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Figure S1: Schematic of model plankton by size and function.



Figure S2: Comparison of Annual Mean Surface Chl-a (mg Chl / m3). (Top row) total Chl-a;

and Chl-a in size classes (Second row) micro (>20µm); (Third row) nano (2-20µm); (Bottom

row) pico (<2µm). (Left column) Model 2000-2020 mean; (Middle Column) Satellite

Observations, top from NASA MODIS, other three panels are the satellite-based estimates

from Ref. (19); (Right Column) Model bias determined as model minus observations. The

middle column shows mean of all available satellite measurements, with missing observations

in the polar winters and under clouds; while model results are mean (0-50m).



Figure S3: Comparison to Observations of Functional Groups. (top) mean from 2000-2020

from model (0-60m) and (bottom) data compilation (MAREDAT) (20) in carbon biomass (mg

C / m3). For the MAREDAT databases: pico-phytoplankton (48); coccolithophores (44);

diazotrophs (49); diatoms (50). There was no MAREDAT dataset for dinoflagellates. We do

not show biases as these would not be reasonable comparisons since MAREDAT data

presented here combines all measurements regardless of time, while model show annual mean.



Figure S4: Same as Figure 3a but including poles.



Figure S5: Same as Figures 2a-f for diazotrophs.



Figure S6: Same as maps in Figures 2a-f, 3a-f, S5, S6 for those properties where the sign of an

abrupt change is mentioned in the text. Blue corresponds to declines and red corresponds to

increases, with color intensity corresponding to the magnitude of the shift up to saturation at

50%. Red in the phytoplankton size distribution plot corresponds to a shift to smaller size

classes (larger magnitude of power-law size distribution exponent).



Figure S7: For each ecosystem property, the fraction of 21st-century abrupt shifts identified

when analyzing model output from 1990-y as a function of end year y between 2000 and 2100.

Depending on the ecosystem property, 70-96% of the abrupt shifts are only identified when

analyzing model output including years past 2050.



Figure S8: For each ecosystem property, the fraction of 21st-century abrupt shifts identified

that are positive, i.e. increases.



Figure S9: For each ecosystem property, the cumulative distribution of the amplitude of both

positive (increasing) and negative (decreasing) abrupt shifts. Negative prokaryotic and positive

picoeukaryotic abrupt shifts are not plotted because each is comprised of only a single

anomalous grid cell.



Figure S10: Same as Figures 3a-f for top ocean grid layer temperature.



Figure S11: Same as Figures 2a-f for top ocean grid layer nutrient concentrations.



Figure S12: Fraction of abrupt shifts in each ecosystem property preceded (within five years)

by an abrupt shift in each nutrient. For instance, in the maximum case, for 4.2% of the

locations where an abrupt shift in diatom biomass is detected, an abrupt shift in silicate

concentrations is detected 1-5 years beforehand. When using a window of 2 years, these

fractions range from 0-0.027; when using a window of 10 years, they range from 0-0.057.



Figure S13: Relative likelihood of an abrupt shift occurring in species richness as a function of

different driver variables, and as a function of the relative rate of change of diatom biomass.

X-axis refers to the percentiles of the driver variables, so that all drivers can be plotted on a

single axis. The only systematic relationship is with silicate supply SSi(/N/P/Fe) and @t

diatoms.



Figure S14: Same as Figure 4 for coccolithophores in the Subtropical North Atlantic. Note the

purple and blue variance time series’ maxima.



Figure S15: a) Same as Figure 3f. b) Same as Figure 3f without 10% cutoff threshold. Regions

with abrupt shifts are slightly expanded but still confined to the subtropics.



Table S1: For each ecosystem property considered here, the fraction of ocean area equatorward

of 65� for which abrupt changes are identified (Ext.) is given for both the emissions (E.)

scenario simulation and the control (C.) simulation. The third and fourth column give the

median amplitude (Amp.) of the abrupt shifts in each case.
Property E. Ext. (%) C. Ext. (%) E. Amp. (%) C. Amp. (%)
Prokaryotes 0.30 0.015 42 34
Picoeukaryotes 1.2 0.21 82 29
Coccolithophores 12 0.69 27 34
Diazotrophs 40 10 37 81
Diatoms 25 7.5 40 51
Dinoflagellates 20 4.1 31 45
Zooplankton 5.3 1.9 32 47
Shannon Index 8.4 1.6 12 14
Richness 9.2 0.93 12 13
Primary Production 12 4.3 14 16
Phyto. Biomass 7.9 1.6 12 15
Phyto. Size Dist. 12 1.8 11 14
Zoo. Size Dist. 8.8 0.78 14 15



Table S2: For each ecosystem property considered here, whether or not there is a systematic

increase in the relative probability of an abrupt change occurring at a given place and time as

the supply rate SSi decreases (and as the supply ratios SSi/N , SSi/P , SSi/Fe decrease, and as

the relative change in diatom biomass @t(diatoms) increases), or whether that ecosystem

property has a systematic relationship with any other putative driver. See also Figure S13.

Prokaryotes and Picoeukaryotes are not considered because their abrupt shifts are too rare to

resolve systematic relationships confidently, though @tZ/P is higher than average when and

where abrupt shifts in these plankton types occur.
Property SSi(/N/P/Fe) and @t(diatoms) another putative driver
Coccolithophores Yes No
Diatoms Yes No
Dinoflagellates Yes No
Zooplankton No No
Shannon Index Yes No
Richness Yes No
Primary Production Yes No
Phyto. Biomass Yes No
Phyto. Size Dist. Yes No
Zoo. Size Dist. Yes No
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