment
considers something to be a fully disordered protein if the
disorder predictor predicts 95% or more residues to be disor-
dered (27). Metapredict ranked third out of the disorder pre-
dictors examined in its capacity to identify fully disordered
proteins (Fig. 2 C).

In addition to assessing metapredict via the CAID dataset,
we also evaluated metapredict using the chemical shift z-
score for assessing order/disorder, an alternative metric
that provides a per-residue continuous value that experimen-
tally quantifies disorder (see Supporting materials and
methods for more details) (61). Similar to the CAID-based
assessment, metapredict ranked on average eighth out of
23 predictors (Fig. S1).

Although our assessment thus far is consistent with prior
metrics, we worried that it lacked clear interpretability with

http://metapredict.readthedocs.io/
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FIGURE 2 Evaluation of metapredict using CAID experiments. (A) F1-score for various predictors in examining their accuracy in predicting protein dis-

order from the DisProt dataset. (B) F1-scores for various predictors in examining their accuracy in predicting protein disorder from the DisProt-PDB dataset.

(C) F1-scores for various predictors in predicting fully disordered proteins in the DisProt dataset. Values for all predictors in (A)–(C) with the exception of

those for metapredict (orange bar) were obtained from (27).

The metapredict disorder predictor
respect to what these measures of accuracy mean for real
protein sequences. To address this, we re-evaluated the
CAID-derived predictions to compute an accuracy score
that reflects the number of residues correctly predicted as
folded or disordered per 100, using a Disprot-PDB-like
dataset with any ambiguous residues excluded. Fig. 3 A
shows the resulting assessment and reveals that although
the general order obtained from other methods is preserved
(as expected), the difference between the best predictor and
metapredict is on average two residues per 100.
Evaluating metapredict execution time in
comparison to existing predictors

Next, we considered how long metapredict takes to predict
disorder compared with other predictors. AUCpreD was one
of the top-performing disorder predictors, and compared to
several other top predictors was relatively easy to install. We
evaluated the computational cost per-residue using the com-
mand-line version of metapredict. The time for AUCpreD-
based disorder prediction scaled linearly with sequence
length with �0.3 s per residue (e.g., a 2151-residue protein
takes �14 min) (Fig. S2). In contrast, no metapredict
sequence took more than 0.9 s. In fact, for single-sequence
predictions, the main determinant of metapredict time was
the time to load the trained network file (�0.6 s) that,
when predicting an FASTA file with multiple sequences,
is a fixed and negligible computational cost. When this
was accounted for, metapredict takes �0.02 s for a 300-res-
idue protein (Fig. S8).

The CAID competition quantified execution times for 32
predictors using standardized hardware, providing a
rigorous and complete assessment of relative performance.
By scaling our hardware based on the CAID execution
time scores for AUCPreD, we were able to compare the ac-
curacy and qualitative execution time of metapredict against
all 32 predictors for the full CAID assessment (Fig. 3 B).
Although metapredict was�2 residues per 100 less accurate
than the top-performing predictor, it took �40 s to predict
disorder for the full CAID dataset, compared with approxi-
mately one month. We tentatively suggest this difference in
execution time compensates for difference in accuracy
(Fig. S10).
Prediction of AlphaFold2 pLDDT prediction

In addition to direct disorder prediction and in response to
the release of AlphaFold2-derived structure predictions for
multiple proteomes, we developed a predictor for the per-
residue confidence scores derived from the AlphaFold2
Biophysical Journal 120, 4312–4319, October 19, 2021 4315



50 60 70 80 90 100

Accuracy (correct residues per 100)

100

102

104

106

Ex
ec

ut
io

n 
tim

e 
(s

)

1 minute

1 hour

1 day

1 week
1 month

SP
O

T-
D

is
or

d
er

2
SP

O
T-

D
is

or
d

er
-S

in
g

le
SP

O
T-

D
is

or
d

er
1

A
U

C
p

re
D

A
U

C
p

re
D

-n
p

D
IS

O
PR

ED
-3

M
ob

iD
B

-li
te

m
et

ap
re

d
ic

t
ES

p
rit

z-
X

Ra
w

M
SA

IU
Pr

ed
2A

-s
ho

rt
IU

Pr
ed

-s
ho

rt
IU

Pr
ed

2A
-lo

ng
IU

Pr
ed

-lo
ng

fID
Pn

n
fID

Pl
n

D
is

EM
B

L-
46

5
ES

p
rit

z-
D

D
is

oM
in

e
D

yn
aM

in
e

ES
p

rit
z-

N
Is

U
ns

tr
uc

t
G

lo
b

Pl
ot

Py
H

C
A

Pr
ed

is
or

d
er

JR
O

N
N

Fo
ld

U
nf

ol
d

V
SL

2B
D

FL
p

re
d

D
is

Pr
ed

ic
t-

2
D

is
EM

B
L-

H
L

S2
D

-2
S2

D
-1

40

60

80

100
C

or
re

ct
ly

 s
co

re
d

 r
es

id
ue

s 
(p

er
 1

00
)

2 residues

metapredict

A B

FIGURE 3 Accuracy and performance of metapredict. (A) Rank order of predictors in terms of number of correct residues per 100, assessed using true

positive and true negative only (Disprot-PDB dataset). (B) Relative execution time for all predictors as evaluated in CAID over 652 independent sequences.

Metapredict emerges as the third fastest predictor with a relative average loss in accuracy of two residues per 100 compared with the state-of-the-art (see also

Fig. S11.)
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dataset (see Supporting materials and methods for more de-
tails) (52,53). Formally, these scores reflect a pLDDT, such
that metapredict offers a predicted prediction (i.e., a pre-
dicted pLDDT score) (Fig. 4 A). Given the acquisition of
structure can be considered the inverse of disorder, we
expect (and observe) an anticorrelation between predicted
structure confidence and disorder (Fig. 4 B; Fig. S3). We
provide this feature as a complementary tool to aid in the
interpretation of disorder scores, a feature that we anticipate
will be useful when assessing ambiguous regions.
DISCUSSION

IDRs play vital roles in various biological processes (12,13).
An essential first step in the investigation of IDR function
reflects the ability to identify IDRs within a protein
sequence. Consensus disorder scores represent an attractive
means by which to obtain high confidence disorder predic-
tions that do not suffer from inaccuracies due to the limita-
tions of any single-disorder predictor. However, calculating
disorder probabilities from many different predictors to
generate a consensus score is cumbersome, technically chal-
lenging, and computationally expensive. To address this, we
developed metapredict, a simple to use protein disorder pre-
dictor that accurately reproduces consensus disorder scores.
Although other consensus metapredictors do exist, web-
based access to these can be on the order of minutes-to-
hours per sequence and, where available, local access has
operating-system dependencies making them poorly suited
to cross-platform proteome-scale analysis (41,64,65). As
such, we believe metapredict fills a niche that is currently
unoccupied.

Metapredict makes use of a general approach in machine
learning known as knowledge distillation. In knowledge
distillation, a computationally cheap model is trained on
data generated by one (or more) computationally expensive
4316 Biophysical Journal 120, 4312–4319, October 19, 2021
models, with a limited loss of accuracy (66,67). This
approach entirely detaches metapredict from either the
computational cost or the computational complexity of
other models, minimizing execution time, installation chal-
lenges, and limitations with respect to software or operating
system dependencies.

In comparison with the other disorder predictors, metapre-
dict tended to err on the side of false-negative predictions
(where metapredict predicted something to be ordered when
it was in fact disordered). As such, metapredict appears to
possess a slight bias toward underestimating disorder, such
that IDRs identified bymetapredict can be considered reason-
ably high confidence. Although metapredict is not the most
accurate disorder predictor,we tentatively suggest the average
error of two residues in 100 is relatively small. To aid in delin-
eation between regions that may be ambiguous, the Alpha-
Fold2 predicted structure confidence offers an orthogonal
approach that provides additional discriminatory power.
Features of metapredict

To further aid in the identification of bona fide contiguous
disordered regions, metapredict contains a stand-alone func-
tion for extracting contiguous IDRs based on a threshold
value applied to a smoothed disorder score and several addi-
tional parameters (Figs. S4–S7). For this approach, we again
found a threshold between 0.3 and 0.4 was optimal, and this
method generally outperformed our prior more simple ana-
lyses. However, because other predictors did not use this
approach for domain classification we also chose not to
use it in examining the accuracy of metapredict. Nonethe-
less, this suggests that metapredict can achieve even margin-
ally higher accuracy in identifying IDRs and automates this
procedure for the users, allowing boundaries between IDRs
and folded domains to be automatically identified, greatly
facilitating IDR-ome style analyses of datasets.
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The metapredict disorder predictor
In addition to disorder prediction and in response to the
recent release of AlphaFold2, metapredict offers an addi-
tional predictor of structure trained on AlphaFold2 data.
The implications and application of AlphaFold2-derived
predicted structure is an ongoing topic of investigation for
many groups (68–71). Although the absence of predicted
structure cannot ‘‘necessarily’’ be taken to mean a region
is disordered, there is a strong correlation and good reason
to believe that for proteins in isolation, regions lacking
high-confidence predicted structure may be disordered
(Fig. S3) (52,53). As a final thought, predicting structure
confidence using metapredict takes milliseconds, making
this a potential screening tool for identifying high-confi-
dence sequences of interest which could be investigated us-
ing the full AlphaFold2 methodology.

As a final note, an important feature in the distribution of
software is the ease of installation. Metapredict can be
installed through a single terminal command (‘‘pip install
metapredict’’), all dependencies are automatically included,
and the metapredict package is just 3.8 MBs. This is in
contrast to many other state-of-the-art predictors, which
require large sets of additional tools (each of which must
be separately installed) and hundreds of gigabytes of data-
base files, and provide execution times on the order of mi-
nutes to hours per sequence. We believe metapredict
offers an accurate, convenient, and computationally efficient
approach to de novo disorder prediction.
Code and data availability

The code for metapredict can be found at: https://github.
com/idptools/metapredict. Documentation is available at
https://metapredict.readthedocs.io/. Fully processed se-
quences used for assessment (including sequences and
scores) and code used for this manuscript are provided at
https://github.com/holehouse-lab/supportingdata/. Metapre-
dict can be installed directly from the Python Packaging
Index using pip (i.e., ‘‘pip install metapredict’’).
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2021.08.039.
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dependent prediction of protein disorder as a function of redox state
and protein binding. Nucleic Acids Res. 46:W329–W337.
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Supplemental Materials and Methods

Evaluating metapredict using CheZOD scores
In line with previous work, we assessed how the continuous probability values of various
predictors correlated with the CheZOD scores using the Pearson’s correlation coefficient (Eq. 1)
(Nielsen & Mulder, 2019). CheZOD scores increase with order and decrease with disorder. A
Pearson’s correlation coefficient of −1 would mean that a predictor is perfectly anti-correlated
with the Z-scores, and 0 would mean that there is no correlation. As such, the results are
displayed as the absolute value of the Pearson Correlation coefficient.

Based on the CheZOD, metapredict ranked 8th among the 23 predictors previously examined
(Supplemental Fig. 1A). We also calculated the area under a receiver operating characteristic
curve (AUC). The receiver operating characteristic curve uses true positive values and false
positive values to assess the accuracy of the various predictors, such that a perfect predictor
would have an AUC of 1. Based on this assessment metapredict was ranked 11th out of the 23
predictors evaluated (Supplemental Fig. 1B).

We next examined the accuracy of metapredict in predicting binary classification of either order
or disorder. Previously, a CheZOD score of less than 8 was considered disordered (Nielsen &
Mulder, 2019). When converting a metapredict score to binary classification, we considered any
residue with a score of 0.3 or higher as disordered. For this analysis the Matthews Correlation
Coefficient (MCC) was also calculated for each predictor (Eq. 2). The MCC uses a combination
of false positives, false negatives, true positives, and true negatives in order to examine the
accuracy of a classifier. We found that metapredict had the 8th highest MCC out of the
predictors evaluated (Supplemental Table 1).

Metapredict implementation and usage
metapredict is written in Python 3.7+ and uses PyTorch, with the initial network trained using
PARROT (Griffith & Holehouse, 2021; Paszke et al., 2019).
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We designed metapredict to be as flexible and user-friendly as possible. For example,
metapredict can be used as a Python library (Supplemental Fig. 8A), a stand-alone
command-line tool (Supplemental Fig. 8B) or a web server (http://metapredict.net)
(Supplemental Fig. 8C). Moreover, metapredict contains functionality to generate graphs or
disorder scores from the command-line by directly inputting a single protein sequence, a
UniProt accession number, or a FASTA file containing many sequences. Finally, in comparison
to other predictors, which can take seconds, minutes or even hours per sequence, metapredict’s
computational performance makes it sufficiently fast that on-the-fly disorder prediction can be
faster than reading pre-computed values from disk. It is this combination of accuracy,
computational efficiency, ease of use, and flexibility that makes metapredict a convenient tool for
any kind of disorder prediction, from single sequences to proteome-wide analyses.

To illustrate the ability of metapredict to predict consensus scores, Supplemental Fig. 9 shows
the computed consensus scores and the analogous prediction for four proteins with IDRs.
Across our datasets, we found that metapredict generally performed better than over two-thirds
of the currently available disorder predictors examined, likely with a slight bias for false
negatives when the default disorder threshold is applied.

For a list of features see the documentation at https://metapredict.readthedocs.io/.

Evaluating metapredict disorder scores
Evaluations and datasets for the CheZOD score analysis (116 sequences) can be found in
(Nielsen & Mulder, 2019). Evaluations and datasets for the Critical Assessment of protein
Intrinsic Disorder prediction (CAID) analysis (652 sequences) can be found in (Necci et al.,
2021). For convenience, all sequences and scores used are also provided at
https://github.com/holehouse-lab/supportingdata/. All values are also found in Supplemental
tables 1-8. Details on results including additional statistical analyses and the raw performance
scores for each predictor that was used for comparisons to metapredict can be found in the
supporting materials and methods.

Statistical analysis for evaluating the accuracies of disorder predictors
Statistical analysis and predictor evaluation was carried out following the protocols described
previously and reproduced here for completeness (Necci et al., 2021; Nielsen & Mulder, 2019).

Predictor evaluation is performed via the Pearson’s Correlation coefficient (Rp), the Matthew’s
Correlation Coefficient (MCC), and the F1-score.

The Pearson’s Correlation Coefficient (Rp) is calculated as,
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where xi is the value of the current predicted disorder value for a residue in a sequence, xa is the
mean predicted disorder value for the residues in a sequence, yi is the actual disorder value
(specifically the CheZOD score) of the current residue, and ya is the mean actual disorder value.

The Matthew’s Correlation Coefficient (MCC) is calculated as,

(Eq. 2)𝑀𝐶𝐶 = (𝑇𝑃× 𝑇𝑁) − (𝐹𝑃× 𝐹𝑁)

(𝑇𝑃+ 𝐹𝑃)×(𝑇𝑁 + 𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁 + 𝐹𝑁)

Where true positives (TP) are the number of times a disorder predictor predicts a disordered
residue to be disordered, true negatives (TN) are the number of times a predictor does not
predict something to be disordered when it is not disordered, false positives (FP) are the
number of times a predictor predicts a residue to be disordered when it is in fact not disordered,
and false negatives (FN) are the number of times a predictor predicts a residue to not be
disordered when it is in fact disordered.

Finally, the F1-score is calculated as

F1-score = (Eq. 3)𝑇𝑃
𝑇𝑃 + (0.5 × (𝐹𝑃 + 𝐹𝑁))

Where TP, FP, and FN are defined above.

Metapredict training of disorder predictor
The metapredict disorder prediction was trained using PARROT with slight modifications to the
default settings (Griffith & Holehouse, 2021). We set the number of training epochs, which
defines the number of times the complete dataset is assessed and used to update the network
parameters, to 100. Increasing the number of epochs further gave a negligible improvement in
performance. The PARROT data type was set to ‘residues’ and the number of classes was set
to ‘1’ (for regression). The learning rate (--learning-rate), which is a parameter that alters the
rate that the model updates weights after each round of back-propagation, was set to 0.001.
The number of layers (--num-layers), which is the number of layers in the network between the
input layer and the output layer, was set to 1. The hidden vector size (--hidden-size), which is
the size of hidden vectors within the BRNN, was set to 5. The batch size (--batch), which is the
number of sequences processed at the same time, was set to 32. For training, validation, and
testing, 70% of the data was used for training, 15% of the data was used for validation, and 15%
of the data was used for testing.

The proteomes for which consensus disorder scores were available at the time of training were:
Danio rerio (UP000000437, 43,841 proteins), Gallus gallus (UP000000539, 25,238), Mus
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musculus (UP000000589, 44,470 proteins), Drosophila melanogaster (UP000000803, 21,114
proteins), Dictyostelium discoideum (UP000002195, 12,733 proteins), Canis lupus familiaris
(UP000002254, 45,089 proteins), Saccharomyces cerevisiae (UP000002311, 6,049 proteins),
Rattus norvegicus (UP000002494, 29,090 proteins), Homo sapiens (UP000005640, 66,835),
Arabidopsis thaliana (UP000006548, 39,342 proteins), Sus scrofa (UP000008227, 49,792
proteins), and Bos taurus (UP000009136, 37,367 proteins). These numbers reflect protein
sequences composed of the 20 standard amino acids only. Cross-referencing the training
dataset (70% of the total sequences) taken from these proteomes against the assessment
databases used (CheZOD and CAID) identified 28/116 from CheZOD and 451/652 from CAID
databases in a total training set of ~295,000 sequences. These proteomes and the associated
consensus disorder scores were obtained from MobiDB, but were originally curated by UniProt
(Acids Research & 2021, 2021; Piovesan et al., 2021; UniProt Consortium, 2019).

Metapredict performance
Metapredict has no specific hardware requirements and performs well across all set ups tested.
Hardware tested included an Unbuntu-running Dell desktop (Ubuntu 18.04 with Intel(R)
Core(TM) i9-9900 CPU @ 3.10GHz CPU, 32 GBs DDR4 RAM, with a Toshiba 512 GB SSD
(KBG40ZNS512G), a 2020 Apple Mac Mini (16 GB unified memory, Apple M1 processor), a
2019 16-inch MacBook Pro (64 GB 2667 MHz DDR4 RAM, 2.3 GHz Intel Core i9 processor,
Intel UHD Graphics 630 integrated graphics), and a 2012 MacBook Pro (2.9 GHz Intel Core i7
processor, 8 GB 1600 MHz DDR3 RAM, Intel HD Graphics 4000 1536 MB integrated graphics).
Importantly, as evident by our testing on a 2012 MacBook Pro (which scored at 7,238 residues
per second), metapredict does not require a high-end modern computer to be fast. Even on the
most basic virtual machine available, (Ubuntu 18.04 with single virtual Intel CPU (2.4 GHz), 1
GB DIMM memory, 20 GB SSD), metapredict performs at ~6000 residues per second.

To compare AUCPreD vs. metapredict (Supplemental Fig. S1) predictions were performed on
a desktop machine running Ubuntu 18.04 with an Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz
CPU, 32 GBs DDR4 RAM, with a Toshiba 512 GB SSD (KBG40ZNS512G).​​To ensure a fair
comparison, each sequence was isolated and placed in its own FASTA file, and the predictor
ran on each file independently. In reality, if one had multiple sequences, placing them into a
single FASTA file would be a more efficient approach to minimize the amount of time reading
from the filesystem. While the effective contribution of file read time is negligible for AUCPreD,
in all cases for metapredict it is the dominant determinant of execution time.

To compare metapredict execution time against other predictors based on times reported in the
CAID experiment, we used per-sequence execution times for AUCPreD on our local hardware
and on the CAID hardware to calibrate and approximate conversion factor. A more detailed
explanation of this process is described in
https://github.com/holehouse-lab/supportingdata/tree/master/2021/emenecker_metapredict_202
1/performance/metapredict_on_caid_disprot

AlphaFold2 pLDDT predictor data
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We obtained pLDDT scores for every AlphaFold2 model from
http://ftp.ebi.ac.uk/pub/databases/alphafold/ and extracted the pLDDT score from these models
for twenty one proteomes (UP000002485_284812_SCHPO, UP000000805_243232_METJA,
UP000001450_36329_PLAF7, UP000005640_9606_HUMAN, UP000001584_83332_MYCTU,
UP000001940_6239_CAEEL, UP000000625_83333_ECOLI, UP000002296_353153_TRYCC,
UP000000803_7227_DROME, UP000007305_4577_MAIZE, UP000002195_44689_DICDI,
UP000002311_559292_YEAST, UP000002494_10116_RAT, UP000008153_5671_LEIIN,
UP000008816_93061_STAA8, UP000006548_3702_ARATH, UP000008827_3847_SOYBN,
UP000000437_7955_DANRE, UP000000589_10090_MOUSE, UP000059680_39947_ORYSJ,
UP000000559_237561_CANAL). For each of these proteomes all PDB models were used, with
the exception of the human proteome where only the first (F1) models were used. In total
363,264 different sequences were used.

AlphaFold2 pLDDT predictor training
The AlphaFold2 (AF2) pLDDT predictor (alphaPredict) was trained using PARROT (version
1.5.0), the same general-purpose deep learning framework used to create the BRNN behind the
metapredict disorder predictions. The parameters used for PARROT training were as
follows: residues datatype, 1 class (for regression), a learning-rate of 0.001, 2 hidden
layers, 20 hidden vectors, a batch size of 32, and 200 training epochs.

AlphaFold2 pLDDT predictor accuracy
At the time of writing, our AF2 pLDDT confidence score predictor obtained an r2 value for the
actual versus predicted scores in the test set was 0.7148 and the average error per residue was
approximately 9.20% (network V4).

AlphaFold2 pLDDT predictor implementation
For improved modularity, the AlphaFold2 predictor is currently implemented as a separate
Python package (alphaPredict) which is encoded as a silent dependency to metapredict
(https://github.com/ryanemenecker/alphaPredict). alphaPredict can also be downloaded and
used independently from metapredict in its own right. alphaPredict is written in Python 3.7+ and
uses PyTorch, with the initial network trained using PARROT (Griffith & Holehouse, 2021;
Paszke et al., 2019).

AlphaFold2 pLDDT predictor improvements
The prior information regarding the network (network V2) used for the AF2 pLDDT confidence
score predictions in metapredict is up to date at the time of this writing. However, additional
networks (a V3 and V4) are currently in progress. However, due to the increased number of
proteomes used for training these networks and the slightly altered parameters, they currently
have weeks of additional training remaining before completion. For the most up to date
information on the AF2 pLDDT prediction in metapredict, please see
https://github.com/ryanemenecker/alphaPredict.
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Supplemental Tables

Rp AUC MCC TPR TNR FPR FNR prec Acc

SPOT-dis -0.657 0.881 0.59089 0.7067 0.8757 0.1243 0.2933 0.9177 0.7912

MFDp2 -0.631 0.853 0.578 0.8528 0.7275 0.2725 0.1472 0.8599 0.7901

MetaDisorder -0.617 0.865 0.541 0.8221 0.7287 0.2713 0.1779 0.856 0.7754

AUCpreD -0.598 0.865 0.54 0.7154 0.8555 0.1445 0.2846 0.9066 0.7854

MetaDisorderMD2 -0.614 0.852 0.54 0.7688 0.7955 0.2045 0.2312 0.8806 0.7821

MetaDisorderMD -0.616 0.853 0.519 0.7246 0.8227 0.1773 0.2754 0.8891 0.7736

IUPred_long -0.566 0.834 0.512 0.7477 0.7887 0.2113 0.2523 0.8741 0.7682

AUCpreD_noEvo -0.512 0.841 0.48658 0.603 0.8664 0.1336 0.397 0.8985 0.7347

metapredict -0.559 0.832 0.489 0.790 0.718 0.282 0.210 0.860 0.754

DISPROT  (VSL2b) -0.536 0.808 0.466 0.8525 0.5986 0.4014 0.1475 0.8064 0.7256

RONN -0.5 0.804 0.455 0.7387 0.7368 0.2632 0.2613 0.8463 0.7377

DISOPRED3 -0.551 0.833 0.451 0.5301 0.9207 0.0793 0.4699 0.9292 0.7254

IUPred_short -0.532 0.822 0.429 0.6284 0.8249 0.1751 0.3716 0.8756 0.7267

ESpritz_DisProt -0.419 0.748 0.412 0.8208 0.5846 0.4154 0.1792 0.7949 0.7027

PrDOS -0.541 0.836 0.409 0.5333 0.889 0.111 0.4667 0.9041 0.7111

ESpritz_NMR -0.478 0.797 0.374 0.4662 0.9087 0.0913 0.5338 0.9092 0.6874

DISpro -0.437 0.805 0.35712 0.3185 0.9565 0.0435 0.6815 0.9349 0.6375

DISOPRED2 -0.33 0.738 0.3419 0.642 0.6994 0.3006 0.358 0.8073 0.6707

MetaDisorder3D -0.361 0.727 0.333 0.5841 0.7674 0.2326 0.4159 0.8312 0.6757

DisEMBL_coils -0.404 0.735 0.32932 0.7252 0.6016 0.3984 0.2748 0.7812 0.6634

ESpritz_Xray -0.438 0.791 0.286 0.282 0.9597 0.0403 0.718 0.9321 0.6208

DisEMBL_remark465 -0.386 0.737 0.284 0.4219 0.8598 0.1402 0.5781 0.8551 0.6409

DisEMBL_hotloops -0.286 0.702 0.239 0.432 0.8093 0.1907 0.568 0.8163 0.6206

Supplemental Table 1. CHEZOD scores obtained from (Nielsen & Mulder, 2019).
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Rankings

Rank Rp AUC MCC prec Acc

1 SPOT-dis SPOT-dis SPOT-dis DISpro SPOT-dis

2 MFDp2 AUCpreD MFDp2 ESpritz_Xray MFDp2

3 MetaDisorder MetaDisorder MetaDisorder DISOPRED3 AUCpreD

4 MetaDisorderMD MFDp2 AUCpreD SPOT-dis MetaDisorderMD2

5 MetaDisorderMD2 MetaDisorderMD MetaDisorderMD2 ESpritz_NMR MetaDisorder

6 AUCpreD MetaDisorderMD2 MetaDisorderMD AUCpreD MetaDisorderMD

7 IUPred_long AUCpreD_noEvo IUPred_long PrDOS IUPred_long

8 metapredict PrDOS metapredict AUCpreD_noEvo metapredict

9 DISOPRED3 IUPred_long AUCpreD_noEvo MetaDisorderMD RONN

10 PrDOS DISOPRED3 DISPROT  (VSL2b) MetaDisorderMD2 AUCpreD_noEvo

11 DISPROT  (VSL2b) metapredict RONN IUPred_short IUPred_short

12 IUPred_short IUPred_short DISOPRED3 IUPred_long DISPROT  (VSL2b)

13 AUCpreD_noEvo DISPROT  (VSL2b) IUPred_short MFDp2 DISOPRED3

14 RONN DISpro ESpritz_DisProt metapredict PrDOS

15 ESpritz_NMR RONN PrDOS MetaDisorder ESpritz_DisProt

16 ESpritz_Xray ESpritz_NMR ESpritz_NMR DisEMBL_remark4
65 ESpritz_NMR

17 DISpro ESpritz_Xray DISpro RONN MetaDisorder3D

18 ESpritz_DisProt ESpritz_DisProt DISOPRED2 MetaDisorder3D DISOPRED2

19 DisEMBL_coils DISOPRED2 MetaDisorder3D DisEMBL_hotloops DisEMBL_coils

20 DisEMBL_remark465 DisEMBL_remark46
5 DisEMBL_coils DISOPRED2 DisEMBL_remark465

21 MetaDisorder3D DisEMBL_coils ESpritz_Xray DISPROT  (VSL2b) DISpro

22 DISOPRED2 MetaDisorder3D DisEMBL_remark465 ESpritz_DisProt ESpritz_Xray

23 DisEMBL_hotloops DisEMBL_hotloops DisEMBL_hotloops DisEMBL_coils DisEMBL_hotloops

Supplemental Table 2. CHEZOD-based rankings. This table is provided in a .xlsx format at the
manuscript’s GitHub repository.



TN FP FN TP MCC F1-s TNR TPR PPV BAC

fIDPnn 585 16 19 26 0.569 0.598 0.973 0.578 0.619 0.776

RawMSA 582 19 19 26 0.546 0.578 0.968 0.578 0.578 0.773

VSL2B 578 23 22 23 0.468 0.505 0.962 0.511 0.5 0.736

fIDPlr 566 35 18 27 0.468 0.505 0.942 0.6 0.435 0.771

Predisorder 589 12 26 19 0.479 0.5 0.98 0.422 0.613 0.701

SPOT-Disorder1 572 29 23 22 0.416 0.458 0.952 0.489 0.431 0.72

DisoMine 551 50 17 28 0.421 0.455 0.917 0.622 0.359 0.77

AUCpreD 588 13 28 17 0.431 0.453 0.978 0.378 0.567 0.678

SPOT-Disorder2 574 27 24 21 0.409 0.452 0.955 0.467 0.438 0.711

metapredict 599 8 25 20 0.539 0.548 0.987 0.444 0.714 0.716

SPOT-Disorder-Sin
gle 594 7 30 15 0.452 0.448 0.988 0.333 0.682 0.661

IsUnstruct 588 13 29 16 0.411 0.432 0.978 0.356 0.552 0.667

IUPred2A-long 595 6 32 13 0.42 0.406 0.99 0.289 0.684 0.639

Gene3D 505 96 10 35 0.391 0.398 0.84 0.778 0.267 0.809

ESpritz-N 597 4 33 12 0.426 0.393 0.993 0.267 0.75 0.63

ESpritz-D 555 46 23 22 0.342 0.389 0.923 0.489 0.324 0.706

PyHCA 596 5 33 12 0.411 0.387 0.992 0.267 0.706 0.629

JRONN 595 6 33 12 0.397 0.381 0.99 0.267 0.667 0.628

MobiDB-lite 599 2 34 11 0.437 0.379 0.997 0.244 0.846 0.621

DisPredict-2 586 15 32 13 0.33 0.356 0.975 0.289 0.464 0.632

IUPred2A-short 599 2 35 10 0.413 0.351 0.997 0.222 0.833 0.609

S2D-2 572 29 30 15 0.288 0.337 0.952 0.333 0.341 0.643

PDB(observed) 468 133 13 32 0.286 0.305 0.779 0.711 0.194 0.745

AUCpreD-np 590 11 35 10 0.293 0.303 0.982 0.222 0.476 0.602

ESpritz-X 595 6 36 9 0.321 0.3 0.99 0.2 0.6 0.595

FoldUnfold 456 145 14 31 0.256 0.281 0.759 0.689 0.176 0.724

DISOPRED-3.1 596 5 39 6 0.246 0.214 0.992 0.133 0.545 0.563



DisEMBL-HL 601 0 41 4 0.288 0.163 1 0.089 1 0.544

PDB(remote) 590 11 42 3 0.085 0.102 0.982 0.067 0.214 0.524

DisEMBL-465 601 0 43 2 0.204 0.085 1 0.044 1 0.522

PDB(close) 589 12 43 2 0.043 0.068 0.98 0.044 0.143 0.512

Conservation 441 160 38 7 -0.064 0.066 0.734 0.156 0.042 0.445

DynaMine 601 0 45 0 0 0 1 0 0 0.5

GlobPlot 601 0 45 0 0 0 1 0 0 0.5

DFLpred 601 0 45 0 0 0 1 0 0 0.5

Supplemental Table 3. CAID scores taken from (Necci et al., 2021). This table is provided in a
.xlsx format at the manuscript’s GitHub repository.
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Rankings

Rank MCC F1 BAC PPV

1 fIDPnn fIDPnn Gene3D DisEMBL-HL

2 RawMSA RawMSA fIDPnn DisEMBL-465

3 metapredict metapredict RawMSA MobiDB-lite

4 Predisorder VSL2B fIDPlr IUPred2A-short

5 VSL2B fIDPlr DisoMine ESpritz-N

6 fIDPlr Predisorder PDB(observed) metapredict

7 SPOT-Disorder-Single SPOT-Disorder1 VSL2B PyHCA

8 MobiDB-lite DisoMine FoldUnfold IUPred2A-long

9 AUCpreD AUCpreD SPOT-Disorder1 SPOT-Disorder-Single

10 ESpritz-N SPOT-Disorder2 metapredict JRONN

11 DisoMine SPOT-Disorder-Single SPOT-Disorder2 fIDPnn

12 IUPred2A-long IsUnstruct ESpritz-D Predisorder

13 SPOT-Disorder1 IUPred2A-long Predisorder ESpritz-X

14 IUPred2A-short Gene3D AUCpreD RawMSA

15 IsUnstruct ESpritz-N IsUnstruct AUCpreD

16 PyHCA ESpritz-D SPOT-Disorder-Single IsUnstruct

17 SPOT-Disorder2 PyHCA S2D-2 DISOPRED-3.1

18 JRONN JRONN IUPred2A-long VSL2B

19 Gene3D MobiDB-lite DisPredict-2 AUCpreD-np

20 ESpritz-D DisPredict-2 ESpritz-N DisPredict-2

21 DisPredict-2 IUPred2A-short PyHCA SPOT-Disorder2

22 ESpritz-X S2D-2 JRONN fIDPlr

23 AUCpreD-np PDB(observed) MobiDB-lite SPOT-Disorder1

24 S2D-2 AUCpreD-np IUPred2A-short DisoMine

25 DisEMBL-HL ESpritz-X AUCpreD-np S2D-2

26 PDB(observed) FoldUnfold ESpritz-X ESpritz-D

27 FoldUnfold DISOPRED-3.1 DISOPRED-3.1 Gene3D



28 DISOPRED-3.1 DisEMBL-HL DisEMBL-HL PDB(remote)

29 DisEMBL-465 PDB(remote) PDB(remote) PDB(observed)

30 PDB(remote) DisEMBL-465 DisEMBL-465 FoldUnfold

31 PDB(close) PDB(close) PDB(close) PDB(close)

32 DynaMine Conservation DynaMine Conservation

33 GlobPlot DynaMine GlobPlot DynaMine

34 DFLpred GlobPlot DFLpred GlobPlot

35 Conservation DFLpred Conservation DFLpred

Supplemental Table 4. CAID-based rankings. This table is provided in a .xlsx format at the
manuscript’s GitHub repository.



BAC F1-S FPR MCC PPV TPR TNR

flDPnn 0.72 0.483 0.189 0.37 0.392 0.629 0.811

SPOT-Disorder2 0.725 0.469 0.343 0.349 0.333 0.794 0.657

fIDPlr 0.693 0.452 0.184 0.33 0.374 0.57 0.816

RawMSA 0.714 0.445 0.297 0.328 0.321 0.725 0.703

Predisorder 0.691 0.435 0.28 0.301 0.324 0.661 0.72

SPOT-Disorder1 0.723 0.434 0.386 0.33 0.294 0.832 0.614

AUCpreD 0.712 0.433 0.376 0.318 0.297 0.801 0.624

SPOT-Disorder-Single 0.71 0.432 0.341 0.315 0.302 0.76 0.659

ESpritz-D 0.703 0.428 0.325 0.307 0.303 0.731 0.675

AUCpreD-np 0.699 0.424 0.327 0.301 0.3 0.725 0.673

DisoMine 0.698 0.424 0.326 0.299 0.3 0.721 0.674

metapredict 0.693 0.421 0.320 0.293 0.300 0.705 0.680

IUPred2A-short 0.688 0.42 0.297 0.29 0.305 0.674 0.703

MobiDB-lite 0.688 0.42 0.296 0.289 0.305 0.673 0.704

IUPred-long 0.686 0.418 0.294 0.287 0.305 0.666 0.706

IUPred-short 0.688 0.418 0.304 0.288 0.302 0.679 0.696

ESpritz-X 0.689 0.418 0.309 0.288 0.301 0.686 0.691

IsUnstruct 0.689 0.418 0.311 0.288 0.3 0.688 0.689

IUPred2A-long 0.685 0.416 0.299 0.285 0.302 0.67 0.701

VSL2B 0.684 0.408 0.341 0.277 0.286 0.709 0.659

JRONN 0.672 0.401 0.318 0.263 0.287 0.663 0.682

ESpritz-N 0.664 0.4 0.271 0.259 0.3 0.599 0.729

DISOPRED-3.1 0.674 0.393 0.401 0.258 0.266 0.749 0.599

PyHCA 0.66 0.385 0.346 0.241 0.271 0.666 0.654

DynaMine 0.66 0.384 0.362 0.24 0.267 0.682 0.638

Gene3D 0.653 0.368 0.486 0.226 0.24 0.791 0.514

FoldUnfold 0.642 0.365 0.382 0.211 0.251 0.666 0.618

DisEMBL-465 0.627 0.363 0.215 0.214 0.296 0.468 0.785



S2D-1 0.633 0.361 0.329 0.203 0.259 0.595 0.671

PDB (close) 0.637 0.353 0.38 0.202 0.242 0.655 0.62

S2D-2 0.624 0.347 0.439 0.183 0.232 0.687 0.561

PDB (observed) 0.616 0.339 0.565 0.174 0.215 0.796 0.435

DisPredict-2 0.599 0.326 0.326 0.152 0.237 0.523 0.674

PDB (remote) 0.614 0.321 0.45 0.163 0.21 0.678 0.55

GlobPlot 0.587 0.312 0.253 0.143 0.246 0.427 0.747

Conservation 0.552 0.288 0.483 0.077 0.191 0.587 0.517

DisEMBL-HL 0.577 0.286 0.099 0.172 0.33 0.253 0.901

DFLpred 0.503 0.025 0.008 0.022 0.249 0.013 0.992

Supplemental Table 5. CAID per-residue assessment using DisProt dataset. This table is
provided in a .xlsx format at the manuscript’s GitHub repository.



Rankings

Rank MCC F1 BAC PPV

1 flDPnn flDPnn SPOT-Disorder2 flDPnn

2 SPOT-Disorder2 SPOT-Disorder2 SPOT-Disorder1 fIDPlr

3 SPOT-Disorder1 fIDPlr flDPnn SPOT-Disorder2

4 fIDPlr RawMSA RawMSA DisEMBL-HL

5 RawMSA Predisorder AUCpreD Predisorder

6 AUCpreD SPOT-Disorder1 SPOT-Disorder-Single RawMSA

7 SPOT-Disorder-Single AUCpreD ESpritz-D IUPred2A-short

8 ESpritz-D SPOT-Disorder-Single AUCpreD-np MobiDB-lite

9 AUCpreD-np ESpritz-D DisoMine IUPred-long

10 Predisorder AUCpreD-np fIDPlr ESpritz-D

11 DisoMine DisoMine metapredict SPOT-Disorder-Single

12 metapredict metapredict Predisorder IUPred-short

13 IUPred2A-short IUPred2A-short ESpritz-X IUPred2A-long

14 MobiDB-lite MobiDB-lite IsUnstruct ESpritz-X

15 ESpritz-X ESpritz-X IUPred2A-short AUCpreD-np

16 IsUnstruct IsUnstruct MobiDB-lite DisoMine

17 IUPred-short IUPred-short IUPred-short IsUnstruct

18 IUPred-long IUPred-long IUPred-long ESpritz-N

19 IUPred2A-long IUPred2A-long IUPred2A-long metapredict

20 VSL2B VSL2B VSL2B AUCpreD

21 JRONN JRONN DISOPRED-3.1 DisEMBL-465

22 ESpritz-N ESpritz-N JRONN SPOT-Disorder1

23 DISOPRED-3.1 DISOPRED-3.1 ESpritz-N JRONN

24 PyHCA PyHCA PyHCA VSL2B

25 DynaMine DynaMine DynaMine PyHCA

26 Gene3D Gene3D Gene3D DynaMine



27 DisEMBL-465 FoldUnfold FoldUnfold DISOPRED-3.1

28 FoldUnfold DisEMBL-465 PDB (close) S2D-1

29 S2D-1 S2D-1 S2D-1 FoldUnfold

30 PDB (close) PDB (close) DisEMBL-465 DFLpred

31 S2D-2 S2D-2 S2D-2 GlobPlot

32 PDB (observed) PDB (observed) PDB (observed) PDB (close)

33 DisEMBL-HL DisPredict-2 PDB (remote) Gene3D

34 PDB (remote) PDB (remote) DisPredict-2 DisPredict-2

35 DisPredict-2 GlobPlot GlobPlot S2D-2

36 GlobPlot Conservation DisEMBL-HL PDB (observed)

37 Conservation DisEMBL-HL Conservation PDB (remote)

38 DFLpred DFLpred DFLpred Conservation

Supplemental Table 6. CAID per-residue rankings using DisProt dataset. This table is
provided in a .xlsx format at the manuscript’s GitHub repository.



BAC F1-S FPR MCC PPV TPR TNR

PDB(observed) 0.898 0.886 0 0.854 1 0.796 1

SPOT-Disorder1 0.846 0.788 0.09 0.696 0.795 0.782 0.91

SPOT-Disorder2 0.836 0.784 0.055 0.706 0.851 0.727 0.945

AUCpreD 0.816 0.756 0.07 0.662 0.82 0.701 0.93

PDB (close) 0.811 0.755 0.033 0.689 0.891 0.655 0.967

SPOT-Disorder-Single 0.817 0.751 0.095 0.646 0.775 0.729 0.905

RawMSA 0.815 0.745 0.106 0.635 0.755 0.736 0.894

AUCpreD-np 0.797 0.725 0.092 0.615 0.769 0.686 0.908

DISOPRED-3.1 0.796 0.724 0.092 0.613 0.768 0.684 0.908

Predisorder 0.788 0.717 0.067 0.619 0.813 0.642 0.933

IUPred-long 0.783 0.704 0.096 0.588 0.754 0.661 0.904

fIDPnn 0.782 0.701 0.113 0.576 0.727 0.676 0.887

IsUnstruct 0.779 0.7 0.091 0.585 0.76 0.648 0.909

IUPred2A-long 0.776 0.697 0.087 0.584 0.766 0.64 0.913

VSL2B 0.774 0.695 0.087 0.581 0.765 0.636 0.913

ESpritz-X 0.778 0.695 0.119 0.566 0.717 0.675 0.881

IUPred-short 0.775 0.693 0.104 0.571 0.738 0.654 0.896

DisoMine 0.78 0.693 0.16 0.55 0.668 0.721 0.84

Gene3D 0.785 0.692 0.22 0.539 0.615 0.791 0.78

IUPred2A-short 0.773 0.691 0.094 0.574 0.752 0.64 0.906

ESpritz-D 0.778 0.69 0.166 0.544 0.66 0.723 0.834

metapredict 0.791 0.712 0.124 0.585 0.718 0.705 0.876

MobiDB-lite 0.764 0.683 0.063 0.583 0.806 0.592 0.937

fIDPlr 0.761 0.671 0.119 0.537 0.705 0.641 0.881

ESpritz-N 0.751 0.662 0.073 0.554 0.779 0.575 0.927

JRONN 0.751 0.661 0.081 0.546 0.762 0.583 0.919

DynaMine 0.739 0.641 0.11 0.505 0.704 0.588 0.89

FoldUnfold 0.736 0.636 0.193 0.462 0.608 0.666 0.807



PyHCA 0.731 0.629 0.107 0.494 0.704 0.569 0.893

S2D-1 0.724 0.617 0.089 0.494 0.728 0.536 0.911

S2D-2 0.703 0.591 0.253 0.386 0.536 0.658 0.747

PDB (remote) 0.703 0.579 0.273 0.377 0.505 0.678 0.727

DisEMBL-465 0.694 0.57 0.11 0.426 0.667 0.498 0.89

DisEMBL-HL 0.641 0.535 0.47 0.262 0.415 0.752 0.53

DisPredict-2 0.625 0.491 0.285 0.24 0.455 0.534 0.715

Conservation 0.618 0.485 0.296 0.227 0.445 0.533 0.704

GlobPlot 0.641 0.48 0.111 0.328 0.613 0.394 0.889

DFLpred 0.504 0.027 0.005 0.043 0.53 0.014 0.995

Supplemental Table 7. CAID per-residue rankings using DisProt-PDB dataset. This table is
provided in a .xlsx format at the manuscript’s GitHub repository.



Rankings

Rank MCC F1 BAC PPV

1 PDB(observed) PDB(observed) PDB(observed) PDB(observed)

2 SPOT-Disorder2 SPOT-Disorder1 SPOT-Disorder1 PDB (close)

3 SPOT-Disorder1 SPOT-Disorder2 SPOT-Disorder2 SPOT-Disorder2

4 PDB (close) AUCpreD SPOT-Disorder-Single AUCpreD

5 AUCpreD PDB (close) AUCpreD Predisorder

6 SPOT-Disorder-Single SPOT-Disorder-Single RawMSA MobiDB-lite

7 RawMSA RawMSA PDB (close) SPOT-Disorder1

8 Predisorder AUCpreD-np AUCpreD-np ESpritz-N

9 AUCpreD-np DISOPRED-3.1 DISOPRED-3.1 SPOT-Disorder-Single

10 DISOPRED-3.1 Predisorder metapredict AUCpreD-np

11 IUPred-long metapredict Predisorder DISOPRED-3.1

12 IsUnstruct IUPred-long Gene3D IUPred2A-long

13 metapredict fIDPnn IUPred-long VSL2B

14 IUPred2A-long IsUnstruct fIDPnn JRONN

15 MobiDB-lite IUPred2A-long DisoMine IsUnstruct

16 VSL2B VSL2B IsUnstruct RawMSA

17 fIDPnn ESpritz-X ESpritz-X IUPred-long

18 IUPred2A-short IUPred-short ESpritz-D IUPred2A-short

19 IUPred-short DisoMine IUPred2A-long IUPred-short

20 ESpritz-X Gene3D IUPred-short S2D-1

21 ESpritz-N IUPred2A-short VSL2B fIDPnn

22 DisoMine ESpritz-D IUPred2A-short metapredict

23 JRONN MobiDB-lite MobiDB-lite ESpritz-X

24 ESpritz-D fIDPlr fIDPlr fIDPlr

25 Gene3D ESpritz-N ESpritz-N DynaMine

26 fIDPlr JRONN JRONN PyHCA

27 DynaMine DynaMine DynaMine DisoMine



28 PyHCA FoldUnfold FoldUnfold DisEMBL-465

29 S2D-1 PyHCA PyHCA ESpritz-D

30 FoldUnfold S2D-1 S2D-1 Gene3D

31 DisEMBL-465 S2D-2 S2D-2 GlobPlot

32 S2D-2 PDB (remote) PDB (remote) FoldUnfold

33 PDB (remote) DisEMBL-465 DisEMBL-465 S2D-2

34 GlobPlot DisEMBL-HL DisEMBL-HL DFLpred

35 DisEMBL-HL DisPredict-2 GlobPlot PDB (remote)

36 DisPredict-2 Conservation DisPredict-2 DisPredict-2

37 Conservation GlobPlot Conservation Conservation

38 DFLpred DFLpred DFLpred DisEMBL-HL

Supplemental Table 8. CAID per-residue rankings using DisProt-PDB dataset. This table is
provided in a .xlsx format at the manuscript’s GitHub repository.



Supplemental Figures

Supplemental Figure 1. Evaluation of metapredict using CheZOD scores. (A) The absolute
value of the Pearson’s correlation coefficient calculated by comparing the correlation between
each predictor’s score per residue and the CheZOD score. (B) The area under the receiver
operating characteristic curve (AUC) (generated by comparing disorder scores of various
predictors to disorder predictions from CheZOD scores. Values for all predictors in (A) and (B)
other than metapredict (orange bar) were obtained from (Nielsen & Mulder, 2019).

https://paperpile.com/c/XKqyOW/Gt5O6


Supplemental Figure 2. Comparison of execution time and predict performance for
AUCPreD vs. metapredict (A) Run time of 200 different proteins from the DISPROT dataset
spanning a variety of different sizes as assessed by AUCPreD (grey crosses) vs. metapredict
(blue circles). Both methods show a clear correlation between sequence length and execution
time (AUCPreD Pearson’s correlation coefficient of 0.71, metapredict Pearson’s correlation
coefficient of 0.88), yet the magnitude of the execution time for metapredict makes it look
effectively flat. (B) Comparison of accuracy between AUCPreD and metapredict for the same
sequences. The two methods are effectively comparable (see also Fig. 3A). (C) Zoomed-in
comparison of execution time vs. protein size for metapredict. Note that the intercept here is 670
ms, which reflects the time needed to read-in and load the trained network, while the actual
per-sequence execution time is under 100 ms for even a 1000 residue sequence (see also
Supplemental Fig. 8 where execution times are calculated after the initial network file has been
read in and parsed by metapredict).



Supplemental Figure 3. Disorder and predicted structure confidence are highly correlated
but independent measures of (lack of) protein structure.
We analyzed every sequence in the human proteome, computed per-residue disorder
predictions and predicted structure confidence scores (predicted pLDDT), and correlated the
scores using the Pearson correlation coefficient. The histogram above represents the overall
distribution of those correlation coefficients calculated for 20,394 protein sequences.



Supplemental Figure 4. Assessing the impact of disorder cutoff values on binary order
and disorder classification of CheZOD data. (A) Absolute value of Pearson’s Correlation
Coefficient for binary predictions of disorder by metapredict compared to binary classifications of
disorder from the CheZOD dataset. (B) Absolute value of Pearson’s Correlation Coefficient for
binary predictions of disorder by metapredict where the binary predictions were obtained using
the predict_disorder_domains() function. These predictions are compared to binary
classifications of disorder from CheZOD dataset. For both (A) and (B), the orange line
represents the cutoff value used for binary classifications of order and disorder for metapredict.



Supplemental Figure 5. Assessing the impact of disorder cutoff values on binary order
and disorder classification of the Disprot Dataset (CAID). (A) F1-scores for binary
predictions of disorder by metapredict compared to binary classifications of disorder from the
Disprot dataset. (B) F1-scores for binary predictions of disorder by metapredict where the binary
predictions were obtained using the predict_disorder_domains() function. These predictions
were compared to binary classifications of disorder from the Disprot dataset. For both (A) and
(B), the orange line represents the cutoff value used for binary classifications of order and
disorder for metapredict.



Supplemental Figure 6. Assessing the impact of disorder cutoff values on binary order
and disorder classification of the Disprot Dataset-PDB (CAID). (A) F1-scores for binary
predictions of disorder by metapredict compared to binary classifications of disorder from the
Disprot-PDB dataset. (B) F1-scores for binary predictions of disorder by metapredict where the
binary predictions were obtained using the predict_disorder_domains() function. These
predictions were compared to binary classifications of disorder from the Disprot-PDB dataset.
For both (A) and (B), the orange line represents the cutoff value used for binary classifications of
order and disorder for metapredict.



Supplemental Figure 7. Assessing the impact of disorder cutoff values on metapredict
identifying fully disordered proteins from the Disprot Dataset (CAID). (A) F1-scores for
predicted fully disordered proteins by metapredict compared to the known number of fully
disordered proteins in the Disprot dataset. (B) F1-scores for predicted fully disordered proteins
by metapredict where the binary predictions used to classify a protein as fully disordered were
obtained using the predict_disorder_domains() function. These predictions were compared to
the known number of fully disordered proteins in the Disprot dataset. For both (A) and (B), fully
disordered proteins were counted if the predictor classified at least 95% of residues within a
protein as disordered. For both (A) and (B), the orange line represents the cutoff value used for
binary classifications of order and disorder for metapredict.



Supplemental Figure 8. Metapredict performance as a function of sequence length in
number of residues. Assessment of length-dependence of metapredict performance reveals a
linear scaling of prediction time with sequence length. Sequences here are randomly generated
fixed-length sequences. Error bars are standard error of the mean calculated over thirty
independent runs for random sequences of the specified length. Code for this analysis is
provided in the Supporting Data GitHub repository.



Supplemental Figure 9. Metapredict offers three distinct modes of use. (A) Metapredict can
be used as a Python library, with simple and intuitive integration into existing Python code or for
exploration in a Jupyter notebook. (B) Metapredict can be used as a command-line tool to
interact directly with FASTA files. The file generated by the command
metapredict-predict-disorder (“disorder_scores.csv”) is a simple comma separated value (CSV)
file with per-residue disorder values provided for each sequence in the FASTA file. (C) Finally,
metapredict is offered as a simple web server (https://metapredict.net), which can generate
high-quality downloadable figures or allow per-residue disorder scores to be obtained as a CSV
data file.



Supplemental Figure 10. Metapredict accurately recapitulates precomputed consensus
disorder scores. Precomputed consensus disorder scores from the MobiDB database (red)
and predicted disorder scores obtained SPOT-disorder2 (black) are compared to predicted
consensus disorder scores calculated by metapredict for Velo1 from Xenopus laevis (UniProt
Q7T226), PGL-3 from Caenorhabditis elegans (UniProt G5EBV6), Early E1A protein from
Human adenovirus C serotype 5 (UniProt P03255), and Sup35 from Schizosaccharomyces
pombe (UniProt O74718). None of these proteins were part of the training, test, or validation set
for metapredicts. Note that Velo1 exceeds the length that SPOT-disorder2 can be used on.



Supplemental Figure 11. Reproduction of Fig. 3B with various predictors explicitly labelled.
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