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Supplementary Figures, Tables, and Legends. 
 

 
Fig. S1. Validation of additional targets from NPC screens. (A) Cell growth was monitored 
during the screen by performing duplicate cell counts with Trypan Blue and a Countess Cell 



Counter. Only viable cells were included. A fraction of each was replated at the appropriate 
density. This fraction and the cell count at each split were propagated to calculate the total cell 
counts expected if all cells had been replated, relative to the cell count at the first split. Time 
points of collection are indicated as “Early” and “Late”. (B) Cells growth plotted as in Fig. 1D, 
where the x-axis denotes rotenone concentration (0, 1.2, 2.3, 4.7, 9.4, 18.75, 37.5, 75, 150, 300 
and 600 ng/mL) and the y-axis indicates relative luminescence of each concentration compared 
to 0 ng/ml rotenone. The column headers indicate the behavior of each gene in the screen. Note 
that several genes did not reproduce the expected growth phenotype. (C) Mean expression is 
plotted as in Fig. 1G, in transcripts from individual genes (in transcripts per million). All 
transcripts of genes identified in the rotenone screen are highlighted in the specified colors. (D) 
RT-qPCR following treatment of NPCs with 10uM Antimycin, as in Fig. 1D. Mapped are fold 
change for 2-6 biological replicates of antimycin treatment to ethanol treatment with SEM and 
paired t-test for each timepoint (ns (not significant), * (<0.05), ** (<0.01), *** (<0.001), **** 
(<0.0001)). 
  



 

 
Fig. S2. Loss of eps-8 induces a canonical UPRMT signature. (A) Fluorescent micrographs of 
day 1 adult hsp-6p::GFP animals grown on empty vector control (ev) or eps-8 RNAi mixed in 1:1 
ratio with ev or atfs-1 RNAi from hatch. All images are contrast matched. (B) Quantification of 
hsp-6p::GFP in day 1 adult animals grown on ev (grey) or eps-8 RNAi (red) mixed in 1:1 ratio 
with ev or atfs-1 RNAi from hatch. Lines represent median and interquartile range, with each dot 
representing a single animal. n = 206-332 per sample. Data is representative of 3 independent 
trials. *** = p < 0.001; n.s. = nonsignificant, p > 0.10 using non-parametric Mann-Whitney 
testing. (C) Fluorescent micrographs of day 1 adult DVE-1::GFP animals grown on empty vector 
control (ev) or eps-8 RNAi from hatch. All images are contrast matched. Bottom panel shows a 
zoomed in version of the bottom half of the fluorescent image for better clarity. (D) RNA-seq 



was performed in N2 animals grown on ev or eps-8 RNAi as described in Materials and 
Methods. Heat map indicates log2(fold change) of genes in comparison to control where red 
indicates upregulated genes and blue indicates downregulated genes. Here, canonical UPRER 
genes are represented as those that were differentially expressed by neuronal overexpression 
of xbp-1s compared to an ev control as previously described (49). See Supplementary Table 5 
for actual values of log2(fold change). (E) Differentially expressed genes from (d) that were 
previously identified as bonafide IRE-1 targets were extracted and plotted separately. IRE-1 
targets were defined as genes that showed decreased expression when ire-1 was mutated (73) 
and/or are part of the GO term 0030968 endoplasmic reticulum unfolded protein response using 
BioMart WormBase Parasite. 
  



 
Fig. S3. Loss of eps-8 suppresses induction of UPRMT via inhibition of complex I, but not 
complex IV. (A) Fluorescent micrographs of day 1 adult hsp-6p::GFP animals grown on empty 
vector control (ev) or eps-8 RNAi mixed in 1:1 ratio with ev, cco-1, or nuo-4 RNAi from hatch. All 
images are contrast matched. (B) Quantification of hsp-6p::GFP in day 1 adult animals grown 
on ev (grey) or eps-8 RNAi (red) mixed in 1:1 ratio with ev, cco-1, or nuo-4 RNAi from hatch. 
Lines represent median and interquartile range, with each dot representing a single animal. n = 
395-483 per sample. Data is representative of 3 independent trials. *** = p < 0.001 using non-
parametric Mann-Whitney testing. (C) Fluorescent micrographs of day 1 adult gst-4p::GFP 
animals grown on empty vector control (ev) or eps-8 RNAi mixed in 1:1 ratio with ev, cco-1, or 
nuo-4 RNAi from hatch. All images are contrast matched. (D) Quantification of gst-4p::GFP in 
day 1 adult animals grown on ev (grey) or eps-8 RNAi (red) mixed in 1:1 ratio with ev, cco-1, or 
nuo-4 RNAi from hatch. Lines represent median and interquartile range, with each dot 
representing a single animal. n = 153-319 per sample. Data is representative of 3 independent 
trials. *** = p < 0.001 using non-parametric Mann-Whitney testing. 
  



 
Fig. S4. Decreased RAC signaling does not alter mitochondrial homeostasis. (A) 
Fluorescent micrographs of day 1 adult hsp-6p::GFP animals grown on empty vector control 
(ev), ced-10, mig-2, or rac-2 RNAi from hatch. All images are contrast matched. (B) 
Quantification of hsp-6p::GFP in day 1 adult animals grown on ev (grey), ced-10, mig-2, or rac-2 
(blue) RNAi from hatch. Lines represent median and interquartile range, with each dot 
representing a single animal. n = 927-1050 per sample. Data is representative of 3 independent 
trials. *** = p < 0.001 using non-parametric Mann-Whitney testing. (C-D) Representative 
fluorescent images of day 1 adult animals expressing a mitochondria-targeted GFP from tissue 
specific promoters: myo-3p (muscle, c) and col-19p (hypodermis, d). Animals were grown on ev, 
ced-10, mig-2, or rac-2 RNAi from hatch and imaged directly on glass slides as described in 
Materials and Methods. Images were captured on a Leica DM6000. Scale bar is 10 µm. 
  



 
Fig. S5. Integrin signaling alters mitochondrial homeostasis. (A) Fluorescent micrographs 
of MCF10A cells expressing 3x-MYC-tagged β1-integrin from a tetracycline rtTA2(S)-M2 
inducible promoter as described in Materials and Methods. Control images are cells without 
induction, and β1 integrin overexpressing cells are treated with 200 ng/mL doxycycline for 24 
hours prior to imaging. Mitochondria are visualized by staining with mitotracker deep red FM as 
described in Materials and Methods using a Nikon Eclipse Ti spinning disc microscope. Scale 
bar is 10 µm. (B) qPCR was performed on MCF10A cells expressing 3x-MYC-tagged β1-
integrin from a tetracycline rtTA2(S)-M2 inducible promoter. β1-integrin overexpression was 
induced by treatment with 200 ng/mL doxycycline for 24 hours prior to RNA collection. Data is 
presented as mean +/- SEM and is representative of 3 biological replicates. (C) Fluorescent 
micrographs of MCF10A cells transduced with lentiviral vectors carrying CRISPRi guides 
against a non-coding region of ACOC2 (control) or EPS8. Cells were fixed with 4% 
paraformaldehyde for 30 min and stained with Alexa Fluor 568 to visualized actin (white) and 
antibodies against pFAK (red) as described in Materials and Methods. Scale bar is 10 µm. (D) 
Representative fluorescent images of day 1 adult animals expressing a mitochondria-targeted 
GFP from an intestinal specific promoter, gly-19p. Animals were grown on ev or eps-8 RNAi 
mixed in a 1:1 ratio with ev, ina-1, or pat-3 RNAi from hatch and imaged directly on glass slides 
as described in Materials and Methods. Images were captured on an LSM900 Airyscan 
microscope. Scale bar is 10 µm. 



 
Fig. S6. Loss of eps-8 extends lifespan in a UPRMT-dependent manner.  
(A) Lifespans of wild-type animals grown on control (ev) or eps-8 RNAi mixed 50/50 with ev (red 
and green) or atfs-1 (orange and black) RNAi from hatch. (B) Lifespans of wild-type animals 
grown on control (ev) or eps-8 RNAi mixed 50/50 with ev (blue and green) or pat-3 (purple and 
black) RNAi from hatch. Data for A and B were collected simultaneously and can be directly 
compared and were separated for ease of visibility. Statistics are as follows: (median survival, p-
value using log-rank compared to ev, # of animals, % censored) ev (19, n/a, 120, 26%), atfs-1 
(19, 0.755, 120, 21%), pat-3 (19, 0.18, 120, 18%), eps-8 (22, 0.002, 120, 8%), eps-8/atfs-1 (18, 
0.883, 120, 18%), eps-8/pat-3 (16, 0.001, 20%). Data is representative of 3 independent trials.  
 
  



 
 

 
Fig. S7. Loss of ZC239.5 similarly alters mitochondrial homeostasis to eps-8 knockdown. 
(A) Fluorescent micrographs of day 1 adult hsp-6p::GFP animals grown on empty vector control 
(ev) or ZC239.5 RNAi from hatch. All images are contrast matched. (B) Quantification of hsp-
6p::GFP in day 1 adult animals grown on ev (grey) or ZC239.5 (green) RNAi from hatch. Lines 
represent median and interquartile range, with each dot representing a single animal. n = 579 
for ev and 555 for ZC239.5. Data is representative of 3 independent trials. *** = p < 0.001 using 
non-parametric Mann-Whitney testing. (C) Representative fluorescent images of day 1 adult 
animals expressing a mitochondria-targeted GFP from tissue specific promoters: myo-3p 
(muscle) and col-19p (hypodermis). Animals were grown on ev or ZC239.5 RNAi from hatch 
and imaged directly on glass slides as described in Materials and Methods. Muscle images 
were captured on a standard wide-field Zeiss AxioObserver.Z1. Hypodermal images were 
captured on an LSM900 Airyscan microscope. Scale bar is 10 µm.   
 
 
Table S1. NPC CRISPR-Cas9 screen gene list. Raw data of CRISPR-Cas9 screen providing 
all genes identified in the screen.  
 
Table S2. NPC RNA-seq gene list. Raw data of NPC RNA-seq providing all genes sequenced.  
 



Table S3. C. elegans screen gene list. List of human genes that were followed up in C. 
elegans secondary screens. Homologies were identified using Ortholist 2.  
 
Table S4. C. elegans screen data. Raw C. elegans screening data for all genes for 2 biological 
replicates. Red indicates decreased GFP expression or decrease in fecundity (egg count), 
yellow indicates no change, and green indicates an increase in GFP expression or increase in 
fecundity (egg count) qualitatively by eye. Any visible phenotypes were also recorded.  
 
Table S5. C. elegans Basal screen data. Raw numerical data for Fig. 2B. Also provides 
locations for each image in the supplementary images.  
 
Table S6. C. elegans Suppressor screen data. Raw numerical data for Fig. 2C. Also provides 
locations for each image in the supplementary images. 
 
Table S7. RNAseq eps-8 vs. cco-1 RNAi. Raw numerical data for Fig. 3C.  
 
Table S8. RNAseq eps-8 RNAi vs. rab-3p::xbp-1s. Raw numerical data for Fig. 3D. 
 
Table S9. sgRNAs used in this study. sgRNA sequences used in this study are provided in 
this table.  
 
Table S10. Primers used in this study. All primer sequences used in this study are provided in 
this table.  
 
Table S11. Strains used in this study. All C. elegans strains used in this study are derivatives 

of the Bristol N2 strain and are detailed in this table.  

 
  



Supplemental Information – Raw Screen Images 

 
Supplemental File 1. UPRMT Screen. hsp-6p::GFP animals were grown on RNAi indicated from 
hatch and imaged at day 1 of adulthood.  



 
Supplemental File 2. UPRMT Screen.  hsp-6p::GFP animals were grown on RNAi indicated 
from hatch and imaged at day 1 of adulthood. 
  



 
Supplemental File 3. UPRMT Screen. hsp-6p::GFP animals were grown on RNAi indicated from 
hatch and imaged at day 1 of adulthood. 



 
Supplemental File 4. UPRMT Screen.  hsp-6p::GFP animals were grown on RNAi indicated 
from hatch and imaged at day 1 of adulthood. 
  



 
Supplemental File 5. UPRMT Screen.  hsp-6p::GFP animals were grown on RNAi indicated 
from hatch at 100% (basal) or mixed 50:50 with cco-1 or nuo-4 and imaged at day 1 of 
adulthood. 



 
Supplemental File 6. UPRMT Screen.  hsp-6p::GFP animals were grown on RNAi indicated 
from hatch at 100% (basal) or mixed 50:50 with cco-1 or nuo-4 and imaged at day 1 of 
adulthood. 
  



 
Supplemental File 7. UPRMT Screen.  hsp-6p::GFP animals were grown on RNAi indicated 
from hatch at 100% (basal) or mixed 50:50 with cco-1 or nuo-4 and imaged at day 1 of 
adulthood. 
 



 
Supplemental File 8. UPRMT Screen.  hsp-6p::GFP animals were grown on RNAi indicated 
from hatch at 100% (basal) or mixed 50:50 with cco-1 or nuo-4 and imaged at day 1 of 
adulthood. 
  



 
Supplemental File 9. UPRMT Screen.  hsp-6p::GFP animals were grown on RNAi indicated 
from hatch at 100% (basal) or mixed 50:50 with cco-1 or nuo-4 and imaged at day 1 of 
adulthood. 
  



 
Supplemental File 10. UPRER Screen.  hsp-4p::GFP animals were grown on RNAi indicated 
from hatch until L4. L4 animals were moved onto plates containing 25 ng/µL tunicamycin (TM) 
or left untreated (basal) and allowed to grow an additional 24 hours and imaged at day 1 of 
adulthood.  
  



 
Supplemental File 11. UPRER Screen.  hsp-4p::GFP animals were grown on RNAi indicated 
from hatch until L4. L4 animals were moved onto plates containing 25 ng/µL tunicamycin (TM) 
or left untreated (basal) and allowed to grow an additional 24 hours and imaged at day 1 of 
adulthood.  



 
Supplemental File 12. UPRER Screen.  hsp-4p::GFP animals were grown on RNAi indicated 
from hatch until L4. L4 animals were moved onto plates containing 25 ng/µL tunicamycin (TM) 
or left untreated (basal) and allowed to grow an additional 24 hours and imaged at day 1 of 
adulthood.  



 
Supplemental File 13. UPRER Screen.  hsp-4p::GFP animals were grown on RNAi indicated 
from hatch until L4. L4 animals were moved onto plates containing 25 ng/µL tunicamycin (TM) 
or left untreated (basal) and allowed to grow an additional 24 hours and imaged at day 1 of 
adulthood.  



 
Supplemental File 14. UPRER Screen.  hsp-4p::GFP animals were grown on RNAi indicated 
from hatch until L4. L4 animals were moved onto plates containing 25 ng/µL tunicamycin (TM) 
or left untreated (basal) and allowed to grow an additional 24 hours and imaged at day 1 of 
adulthood.  



 
Supplemental File 15. UPRER Screen.  hsp-4p::GFP animals were grown on RNAi indicated 
from hatch until L4. L4 animals were moved onto plates containing 25 ng/µL tunicamycin (TM) 
or left untreated (basal) and allowed to grow an additional 24 hours and imaged at day 1 of 
adulthood.  



 
Supplemental File 16. UPRER Screen.  hsp-4p::GFP animals were grown on RNAi indicated 
from hatch until L4. L4 animals were moved onto plates containing 25 ng/µL tunicamycin (TM) 
or left untreated (basal) and allowed to grow an additional 24 hours and imaged at day 1 of 
adulthood.  
 



 
Supplemental File 17. HSR Screen.  hsp-16.2p::GFP animals were grown on RNAi indicated 
from hatch until day 1. Day 1 adults were heat-shocked (HS) at 24 °C for two hours and 
recovered for two ours or left untreated (basal) prior to imaging.  



 
Supplemental File 18. HSR Screen.  hsp-16.2p::GFP animals were grown on RNAi indicated 
from hatch until day 1. Day 1 adults were heat-shocked (HS) at 24 °C for two hours and 
recovered for two ours or left untreated (basal) prior to imaging.  



 
Supplemental File 19. HSR Screen.  hsp-16.2p::GFP animals were grown on RNAi indicated 
from hatch until day 1. Day 1 adults were heat-shocked (HS) at 24 °C for two hours and 
recovered for two ours or left untreated (basal) prior to imaging.  



 
Supplemental File 20. HSR Screen.  hsp-16.2p::GFP animals were grown on RNAi indicated 
from hatch until day 1. Day 1 adults were heat-shocked (HS) at 24 °C for two hours and 
recovered for two ours or left untreated (basal) prior to imaging.  



 
Supplemental File 21. HSR Screen.  hsp-16.2p::GFP animals were grown on RNAi indicated 
from hatch until day 1. Day 1 adults were heat-shocked (HS) at 24 °C for two hours and 
recovered for two ours or left untreated (basal) prior to imaging.  
  



 
Supplemental File 22. HSR Screen.  hsp-16.2p::GFP animals were grown on RNAi indicated 
from hatch until day 1. Day 1 adults were heat-shocked (HS) at 24 °C for two hours and 
recovered for two ours or left untreated (basal) prior to imaging.  



 
Supplemental File 23. HSR Screen.  hsp-16.2p::GFP animals were grown on RNAi indicated 
from hatch until day 1. Day 1 adults were heat-shocked (HS) at 24 °C for two hours and 
recovered for two ours or left untreated (basal) prior to imaging.  



 
Supplemental File 24. HSR Screen.  hsp-16.2p::GFP animals were grown on RNAi indicated 
from hatch until day 1. Day 1 adults were heat-shocked (HS) at 24 °C for two hours and 
recovered for two ours or left untreated (basal) prior to imaging.  
  



 
Supplemental File 25. HSR Screen.  hsp-16.2p::GFP animals were grown on RNAi indicated 
from hatch until day 1. Day 1 adults were heat-shocked (HS) at 24 °C for two hours and 
recovered for two ours or left untreated (basal) prior to imaging.  
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