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Fig. S1. Weight update mechanism of the SIZO/ion-gel synaptic device. (A) Device configuration of 
the flexible synaptic device based on a SIZO/ion-gel hybrid structure. (B) Illustrations and energy band 
diagrams of the ion movement in the SIZO/ion-gel interface (top panel) and energy band diagrams 
describing the surface potential in the presynaptic terminal/SIZO junction (bottom panel), according to 
the applied VWC.  

 

  



 

 

Fig. S2. Conductance response with respect to voltage pulses. On applying a voltage pulse with an 
amplitude of +5 V and duration of 50 ms, the conductance momentarily increased from 0.36 to 1.43 nS, 
and subsequently, it slowly decreased to 0.44 nS. As described in the main article, when a voltage pulse 
is applied, the ions accumulate near the interface and are also adsorbed into the existing defects in the 
SIZO channel region. The ions that from the EDL rapidly diffuse into the ion-gel; however, the adsorbed 
ions are expected to be removed slowly, which likely causes the short-term and long-term synaptic 
plasticity. 
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Fig. S3. Optical images of the test equipment for mechanical flexibility and durability. (A) Arch-
shaped metal bars with a radius of 5 mm, 10 mm, and 30 mm. (B) Step motor controller (SMC-100, 
ECOPIA) before bending (left panel) and after 5 mm bending (right panel) (Photo Credit: Jeong-Ick Cho, 
Sungkyunkwan University).  



 

 

Fig. S4. Bending strain investigation. (A) Cross-sectional SEM image of the 3 wt% PVP-coated PI 
substrate. (B) Calculated bending strain (ε) with respect to the bending radius from 30 to 5 mm of the 
SIZO/ion-gel flexible synaptic device. The ε value can be estimated using the equation inserted in Fig.S4B. 
Here, tPI = 25 µm, tPVP ≈ 1.7 µm, and tSIZO = 30 nm, which denotes the thickness of the PI substrate, PVP 
layer, and SIZO channel layer, respectively, and r is the bending radius. 
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Fig. S5. Nonlinearity extraction method of the LTP/D characteristic curves. (A) Normalized GLTP 
and GLTD curves (i.e. the normalized LTP/D characteristic curves) with respect to NL ranging from 0 to 
±5. (B) Measured/fitted curves in LTP (upper panel) and LTD (lower panel) regions, where NLL/D = 
−0.11/−4.88. 

There are several methods to evaluate the NL of the LTP/LTD characteristic curve (57−60). Among them, 
we chose a method to tune AP and AD for finding the GLTP and GLTD curves best matched to the measured 
LTP/LTD curves (5, 6). The conductance curve model with the number of pulses (P) is represented as the 
following equations: 

GLTP = BP∙(1 − exp(−P/AP)) + Gmin,                            (1) 

GLTD = −BD∙(1 − exp((P − Pmax)/AD)) + Gmax,                     (2) 

BP,D = (Gmax − Gmin)/(1 − exp(−Pmax/AP,D))                        (3) 

where GLTP and GLTD are the conductance values for LTP and LTD, respectively. Gmax, Gmin, and Pmax are 
the measured data that represent the maximum conductance, minimum conductance, and maximum pulse 
number, respectively. BP,D is a fitting constant to normalize the conductance range for the LTP and LTD 
regions. AP and AD are parameters that determine the nonlinearities of the weight update in the LTP and 
LTD regions, which are directly related to the NL values. 

The GLTP and GLTD curves with respect to the NL ranging from 0 to ±5 are displayed in Fig. S5A. By 
adjusting the AP and AD values, the GLTP and GLTD curves are fitted to the measured LTP/LTD curves, and 
accordingly the NL values are determined (Fig. S5B). 
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Fig. S6. Investigation of the learning accuracy with respect to the pulse conditions. (A) Extracted 
Gmax/Gmin and AS values with respect to the pulse amplitude from ±3 to ±5 V (top panel) and estimated 
recognition rates (bottom panel). (B) Extracted Gmax/Gmin and AS values with respect to the pulse width 
from 40 to 100 ms (top panel) and estimated recognition rates (bottom panel).
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Fig. S7. Effective number of conductance states (NSeff) according to the ratio between ΔG and 
Gmax−Gmin (Δ/Δmax). NSeff vs. Δ/Δmax with respect to the depressing pulse amplitude ranging from −5 V 
to −2 V.  

From the LTP/D characteristics in Fig. 3D, we extracted the NSeff values when Δ/Δmax was greater than 
1 %, 0.5 %, and 0.1 % (Fig. S7). For all depressing pulse-amplitude cases, the NSeff value increased 
significantly as the Δ/Δmax decreased from 1 to 0.1 %. Especially, in the 5 V/−2 V-case, the NSeff in the 
LTP and LTD regions reached 99 and 87, respectively, even under the strict condition: Δ/Δ max > 0.1%. 
This means that 99 % and 87 % of the total conductance states were effectively usable, indicating that our 
synaptic device possessed an enough number of conductance states between Gmax and Gmin. 
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Fig. S8. Energy consumption of the SIZO/ion-gel synaptic device. (A) Measured Ipost (upper panel) 
and calculated Ereading (bottom panel) with respect to the VWC pulse number. (B) Measured IWC and 
calculated Ewriting with respect to the potentiation (top panel) and depression pulses (bottom panel). 

We roughly calculated the reading (Ereading) and writing energy (Ewriting) using the equations below: 

Ereading = Vpre × Ipost × tpre                               (4) 

Ewriting = VWC × IWC × tWC ,                              (5) 

where Vpre, Ipost, and tread represent the magnitude of Vpre, the peak value of Ipost, and the pulse duration of 
Vpre, respectively. VWC, IWC, and tWC denote the magnitude of VWC, the peak value of IWC, and the pulse 
duration of VWC, respectively (39, 41). 

As shown in Fig. S8, Ereading was approximately distributed from 0.09 to 2.0 nJ. The value of Ewriting for 
the potentiation pulse was +5 V × 0.76 nA × 100 ms = 380 pJ and that for the depression pulse was −2 V 
× −0.33 nA × 100 ms = 66 pJ. These values are slightly higher than the energies reported in recent works 
(below 10 pJ) (61–63). 

  

−9

0

3

−6

−3

1110 139 12
Time (s)

−2

2

4

0I W
C

(n
A

)

V
W
C

(V
)

Time (s)

−2

2

4

0I W
C

(n
A

)

V
W
C

(V
)

A

0

40

60

20

Pulse number (#)
1000 50 150 200

VWC = +5 V/−2 V, 100 ms

I p
o

s
t (

nA
)

0

2

3

1

Pulse number (#)
1000 50 150 200

E
re

a
d

in
g

(n
J)

B

3130 3329 32

−6

3

6

−3

0

Ereading_max

= 2 nJ

Ereading_min

= 0.09 nJ

Ewrit ing_potentiation = 380 pJ

Ewrit ing_depression = 66 pJ

Vpre = +1 V, 50 ms



 

 

 

 

Fig. S9. The stretching test platform for the electrical measurement CNT/SEBS stretchable sensor. 
(A) Measurement setup consisting of an actuating motor, a step motor controller, and a SourceMeter. (B) 
Resistance (R) according to the length change (ΔL) of the stretchable resistive sensor with the initial length 
(L0) of 1 cm, 1.5 cm, and 2 cm, where the stretchable sensor was gradually extended to 0.5 cm (the top 
panel). Strain Gauge Factor (GF) with respect to L0 of the sensor (the bottom panel) (Photo Credit: Jeong-
Ick Cho, Sungkyunkwan University). 

As shown in Fig. S9A, to investigate the mechanical deformation with respect to the resistance of 
stretchable sensors, a stretching test platform was employed, which consists of an actuating motor (Jaeil 
optical system), a step motor controller (SMC-100, ECOPIA), and a Keithley 2450 SourceMeter. The 
CNT/SEBS sensors were cut into three lengths of 1 cm, 1.5 cm, and 2 cm (the width was fixed at 0.5 cm), 
and the side parts of these sensors were attached to the test platform. The sensors were pulled gradually, 
and the change in R was monitored with a source-meter connected to both ends of the sensor. 

The R values for 1 cm, 1.5 cm, and 2 cm were changed from 0.54 to 1.45, from 1.56 to 3.21, and from 
2.66 to 4.85 kΩ as ΔL increased from 0 to 0.5 cm, respectively (the top panel of Fig. S9B). Then, GF was 
calculated as the following equation: 

𝐺𝐹 =  
∆𝑅/𝑅 

∆𝐿/𝐿 
 

where the ∆𝑅 is the difference between R0 and R values. As shown in the bottom panel of Fig. S9B, the 
GF value with regard to L0 of 1 cm, 1.5 cm, and 2 cm was 3.30, 3.18, and 3.29, respectively, and the RSD 
was only 1.7 %, indicating that the stretchable sensor had high reliability regardless of L0. 

 

 



 

  

Fig. S10. Arrangement of the hand sign pattern with a size of 3 × 5 corresponding to each finger 
joint (Photo Credit: Jeong-Ick Cho, Sungkyunkwan University). 

 

 

Fig. S11. Prepared hand sign patterns for “A”, “B”, “C”, “I love you”, “H”, “E”, “L”, and “O”. 

To prepare the hand sign pattern data, we conducted the sensing and patterning process. First, the ΔR 
values for the 15 finger joints were measured using a 2-cm length stretchable sensor after gesturing a hand 
sign corresponding to “A”, “B”, “C”, “I love you”, “H”, “E”, “L”, and “O” (see Fig. S9). Then, the 
measured ΔR of each finger joint was arranged onto a hand sign pattern with a size of 3 × 5 as shown in 
Fig. S10. Finally, all ΔR values in the pattern data were converted into a voltage form ranging from 0 to 
1 V (Fig. S11) (Photo Credit: Jeong-Ick Cho, Sungkyunkwan University). 



 

   

Fig. S12. Gmax/Gmin (top panel), AS (middle panel) values, and Recognition rates (bottom panel) with 
respect to bending radius (left panel) and bending cycles (right panel). 
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Fig. S13. Nonlinearity analysis of LTP/LTD curves for pattern recognition tasks. (A) LTP and LTD 
curves with respect to nonlinearity (NL) ranging from 0 to 5. (B) LTP and LTD curve fitting; NLP = 0.01 
and NLD = 2.76. 

As shown in Fig. S13, nonlinearity (NL) was obtained by fitting the LTP/LTD curves with the following 
weight update formula:  

𝐺ାଵ = 𝐺 + ∆𝐺 = 𝐺 + 𝛼𝑒
ିఉು

ಸషಸ
ಸೌೣషಸ, 

𝐺ାଵ = 𝐺 + ∆𝐺 = 𝐺 − 𝛼𝑒
ିఉವ

ಸೌೣషಸ
ಸೌೣషಸ. 

Here, Gn+1 and Gn represent the conductance values of the synaptic device when the n+1th and nth spikes 
are applied, respectively. Gmax and Gmin represent the maximum and minimum conductance values, 
respectively. The parameters α and NL indicate the step size of the conductance and the nonlinearity, 
respectively. As shown in Fig. S13, a larger NL corresponds to higher nonlinearity. The nonlinearity 
values obtained from the fitted LTP/LTD curves were 0.01/2.76. As depicted in Fig. S13B, the fitted 
theoretical LTP/LTD curves are highly similar to the experimentally obtained curves. 



 

 

Channel IZO ITO IWO IGZO IGZO SnO2 
This work 

SIZO 

Dielectric PSG Chitosan Chitosan Al2O3 PZT LiClO4 Ion-gel 

Substrate 
Si 

membrane 
PET PET PET Mica PEN PI film 

Bending 
radius 

10 mm 20 mm 30 mm 9.5 mm 4 mm 8 mm 5 mm 

Bending 
cycle 

2.0×102 1.0×103 1.0×103 1.0×101 4.0×102 1.0×101 1.5×103 

Reference (64) (65) (66) (67) (68) (69) - 

Table S1. Performance benchmark with regard to the mechanical flexibility (bending radius) and 
durability (bending cycle) in comparison with other AOS-based flexible synapses. 

 

 Ag:a-Si 
TaOx/Hf

Ox 
PCMO 

AlOx/Hf
O2 

GST 
PCM 

Epi-
RAM 

HZO 
FeFET 

This work 
Ideal 

SIZO/ion-gel 

Nonline
arity 
(P/D) 

2.4/−4.8
8 

0.04/−0.
63 

3.68/−6.
76 

1.94/−0.
61 

0.105/2.
4 

0.5/−0.5 
1.75/1.4

6 
0.1/−2.4 0/0 

ON/OF
F ratio 

12.5 10 6.84 4.43 19.8 50.2 45 23.0 >10 

# of 
conduct

ance 
states 

97 128 50 40 100–120 64 32 100 >64 

Cycle-
to-cycle 
variatio

n 

3.5% 3.7% <1% 5% 1.5% 2% <0.5% <1% 0% 

Online 
learning 
accurac

y 

~72% ~80% ~33% ~20% 89% 92% 88% 88.5% 93.5% 

Referen
ce 

(70) (71) (72) (73) (74) (75) (76) - - 

Table S2. Comparison of the proposed synaptic device and other synaptic devices in terms of the 
learning accuracy predicted using NeuroSim+ MNIST simulator (56) 
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