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Supplemental: Vertebrate host phylogeny influences gut archaeal diversity

Supplemental Results

Prevalence and diversity of Archaea across vertebrate clades

Of 311 genomic DNA samples from 5 vertebrate taxonomic classes, 185 (60%) passed
16S rRNA gene PCR amplification, MiSeq sequencing, and sequence data quality control (Table
S2). Success rates were highest for Reptilia (73%) and Aves (67%), 58% for Mammalia, 50%
for Amphibia, and 50% for Reptilia (Figure S2). The 185 successful samples comprised mostly
wild individuals (76%) and a total of 110 species, with a mean 1.7 ± 4.3 s.d. samples per
species (Figure S1). Mammalia made up the majority of samples (72%); still, non-mammalian
samples spanned 22 families and 35 genera. In regards to diet, success rates were 70, 56, and
46% for herbivores, omnivores, and carnivores, respectively (Figure S2). Feces samples had a
substantially higher success rate (62%) versus gut contents (38%), but there was little difference
between wild and captive individuals (62 versus 56%, respectively). The mean per-species
success rate was 61% ± 49 s.d., and when just assessing species with >1 sample (72 of 158),
the success rate was 63% ± 37.3 s.d. Plotting the number of successful and failed samples onto
a phylogeny of all species showed that success often varied among individuals of a species
(Figure S4). In addition, some phylogenetic clustering of success rates could be observed.
Indeed, when just considering Mammalia, which made up the majority of samples (73%), the
orders Lagomorpha, Carnivora, and Rodentia had the lowest success rates (<50% for each),
while success rates were 100% for Monotremata, Perissodactyla, and Proboscidea (Figure S2).
While these findings are compelling, one must consider that failure may have resulted from
many phenomena besides absence of Archaea from the gut, such as PCR inhibitors or
insufficient DNA for effective amplification. Still, success across highly varied host taxonomic
groups, diets, and sample types indicates that Archaea are widespread among vertebrates,
regardless of diet.

Rarefaction analysis using the Shannon index revealed that archaeal diversity saturated
at a low sampling depth of approximately 250 sequences, regardless of the host class (Figure
S7A). We confirmed these results with another rarefaction method that extrapolates diversity
beyond obtained sampling depths, with diversity based on Hill numbers (Figure S7B). These
results contrast most gut microbiome studies using the commonly used “universal” Earth
Microbiome 16S rRNA primer set 515F-806R, in which bacterial and archaeal diversity is usually
not saturated for the sampling depths reached Walters et al., “Improved Bacterial 16S rRNA
Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial
Community Surveys”; Thompson et al., “A Communal Catalogue Reveals Earth’s Multiscale
Microbial Diversity”; Youngblut et al., “Host Diet and Evolutionary History Explain Different
Aspects of Gut Microbiome Diversity among Vertebrate Clades.”.

The dataset comprised 1891 amplicon sequence variants (ASVs), with a rather diverse
taxonomic composition for Archaea, comprising 6 phyla (Asgardaeota, Crenarchaeota,
Diapherotrites, Euryarchaeota, Nanoarchaeaeota, Thaumarchaeota) and 10 classes (Figure 1).
Class-level taxonomic compositions were fairly consistent among individuals of each host
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species (Figure S8; Table S4). Methanobacteria ASVs were generally most prevalent across
host species (mean of ~4%; Figure S6).  We note that Asgardarchaeota and Diapherotrites
were each only represented by 1 ASV, and each were found in only 1 species: Asgardaeota in
the the European Otter (Lutra lutra) and Diapherotrites in the Smooth Newt (Lissotriton
vulgaris). Neither clade is known to be animal-associated Borrel et al., “The Host-Associated
Archaeome.”. Also, the Thermococci class (Euryarchaeota phylum) comprised only 2 ASVs,
with one only found in the Common Carp (Cyprinus carpio) and the other in the European Otter.
Both ASVs were classified as Methanofastidiosales, with one identified as Methanofastidiosum.
No member of this class is known to be host-associated Söllinger and Urich, “Methylotrophic
Methanogens Everywhere - Physiology and Ecology of Novel Players in Global Methane
Cycling”; Borrel et al., “The Host-Associated Archaeome.”. Plotting mean relative abundances of
taxonomic classes onto a tree of all species revealed that Methanobacteria (Euryarchaeota
phylum) dominated in many species, but dramatically different microbiome compositions were
observed scattered across the phylogeny. For instance, Thermoplasmata (Euryarchaeota
phylum) dominated in multiple non-human primates, while two Mammalia and one Aves species
were nearly completely comprised of Nitrososphaeria (Thaumarchaeaota phylum): the
European badger (Meles meles), the Western European Hedgehog (Erinaceus europaeus), and
the Rook (Corvus frugilegus). Halobacteria (Euryarchaoeota phylum) dominated the Goose
(Anser anser) microbiome, which were all sampled from salt marshes. The class was also
noticeably present in some distantly related animals inhabiting high salinity biomes (e.g., the
Nile Crocodile and the Short Beaked Echidna; Tables S1 & S4). Bathyarchaeia, a class in the
Crenarchaea phylum according to the SILVA database taxonomy but also known as the
Candidatus Bathyarchaeota phylum, are not known to inhabit the vertebrate gut Ibid.; however,
we observed a total of 9 Bathyarchaeia ASVs in 8 samples, comprising 6 species spanning 4
taxonomic classes (all except Mammalia; Table S5). Most of these ASVs were detected in only
one sample apiece, but 2 Bathyarchaeia ASVs were both observed in each of the two Smooth
Newt samples (Figure S6). The total Bathyarchaeia ASVs relative abundance was <0.5% in 4 of
the species, while substantially higher (3.3%) in the Nile Crocodile (Crocodylus niloticus), and
quite abundant in 2 Smooth Newt samples (17.9 and 42.2%).

Only 40% of ASVs had a ≥97% sequence identity match (a pseudo-species level) to any
cultured representative in the All Species Living Tree database (Figure S10A). Of the 10
taxonomic classes represented by all ASVs, 5 had no match at ≥85% sequence identity:
Odinarchaeia, Bathyarchaeia, Iainarchaeia, Woesarchaeia, and Thermococci. Taxonomic
novelty to cultured representatives differed substantially among the other 5 classes (Figure
S10B); only Methanobacteria had >50% ASVs with a species-level match (52%), while <20% of
ASVs belonging to Thermoplasmata and Nitrososphaeria had such a match. These findings
suggest that our dataset consists of a great deal of uncultured taxonomic diversity.

Archaea-targeting primers reveal much greater archaeal diversity

We compared the archaeal diversity identified with the archaeal-targeting primers
(“16S-arc”) used in this study to the standard “universal” 16S rRNA primers (“16S-uni”) used by
Youngblut and colleagues on many of the same samples Youngblut et al., “Host Diet and
Evolutionary History Explain Different Aspects of Gut Microbiome Diversity among Vertebrate
Clades.”. Importantly, both datasets were processed in the same manner (see Methods). A total
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of 140 samples overlapped between the two datasets, with the majority of species (77%)
consisting of mammals, but all 5 classes were represented (Figure S11). The 16S-uni primers
generated a total of 169 ASVs, which is only 12.1% of archaeal ASVs generated by the 16S-arc
primers for the same samples. All archaeal classes except the Soil Crenarchaeal Group were
substantially more represented in the 16S-arc dataset, with 6 classes completely absent from
the 16S-uni dataset: Nitrososphaeria, Woesarchaeia, unclassified Eukyarchaeota, Iainarchaeia,
Bathyarchaeia, and Odinarchaeia. Besides the Soil Crenarchaeal Group, class-level prevalence
across host species was substantially higher across hosts when grouped by taxonomic class or
diet (Figure S11). For example, Methanobacteria was observed in all host species via the
16S-arc primers, while prevalence dropped substantially for 16S-uni primers (e.g., only 9% for
Aves). These findings show that the “universal” NGS 16S rRNA primers used for most
microbiome studies can substantially undersample archaeal diversity, as previously observed
Raymann et al., “Unexplored Archaeal Diversity in the Great Ape Gut Microbiome”; Koskinen et
al., “First Insights into the Diverse Human Archaeome: Specific Detection of Archaea in the
Gastrointestinal Tract, Lung, and Nose and on Skin”; Pausan et al., “Exploring the Archaeome:
Detection of Archaeal Signatures in the Human Body.”

Host diet and evolutionary history explain various aspects of archaeal diversity

We used multiple regression on matrices (MRM) to assess which potential factors
explain archaeal beta diversity. We employed this approach because archaeal beta diversity,
host phylogenetic relatedness, and geographic distance can be inherently represented as
distance matrices, while distances can be calculated for other explanatory factors such as
similarity of detailed diet compositions (see Methods). Due to a lack of within-species
phylogenetic relatedness data, we used one individual per host species and assessed
intra-species variation by repeating the analysis 99 more times, each time with one randomly
selected individual per species. Unless otherwise noted, this permutation-based intra-species
sensitivity analysis was used for all hypothesis testing.

Geographic distance, habitat, and technical components (e.g., feces versus gut
contents) did not significantly explain beta diversity, regardless of the diversity metric (Figure
2A). Host phylogeny significantly explained diversity as measured by unweighted UniFrac,
Bray-Curtis, and Jaccard; however, significance was not quite reached for weighted UniFrac.
The percent variation explained was dependent on the beta diversity measure and varied from
~28% for Jaccard to ~12% for unweighted UniFrac. In contrast to host phylogeny, diet was only
explanatory for Bray-Curtis, with ~12% of variance explained. Mapping the major factors onto
ordinations qualitatively supported our results (Figure S12). Applying the same MRM analysis to
just non-mammalian species did not generate any significant associations between host
phylogeny or diet (Figure S14), likely due to the low sample sizes (n = 39). However, host
phylogeny did have comparable coefficients as when including all species and were nearly
significant for both the Bray-Curtis and Jaccard indices, while diet showed no such trend
towards significance. These findings suggest that host evolutionary history mediates vertebrate
gut archaeal diversity more than diet, with diet mainly altering the abundances of archaeal ASVs
shared by various hosts, while host phylogeny also alters the composition of archaeal taxa.

We also assessed alpha diversity via MRM in order to provide a consistent comparison
to our beta diversity assessment, with alpha diversity represented here as a euclidean distance
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matrix (Figure S15). In contrast to beta diversity, no factors significantly explained alpha
diversity calculated via either the Shannon Index or Faith’s Phylogenetic Diversity (Faith’s PD).
Of note, geographic distance nearly significantly explained Shannon Index diversity (P = 0.06),
while the same was true of habitat for Faith’s PD (P = 0.16).

A signal of Archaea-Vertebrata co-phylogeny

To test for corresponding phylogenetic associations on both the host phylogeny and the
archaeal 16S rRNA phylogeny, we employed two approaches to quantify signals of
co-phylogeny: Procrustes Application to Cophylogenetic Analysis (PACo) and ParaFit Paradis,
Claude, and Strimmer, “APE: Analyses of Phylogenetics and Evolution in R Language”;
Hutchinson et al., “Paco: Implementing Procrustean Approach to Cophylogeny in R.”. Both
PACo and ParaFit tests were both significant (P < 0.01) for each of the 100 permutations of
subsampling one individual per host species, indicating a signal of co-phylogeny that is robust to
intra-species microbiome variation. We investigated which host species showed the strongest
signal of cophylogeny by assessing the distribution of PACo Procrustes residuals, which provide
an indication of local congruence between phylogenies (lower residuals indicate a stronger
congruence). Mammalia showed a substantially stronger association relative to the other four
classes (Figure 2D), with residuals decreasing in the order of Actinopterygii > Amphibia >
Reptilia > Aves≫ Mammalia, and these differences were significant (Kruskal-Wallis < 0.01;
pairwise Wilcox < 0.01 for all). In regards to diet, residuals were significantly lower for
herbivores relative to omnivores and carnivores (Wilcox, P < 0.0001), while carnivores and
omnivores did not significantly differ (Figure 2E).

Specific archaeal ASVs are associated with host phylogeny

Given the evidence of host phylogeny explaining aspects of archaeal gut microbiome
diversity, we sought to further resolve this association by testing whether archaeal taxon
abundance is clustered on the host phylogeny. We found 37 ASVs to show significant global
phylogenetic signal (Pagel’s λ, adj. P < 0.05) spanning three phyla: Euryarchaota,
Thaumarchaeota, and Crenarchaeota (Figure 2C). The clade with the highest number of
significant ASVs (n = 15) was Methanobacteriaceae, followed by Nitrososphaeraceae (n = 12),
and Methanocorpusculaceae (n = 5). While lambda coefficients varied across ASVs, most
showed a very strong association (Pagel’s λ > 0.9), with major exceptions being a
Methanosarcinaceae ASVs and an unclassified Methanomicrobia ASV (Figure 2C).

We next tested for local phylogenetic signals to resolve archaeal taxon specificities for
particular host clades. We used the local indicator of phylogenetic association (LIPA) and found
25 ASVs to have significant associations with certain host clades. Mapping significant
associations on the host phylogeny revealed that clade-specificity was generally shallow and
often spanned only 2 species (Figure S17). For instance, 4 Nitrososphaeraceae ASVs were
associated with 2 snake species (Zamenis longissimus and Natrix natrix), 3 Methanobrevibacter
ASVs were associated with 2 species of kangaroo (Macropus giganeus and Macropus
fuliginosus), and a Methanocorpusculum ASV was associated with both camel species
(Camelus dromedarius and Camelus bactrianus). The 2 major exceptions to this trend were the
Methanothermobacter ASVs, which associated with many species of Aves, while the
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Methanobrevibacter and Methanosphaera ASVs associated with many Artiodactyla species
(true ruminants; Figure S17). Summarizing the number microbe-host clade associations
revealed clear partitioning of archaeal taxa by host clade, except for Methanobrevibacter, for
which at least one ASV was associated with each host order for which any phylogenetic signal
was observed (n = 23; Figure S17B). Altogether, these results help to resolve which particular
archaeal clades are most strongly associated with host evolutionary history.

We also tested for phylogenetic signal of alpha diversity but found no significant global
associations when measuring diversity via the Shannon Index or Faith’s PD (P > 0.05) and no
local associations (adj. P > 0.05). These findings correspond with our MRM analysis of alpha
diversity in that host phylogenetic relatedness does not seem to correspond with total archaeal
diversity in the gut.

Specific methanogen ASVs are associated with diet

We used two methods to resolve the specific effects of diet on the archaeal microbiome
while controlling for host evolutionary history: phylogenetic generalized least squares (PGLS)
and randomization of residuals in a permutation procedure (RRPP). The former is a common
test for association between traits while controlling for phylogenetic relatedness, while the latter
can exhibit higher statistical power while minimizing false positives Revell, “Phylogenetic Signal
and Linear Regression on Species Data: Phylogenetic Regression”; Collyer and Adams,
“RRPP: An R Package for Fitting Linear Models to High‐dimensional Data Using Residual
Randomization.”. PLGS identified 10 ASVs as being significantly associated with diet (adj. P <
0.05; Figure S16). All ASVs belonged to the Euryarchaeota phylum, and comprised 4 genera:
Methanobrevibacter, Methanosphaera, Methanothermobacter, and candidatus
Methanomethylophilus. The RRPP analysis identified the same 10 ASVs along with 5 more that
belonged to the same genera (Figure 2B). We used the RRPP models to predict ASV
abundances with 95% confidence intervals (CIs) for each diet in order to determine diet-specific
enrichment. Methanobacteria ASVs differed in their responses to diet, with 5 being most
abundant in herbivores, while the other 6 were more abundant in omnivores/carnivores (Figure
2B). Notably, diet enrichment differed even among ASVs belonging to the same genus. In
contrast to the Methanobacteria ASVs, all 4 Methanomethylophilus ASVs were predicted as
more abundant in omnivores/carnivores. These findings suggest that diet influences the
abundances of particular ASVs, and even closely related ASVs can have contrasting
associations to diet. All significant ASVs were methanogens, which may be due to the species
studied (e.g., a mammalian bias) or possibly because certain methanogens respond readily to
diet, possibly due to syntrophic associations with diet-specific bacteria.

When applied to alpha or beta diversity, neither PGLS nor RRPP identified any
significant associations with diet after accounting for host phylogenetic relatedness. These
findings correspond with our MRM analyses by indicating that diet is not a strong moduator of
overall archaeal diversity in the vertebrate gut, although certain ASVs do seem to be
substantially affected (Figures 2B & S16).
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Evidence of widespread Methanobacteria presence in the ancestral vertebrate gut

We utilized ancestral state reconstruction (ASR) to investigate which archaeal clades
were likely present in the ancestral vertebrate gut. Traits were defined as archaeal taxon
abundances. Notably, we used a method that incorporated intra-species trait variance, allowing
us to directly utilize the entire host dataset for the reconstruction (see Methods). Our model for
predicting class-level abundances was overall quite accurate at extant species trait prediction
(adj. R2 = 0.86, P < 2e-16; Figure S19). However, predictions were not accurate for 2 of the 6
classes (Halobacteria and Nitrososphaeria, P > 0.1), likely due to low prevalence across extant
host species (Figures 2 & S20). Excluding the poorly predicted classes, the 95% CIs for
predicted abundances were constrained enough to be informative (mean of 26% ± 29 s.d.)
across extant and ancestral host species. The model revealed that Methanobacteria was
uniquely pervasive across ancestral nodes, while other classes were sparsely distributed among
extant taxa and across a few, more recent ancestral nodes (Figures 2 & S20). Moreover, the
model predicted that Methanobacteria was the only class to be present in the last common
ancestor (LCA) of all mammals and the LCA of all 5 host taxonomic classes (Figure 3B & 3C).

We also generated an ASR model for genus-level abundances of all genera in the
Methanobacteria class in order to resolve the association between Methanobacteria clades and
the ancestral vertebrate gut. Our model was somewhat more accurate at predicting extant traits
than our class-level model (R2 = 0.93, P < 2e-16; Figure S19), and all 4 genera were accurately
predicted (P < 5.5e-10 for all). Predicted trait value 95% CIs were again informative (mean of 28
± 24 s.d.). The model predicted 3 of the 4 genera to be present in the LCA of all mammals and
the LCA of all host species (Figure 3F & 3G). Of the 3, Methanobrevibacter and
Methanothermobacter were predicted to have similar abundances for both LCAs (~30-35%),
while Methanosphaera was much lower (~5%). Mapping predicted abundances onto the host
phylogeny revealed that Methanobrevibacter was predicted as most highly abundant in the
Artiodactyla and generally abundant across most mammalian clades (Figure S21). In contrast,
Methanothermobacter was predicted to be most highly abundant and prevalent across the avian
and also mammalian clades in which Methanobrevibacter was less abundant (e.g., Carnivora
and Rodentia). Methanosphaera was predicted to be prevalent across most animal clades, but
generally at low abundance.

Importantly, we found both ASR analyses (class and genus levels) to be robust to biases
in the number of samples per host species (Figure S22).

Methanothermobacter abundance is correlated with body temperature

Methanothermobacter is not known to be host-associated Borrel et al., “The
Host-Associated Archaeome.”; still, we observed a total of 39 Methanothermobacter ASVs
spanning 78 samples (mean of 18 ± 30 s.d. samples per ASV), which strongly suggests that its
presence is not due to contamination. Moreover, the top BLASTn hit for 36 of the 39 ASVs was
to a cultured Methanothermobacter strain (Figure S23, Table S6), including the top 15 most
abundant ASVs, which indicates that the taxonomic annotations are demonstrably correct.

The high prevalence of Methanothermobacter among Aves lead us to the hypothesis
that body temperature significantly affects the distribution Methanothermobacter (Figure S24),
given that birds generally have higher body temperatures than mammals Clarke and O’Connor,
“Diet and Body Temperature in Mammals and Birds.” and all existing Methanothermobacter
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cultures are thermophiles Bonin and Boone, “The Order Methanobacteriales.”. Moreover,
Methanothermobacter is not abundant in Monotremata and Marsupialia species relative to the
placental groups, which reflects a lower body temperature in the latter clades (Figure S24). We
were able to assign published body temperature data to 73 mammalian and avian species
(Figure S25A & S25B; Table S7). Genus-level abundances of Methanothermobacter
significantly correlated with body temperature (RRPP, adj. P < 0.001), while Methanobrevibacter
and Methanosphaera did not (Figures S25C & S25D). However, the association was only
significant if not accounting for host phylogeny (RRPP, adj. P > 0.05), indicating that the
association between Methanothermobacter and body temperature could not be decoupled from
host evolutionary history. We also identified 7 Methanothermobacter ASVs to be correlated with
body temperature (RRPP, adj. P < 0.05; Figure S25E), while no Methanobrevibacter or
Methanosphaera ASVs were correlated. Again, the association was only significant if not
accounting for host phylogeny. Regardless, we provide evidence congruent with the hypothesis
that Methanothermobacter abundance is modulated by host body temperature and is thus rather
highly abundant in birds and various placental mammal clades.

qPCR with novel Methanothermobacter-targeting primers supported our findings that
Methanothermobacter is present among many avian and mammalian species (Figure S27).
Notably, Methanothermobacter presence/absence was consistent for members of the same host
species. Methanothermobacter gene copies per gram of GI sample varied from approximately
5e3 - 5e6. The qPCR data did not show as widespread of Methanothermobacter prevalence as
was seen for the 16S rRNA sequence data (Figure S24), but this may be due to the low amount
of animal GI sample gDNA available for the assay, or possibly due to primer biases limiting the
amount of Methanothermobacter diversity detected by the qPCR primers (i.e., the primers we
designed from existing genomes, which may be rather divergent from host-associated
Methanothermobacter). Due the the smaller sample size of the qPCR assay relative to the 16S
rRNA sequence data, and the lack of overlapping host body temperature data with the qPCR
findings, we could not use these additional data to support or refute the hypothesis that host
body temperature modulates Methanothermobacter abundance (Figure S27). Still, the 16S
rRNA sequence data provides compelling evidence that host body temperature modulates
Methanothermobacter abundance (Figures S24 & S25).

Metagenome assembly of avian samples also supported our findings of high
Methanothermobacter prevalence across Aves. We mapped all assembled contigs (≥1.5 kb) to
species representative genomes of the Methanothermobaceteriales (GTDB Release 95
taxonomy). The number of contigs that mapped to Methanothermobacteraceae or
Methanothermobacteraceae A was 88 ± 799 (s.d.), which was 0.88% ± 0.93 (s.d.) of all contigs
assembled. Still, we were not able to assemble a genome classified as the target clade,
possibly due to high intra-sample strain diversity, as suggested by the ASV data (Table S6).

We note that among the host species in which methane emission data exists Hackstein
and van Alen, “Fecal Methanogens and Vertebrate Evolution”; Clauss et al., “Review:
Comparative Methane Production in Mammalian Herbivores.”, avian species with high
abundances of Methanothermobacter have emission rates on the higher end of mammal
emission rates (Figure S29), suggesting that Methanothermobacter is indeed a persistent
inhabitant in the gut of some avian species.
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Microbe-microbe interactions modulating archaeal diversity

Besides host-specific factors potentially modulating diversity, microbe-microbe
interactions may also play a significant role. We first tested for solely archaeal interactions by
inferring instances of co-occurrence among archaeal ASVs. The co-occurrence network
contained clearly defined subnetworks, with few significant positive associations between them
(Figure S31), especially for the largest 6 subnetworks (Figure S30). The only significant
negative co-occurrences were between Subnetwork 1, which was dominated by
Methanobrevibacter, and Subnetwork 4, which was dominated by Methanothermobacter. These
2 subnetworks differed substantially in their distributions across host clades, with Subnetwork 1
ASVs only highly prevalent among Artiodactyla, while Subnetwork 4 ASVs were highly prevalent
across a number of mammalian orders (e.g., Carnivora and Rodentia) and almost all avian
orders (Figure S32). Among subnetworks, ASV taxonomy was highly homogeneous. Indeed, we
found ASVs to significantly and strongly associated with those of the same clade versus from
other clades, regardless of taxonomic level (Figure S30C), although assortativity by taxonomic
affiliation substantially dropped between the family and genus levels.

We investigated potential diet-specific archaea-archaea interactions by separately
testing for co-occurrences across samples of each diet (Figure S33). The number of significant
co-occurrences dropped from herbivores (n = 560) to omnivores (n = 134) to carnivores (n =
81). In contrast, assortativity by taxonomic group was generally lowest for omnivores and
highest for carnivores, regardless of taxonomic level. These findings suggest that the carnivore
gut is composed of simpler and more taxonomically homogenous archaeal consortia relative to
omnivores and herbivores.

We also assessed Bacteria-Archaea interactions by utilizing the overlapping 16S-uni
dataset samples from Youngblut and colleagues Youngblut et al., “Host Diet and Evolutionary
History Explain Different Aspects of Gut Microbiome Diversity among Vertebrate Clades.”. Prior
to merging the datasets, we removed all archaeal ASVs from the 16S-uni dataset. Archaeal and
bacterial alpha diversity were not correlated, regardless of measuring diversity via the Shannon
Index or Faith’s PD (Pearson, P > 0.05; Figure 4). Moreover, archaeal and bacterial beta
diversity were not correlated (Mantel, P > 0.05; Procrustes superimposition, P > 0.05),
regardless of the measure: Bray-Curtis, Jaccard, and weighted/unweighted UniFrac. These
results suggest that archaeal diversity is not explained by bacterial diversity nor vice versa.

Inferring a co-occurrence network of bacterial and archaeal ASVs revealed a large
number of significant co-occurrences (n = 3018; Figure 4); all of which were positive.
Bacteria-Archaea and Archaea-Archaea associations comprised 13.1 and 6.1% of the network
edges, respectively. While overall network taxonomic assortativity was low, assortativity of just
Archaea was quite high (≥0.774 for all taxonomic levels). The entire network comprised 5
subnetworks, but only 2 included Archaea: one of which included only Methanobrevibacter
ASVs, while the other was dominated by Methanothermobacter ASVs. The
Methanobrevibacter-only subnetwork also comprised 13 bacterial families from 3 phyla.
Firmicutes dominated among the bacterial ASVs (87%), with Bacteroidetes as a distant second
(11%). The most represented bacterial families in the network were Ruminococcaceae (46%),
Lachnospiraceae (13%), and Christensenellaceae (11%), which are known include hydrogen
generating species that often occur with Methanobrevibacter Hansen et al., “Pan-Genome of the
Dominant Human Gut-Associated Archaeon, Methanobrevibacter Smithii, Studied in Twins”;
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Goodrich et al., “Human Genetics Shape the Gut Microbiome”; Borrel et al., “The
Host-Associated Archaeome.”. The Methanothermobacter-dominated subnetwork included
much less bacterial diversity, with only 3 families: Burkholderiaceae (Proteobacteria phylum);
Enterococcaceae and Clostridiaceae 1 (Firmicutes phylum). These findings indicate that a
subset of archaeal ASVs co-occur with specific bacterial ASVs in each of the 2 consortia: the
Methanothermobacter-dominanted consortium most prevalent among birds and the
Methanobrevibacter-dominated consortium most prevalent among ruminants and various other
plant-consuming mammals (Figure S24). While only methanogens were observed to co-occur
with bacteria, this may be due to the mammalian bias of the dataset, given that prevalence of
non-methanogenic archaea is lower among mammals relative to other vertebrate classes
(Figure 1).
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Supplemental Tables

Table S1. All relevant metadata for all samples in the 16S rRNA amplicon dataset.

Table S2. Metadata for all samples in which Archaea-targeted 16S rRNA amplicon library
preparation and sequencing was attempted (n = 311) and the samples that passed all quality
control measures (n = 185). “mass stored (g)” is the initial mass (g) of the gastrointestinal
sample. “Nanodrop (ng/ul)” is the Nanodrop quantification of gDNA concentration (ng/ul).
“Nanodrop 260:280” is the Nanodrop quantification of gDNA 260:280 ratios. “16S rRNA gene
copies per 100 ul” is the estimated microbial 16S rRNA gene copy number based on qPCR with
“universal” primers (see Methods).

Table S3. The total archaeal sequence counts per sample (n = 185).

Table S4. Percent relative abundance of each archaeal taxonomic class in each sample (n =
185). Classes are labeled as “Phylum;Class”.

Table S5. Genus-level percent relative abundances of Bathyarchaeia in all samples where the
clade was detected.

Table S6. The top 5 BLASTn hits of all Methanothermobacter ASV sequences to the All Species
Living Tree v132 database (see Methods). Mean percent relative abundances across all
samples and samples grouped by host taxonomic class are also provided.

Table S7. Publicly available body temperature data used in this study. If multiple temperature
data points per species were available, the mean temperature was used. The datasets include
“Clarke2010” Clarke, Rothery, and Isaac, “Scaling of Basal Metabolic Rate with Body Mass and
Temperature in Mammals.”, “Clarke2014” Clarke and O’Connor, “Diet and Body Temperature in
Mammals and Birds.”, “McNab1966” McNab, “The Metabolism of Fossorial Rodents: A Study of
Convergence.”, “Prinzinger1991” Prinzinger, Preßmar, and Schleucher, “Body Temperature in
Birds.”, “Riek2013” Riek and Geiser, “Allometry of Thermal Variables in Mammals:
Consequences of Body Size and Phylogeny.”, “Sieg2009” Sieg et al., “Mammalian Metabolic
Allometry: Do Intraspecific Variation, Phylogeny, and Regression Models Matter?”, and
“Teare2002” Teare, “International Species Information System, Medical Animal Records
Keeping System (MedARKS) 2002 Data Extraction.”. “No match” indicates the species lacking a
match to any of the body temperature datasets; these species were not included in any
analyses of body temperature due to a lack of data.

Table S8. Publicly available animal methane emission data used in this study. The studies
comprise “Hackstein_1996” Hackstein and van Alen, “Fecal Methanogens and Vertebrate
Evolution.” and “Clauss_2020” Clauss et al., “Review: Comparative Methane Production in
Mammalian Herbivores.”.

10

https://paperpile.com/c/xGuPxQ/ba3Rd
https://paperpile.com/c/xGuPxQ/ba3Rd
https://paperpile.com/c/xGuPxQ/e8RTT
https://paperpile.com/c/xGuPxQ/e8RTT
https://paperpile.com/c/xGuPxQ/d33fR
https://paperpile.com/c/xGuPxQ/d33fR
https://paperpile.com/c/xGuPxQ/ODZ5e
https://paperpile.com/c/xGuPxQ/ODZ5e
https://paperpile.com/c/xGuPxQ/TGqIP
https://paperpile.com/c/xGuPxQ/TGqIP
https://paperpile.com/c/xGuPxQ/B2CLz
https://paperpile.com/c/xGuPxQ/B2CLz
https://paperpile.com/c/xGuPxQ/jjsA8
https://paperpile.com/c/xGuPxQ/jjsA8
https://paperpile.com/c/xGuPxQ/Qj4BX
https://paperpile.com/c/xGuPxQ/Qj4BX
https://paperpile.com/c/xGuPxQ/Yr1bC
https://paperpile.com/c/xGuPxQ/Yr1bC


Table S9. All significant Archaea-Bacteria ASV co-occurrences, summarized by genus and
direction (i.e., positive or negative) and normalized by the total number of edges in the
co-occurrence network. “Sign” indicates whether the association was positive or negative.

Table S10. qPCR data with “universal” 16S rRNA primers (see Methods). “mass_stored_g” is
the amount of GI sample used for DNA extractions. “Copies_per_100_ul” is the qPCR-estimated
16S rRNA copies per 100 μl of gDNA.

Table S11. NCBI accessions of publicly available Methanothermobacter genomes used for
Methanothermobacter-targeted primer design.

Table S12. All Methanobacteriales species-level reference genomes used for metagenome
assembly contig mapping. Reference genomes were selected based on highest
CheckM-estimated completeness and lowest CheckM-estimated contamination.
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Supplemental Figures

Figure S1. The number of samples (A & B) or host species (C & D) in the final sequence
dataset, grouped by host class, host diet (A & C) or host captive/wild status (B & D).
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Figure S2. A) The number of samples that passed or failed PCR amplification and sequence
data quality control. B) The percent of total samples that passed PCR amplification and
sequence data quality control (i.e., the success rate), with values grouped by various host
metadata categories. C) The success rate among individuals of the same species, grouped by
host class. D) The success rate for each mammalian taxonomic order. See Table S2 for a list of
all successes and failures.
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Figure S3. qPCR estimates of 16S rRNA gene copies (16S “universal” primers) significantly
differ between samples that passed 16S-arc PCR amplification and sequencing versus those
that failed. “Successful sample” refers to whether the sample passed 16S-arc PCR amplification
and sequence data quality control. “mass stored g” is the initial mass (g) of the gastrointestinal
sample. “Nanodrop ng per ul DNA” is the Nanodrop quantification of gDNA concentration
(ng/ul). “Nanodrop ratio 260 280 DNA” is the Nanodrop quantification of gDNA 260:280 ratios.
“16S rRNA gene copies per 100 ul” is the estimated microbial 16S rRNA gene copy number
based on qPCR with “universal” primers (see Methods and Table S2). “log2(Bacteria/Archaea)”
is the log2-fold ratio of bacterial relative abundance versus archaeal relative abundance, as
estimated by utilizing metagenome reads from animal gut sample in Youngblut and colleagues
Youngblut et al., “Large-Scale Metagenome Assembly Reveals Novel Animal-Associated
Microbial Genomes, Biosynthetic Gene Clusters, and Other Genetic Diversity.” that overlapped
with the samples used in this study (n = 258). Taxon abundances were estimated from the
metagenome reads via Kraken2 and Bracken with a custom reference database generated from
the GTDB (Release 95) (see Methods). Box centerlines, edges, whiskers, and points signify the
median, interquartile range (IQR), 1.5 × IQR, and >1.5 × IQR, respectively. See the
Statistical_source_data file for all statistical information.
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Figure S4. The number of samples that passed PCR amplification and sequence data quality
control (“passed”) and those that failed (“failed”) mapped onto a phylogeny of all host species.
The phylogeny is the same as shown in Figure 1.
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Figure S5. The number of raw ASVs per sample, grouped by host class and ASV abundances
prior to filtering out Bacteria and rarefying. “PCR_neg_cont” denotes all PCR negative controls
that were sequenced along with the treatment samples (n = 10). Note that the y-axis is
log10-transformed, and note that some of the treatment samples shown were filtered during
rarefying to ≥250 sequences. Only 6 genera had a mean percent abundance of ≥10% in the
negative controls: Catellicoccus (Firmicutes), Catenibacterium (Erysipelotrichia), Lactobacillus
(Bacilli), Bacillus (Bacilli), Lactococcus (Firmicutes), Ruminococcaceae UCG-014 (Firmicutes).
Box centerlines, edges, whiskers, and points signify the median, interquartile range (IQR), 1.5 ×
IQR, and >1.5 × IQR, respectively.
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Figure S6. The prevalence of archaeal ASVs detected in A) >1 sample (n = 377) or B) >1
species (n = 315). Box centerlines, edges, whiskers, and points signify the median, interquartile
range (IQR), 1.5 × IQR, and >1.5 × IQR, respectively.
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Figure S7. A) Rarefaction grouped by host taxonomic class, with subsampling continued up to
500 per sample (if possible, depending on the sample). The blue lines are a smoothed curve fit,
with grey regions denoting the 95% CI. B) Rarefaction with extrapolation via iNEXT, with
subsampling/extrapolation up to 2000 per sample. Diversity was measured as Hill numbers
(diversity order of 1, which is equivalent to Shannon diversity). Error bars denote the 95% CI.
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Figure S8. The host phylogeny is the same as shown in Figure 1, except tips have been
expanded to include all individuals of each species (n = 185). Relative abundances of ASVs
aggregated by taxonomic class are mapped onto the tree. All classes with <1% mean
abundance are labeled as “Other”, which includes Woesearchaeia, Thermococci, Iainarchaeia,
and Odinarchaeaia.
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Figure S9. Methanobrevibacter is dominated by a few strains with varying abundance
distributions. The heatmap shows fractional abundances for all Methanobrevibacter ASVs,
collapsed at 0.05 patristic distance to reduce the number of taxa from 699 ASVs to 183
representatives. The abundances are percentages of all archaeal taxa in the sample. The tree
on the left is the 16S rRNA sequence phylogeny of all archaeal ASVs pruned to the 183
representatives. The pruned phylogeny was forced to ultrametric for visualization. Hierarchical
clustering of all samples (n = 185) is shown via the dendrogram above the heatmap. For clarity,
only mammalian taxonomic orders are shown.
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Figure S10. Substantial uncultured archaeal  diversity even among relatively well-studied
clades. The percent of ASVs with a ≥1 BLASTn hit to a culture representative in the All Species
Living Tree database v132 (hit alignment length ≥95% of the query), depending on the
sequence identity cutoff of the BLASTn hit. Values are shown for A) all ASVs and B) ASVs
grouped by taxonomic class (facet labels are “Phylum; Class”) for the subset of classes in which
any hits were observed along the range of sequence identity cutoffs shown.
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Figure S11. The Archaea-targeting primer set revealed much more archaeal diversity than
standard “universal” 16S rRNA NGS primers. The number of A) samples or B) host species that
overlap between the 16S-arc and 16S-uni amplicon sequence datasets. C) The number of
archaeal ASVs per sequence dataset. D) & E) The number of archaeal classes across host
species grouped by D) host taxonomic class or E) diet. A total of 140 samples overlapped
between the two datasets. ASVs are specific to each primer set; we are just comparing the
number of archaeal ASVs generated by each primer set and did not try to match ASV
sequences between sequence datasets.
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Figure S12. Principal coordinates plots qualitatively agree with the MRM analysis results.
Principal coordinates (PCoA) ordinations of unweighted and weighted Unifrac, Jaccard, and
Bray-Curtis distances among all samples, with samples colored by host A) class, B) diet, C)
habitat, and D) captive/wild status. The percent variance explained by PC1 and PC2 is 18 & 9%
for Bray-Curtis, 14 and 6% for Jaccard, 29 and 19% for unweighted UniFrac, and 72 and 12%
for weighted UniFrac, respectively.
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Figure S13. Host phylogeny shows the strongest association to archaeal community beta
diversity for mammalian species. The plots show the distribution of P-values (“Adj. P-value”) and
partial regression coefficients (“Coef.”) across 100 dataset permutations used for multiple
regression on matrix (MRM) tests. Unlike Figure 2A, only mammalian species were included,
leaving 71 mammalian species. For each permutation, one individual per host species was
randomly sampled. MRM tests assessed the beta diversity variance explained by host diet,
geography, habitat, phylogeny, and “technical” parameters (see Methods), with 4 beta diversity
measures assessed: A) weighted UniFrac, B) unweighted UniFrac, C) Bray-Curtis, and D)
Jaccard. Asterisks denote significance (adj. P < 0.05 for >95% of dataset subsets; see
Methods). Beta diversity calculated on ASVs aggregated at the genus level. Box centerlines,
edges, whiskers, and points signify the median, interquartile range (IQR), 1.5 × IQR, and >1.5 ×
IQR, respectively. The MRM tests were two-sided. See the Statistical_source_data file for all
other statistical information.
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Figure S14. Host phylogeny trending to significance for non-mammalian species. The plots
show the distribution of P-values (“Adj. P-value”) and partial regression coefficients (“Coef.”)
across 100 dataset permutations used for multiple regression on matrix (MRM) tests. Unlike
Figure 2A, all mammalian species were excluded, leaving 39 non-mammalian species. For each
permutation, one individual per host species was randomly sampled. MRM tests assessed the
beta diversity variance explained by host diet, geography, habitat, phylogeny, and “technical”
parameters (see Methods), with 4 beta diversity measures assessed: A) weighted UniFrac, B)
unweighted UniFrac, C) Bray-Curtis, and D) Jaccard. Asterisks denote significance (adj. P <
0.05 for >95% of dataset subsets; see Methods). Beta diversity calculated on ASVs aggregated
at the genus level. Box centerlines, edges, whiskers, and points signify the median, interquartile
range (IQR), 1.5 × IQR, and >1.5 × IQR, respectively. The MRM tests were two-sided. See the
Statistical_source_data file for all other statistical information.
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Figure S15. No host factors significantly explain archaeal alpha diversity. The plots show the
distribution of P-values (“Adj. P-value”) and partial regression coefficients (“Coef.”) across 100
dataset permutations used for multiple regression on matrix (MRM) tests. For each permutation,
one individual per host species was randomly sampled. MRM tested whether inter-sample
variance of alpha diversity was significant explained by host diet, geography, habitat, phylogeny,
and “technical” parameters (see Methods), with 2 alpha diversity measures assessed: A)
Shannon Index and B) Faith’s PD. No variables were significant (defined as adj. P < 0.05 for
>95% of dataset permutations; see Methods). Box centerlines, edges, whiskers, and points
signify the median, interquartile range (IQR), 1.5 × IQR, and >1.5 × IQR, respectively. The MRM
tests were two-sided. See the Statistical_source_data file for all other statistical information.
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Figure S16. Certain methanogen ASVs from multiple lineages are associated with diet, after
accounting for host phylogeny. Phylogenetic generalized least squares (PGLS) results for the
ASVs with a significant association between ASV abundance and host diet, while accounting for
host phylogenetic relatedness. Significance was defined as adj. P < 0.05 in ≥95% of permuted
datasets, in which one sample per species was used per permutation. The boxplots depict the
distribution of PGLS R2 values across all 100 permutations. Box centerlines, edges, whiskers,
and points signify the median, interquartile range (IQR), 1.5 × IQR, and >1.5 × IQR,
respectively. See the Statistical_source_data file for all other statistical information.
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Figure S17. The specific ASVs have similar abundances within certain vertebrate clades.
Various archaeal ASVs display local phylogenetic signal to various host clades. A) All ASVs with
significant local phylogenetic signals (adj. P < 0.05) are mapped onto the host phylogeny. The
phylogeny is the same as shown in Figure 1. The heatmap depicts local indicator of
phylogenetic association (LIPA) values for each ASV–host association, with higher values
indicating a stronger phylogenetic signal of ASV abundance. White boxes in the heatmap
indicate non-significant LIPA tests. The dendrogram on the top of the heatmap is a cladogram
based on taxonomy for each ASV (see Figure S18 for the full taxonomy). B) The bar plots show
the number of ASVs with significant LIPA indices per archaeal genus and host clade. See the
Statistical_source_data file for all other statistical information.
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Figure S18. The cladogram as shown in Figure S17 with the entire ASV taxonomic
classification as tip labels.
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Figure S19. Ancestral state reconstruction models accurately predict abundances in extant host
species. Linear regressions (colored lines) comparing ASR model predictions of archaeal
abundances for each extant species relative to the observed mean abundance of all individuals
per species. A) All class-level abundances, and B) abundances and linear regressions colored
by class. C) All genus-level abundances for taxa belonging to Methanobacteria, and D)
abundances and linear regressions colored by genus. Gray areas denote 95% confidence
intervals for each linear model.
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Figure S20. Predicted archaeal class-level abundance for extant host species (yellow circles)
and and ancestral host species (blue circles): A) Bathyarchaeia, B) Halobacteria, C)
Methanomicrobia, D) Thermoplasmata, and E) Nitrososphaeria. The phylogeny is the same as
shown in Figure 1.
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Figure S21. Predicted archaeal genus-level abundance for extant host species (yellow circles)
and and ancestral host species (blue circles): A) Methanobacterium and B) Methanosphaera.
The phylogeny is the same as shown in Figure 1.
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Figure S22. The ASR estimations of archaeal abundances at the LCA of Mammalia and all 5
classes are robust to variable numbers of samples per host species. The ASR relative
abundances estimations are as shown in Figure 3, but the failed PCR/sequencing samples
(Figure S2; Table S2) were included (all archaeal taxon abundances set to zero), and at most 3
samples were used per host species (147 samples; 110 host species). The points and line
ranges denote the estimated taxon LCA abundance and 95% CIs, respectively. See the
Statistical_source_data file for all other statistical information.

33



Figure S23. Methanobacteria genera comprise a high proportion of uncultured ASVs. Same as
Figure S10, but just Methanobacteria genera. The plot facet labels are “family; genus”.
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Figure S24. Methanothermobacter is prevalent among avian species and associates with host
body temperature. The phylogeny is a pruned version (n = 74) of that shown in Figure 1. Host
diet and body temperature are mapped into the tree along with genus-level archaeal
abundances. The dendrogram above the heatmap is a cladogram depicting taxonomic
relatedness. “Other Methanogen” refers to all other methanogen genera not specifically listed,
and “Non-methanogen” refers to all non-methanogenic clades.
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Figure S25. Methanothermobacter abundance is explained by host body temperature. A) The
number of species with body temperature data, grouped by the body temperature dataset (see
also Table S7). B) The distribution of body temperatures per host taxonomic order (one data
point per species). C) Relative abundances of Methanobacteria genera as a function of host
body temperature (celcius). The blue lines denote linear regressions with 95% CIs represented
by the grey zones. D) RRPP coefficients of genus-level abundances as a linear function of host
body temperature. Boxplots show the distribution across 100 permutations (P-values:
Methanothermobacter = 0.2, Methanobrevibacter = 0.02, Methanosphaera = 0.01).
E) The same as D, but ASV-level abundances used, with only significant ASVs shown. Note that
host phylogeny was not used for the RRPP models shown in D & E. No taxa were significant
when accounting for host phylogeny. Box centerlines, edges, whiskers, and points signify the
median, interquartile range (IQR), 1.5 × IQR, and >1.5 × IQR, respectively. See the
Statistical_source_data file for all other statistical information.
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Figure S26. qPCR primers designed with Core Genome Primers (CGP) are specific to
Methanothermobacter. A) The general workflow of CGP. Dark blue, pink, light blue, and orange
ovals denote public databases, software, intermediate data, and final data, respectively. The
diagram was created with BioRender.com. B) A 2% agarose gel showing PCR products for a
screen of the Methanothermobacter-targeting 174FR primers against a gDNA panel of various
target and nontarget isolates. The red asterisks mark the 2 Methanothermobacter isolates
included in the gDNA panel. The temperatures listed at the bottom of the gel denote the PCR
melting temperatures used. The full name of each isolate, as ordered in the gel image, is as
follows: Methanothermobacter marburgensis DSM-2133, Methanothermobacter
thermautotrophicus DSM-1053, Methanobrevibacter gottschalkii DSM-11977,
Methanobacterium formicicum DSM-1535, Methanobrevibacter olleyae DSM-16632,
Methanobrevibacter smithii DSM-861, Escherichia coli NEB 5-alpha, Bacteroides
thetaiotaomicron VPI-5482, Christensenella minuta DSM-22607, and Roseburia hominis
DSM-16839.
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Figure S27. qPCR with the Methanothermobacter-targeting primers “174FR” suggests clade
presence in many avian and mammalian species. The phylogeny is a pruned version of the tree
shown in Figure S8. The 2 color strips adjacent to the tree are host diet and body temperature,
respectively (as shown in Figure S24). The box plots denote the value distribution across 3 PCR
replicates. The primers “174FR” were designed to target a single copy core gene of the
Methanothermobacter pan-genome (see Figure S26 and Methods). Box centerlines, edges,
whiskers, and points signify the median, interquartile range (IQR), 1.5 × IQR, and >1.5 × IQR,
respectively. The total sample size is 46.
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Figure S28. Methanothermobacter contigs detected in avian metagenomes. Contigs of ≥1.5 kb
were mapped to Methanothermobaceteriales species representative genomes (n = 94) via
Minimap2. Contigs mapping to multiple species or with a query coverage (alignment length /
query length) of < 0.9 were filtered. The bars show the percent of total assembled contigs that
map to Methanothermobacteraceae or Methanothermobacteraceae A species (GTDB Release
95 taxonomy). The numbers on each bar denote the number contigs that mapped to the target
taxa.
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Figure S29. Published animal methane emission data indicates that the avian species
dominated by Methanothermobacter emit substantial amounts of methane. A) The number of
records obtained from Hackstein & van Alen 1996 (n = 27) and Clauss et al., 2020 (n = 10),
grouped by host class and diet. B) & C) the distribution of methane emission rates per host
species, grouped by class and C) colored by host diet. D) The phylogeny is a pruned version of
that shown in Figure 1. From left to right, the data mapped onto the phylogeny is: host diet,
methanogen genus mean abundances, methanogen ASV diversity (Shannon Index & Faith’s
PD), and methane emission rates. The lack of diversity values for Erinaceus europaeus
(European hedgehog) is due to an absence of detectable methanogen ASVs. Box centerlines,
edges, whiskers, and points signify the median, interquartile range (IQR), 1.5 × IQR, and >1.5 ×
IQR, respectively.
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Figure S30. Archaeal ASVs generally co-occur with members of the same taxonomic group.
The network nodes represent ASVs, with color denoting family-level taxonomic classifications,
and shape denoting subnetwork (defined by clustering the network with the walktrap algorithm).
Edges represent significant positive and negative co-occurrences among ASVs as denoted by
orange and blue edges, respectively. Node size represents “betweenness”, which is a measure
of node connectedness. For clarity, only the largest 6 subnetworks are shown (but see Figure
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S31). B) Only subnetworks 1 and 4 are shown with node colors denoting genus-level
classifications. C) The assortativity of ASVs by taxonomic level, in which a value of 1 means that
all connected ASVs belong to the same taxonomic group, while a value of 0 denotes random
association, and negative values indicate a dominance of inter-clade associations. The red
points are the observed values, while the boxplots denote values for 100 permutations of
networks with the same number of nodes and edges as the true network, but edges were
randomly assigned. Box centerlines, edges, whiskers, and points signify the median,
interquartile range (IQR), 1.5 × IQR, and >1.5 × IQR, respectively.
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Figure S31. The same co-occurrence network as shown in Figure S30, but the largest 19
subnetworks are shown (238 of 313 ASVs) instead of just the largest 6 (151 of 313 ASVs). The
entire co-occurrence network comprised 96 subnetworks, but to be able to distinguish among
shapes denoting network nodes, only the top 19 subnetworks are shown.
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Figure S32. The percent of samples in which each ASV was observed (prevalence), grouped
by the subnetwork to which each ASV belongs (see Figure S30A) and faceted by host
taxonomic order. Box centerlines, edges, whiskers, and points signify the median, interquartile
range (IQR), 1.5 × IQR, and >1.5 × IQR, respectively. The total sample size (i.e., number of
hots) is 165.
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Figure S33. Co-occurrence networks for A) just herbivore, B) just omnivore, C) just carnivore
samples. Node size represents “betweenness”, which is a measure of node connectedness.
Orange and blue edges denote significant positive and negative co-occurrences, respectively.
D-F) Assortativity of nodes the graph, determined for each taxonomic level from phylum to
genus. High assortativity values indicate that the co-occurring taxa largely belong to the same
taxonomic group. The boxplots show the distribution of assortativity values obtained from 100
random permutations of the network (same number of nodes and edges, but edges randomly
assigned). The red points denote the assortativity values for the true networks shown in plots
A-C. Box centerlines, edges, whiskers, and points signify the median, interquartile range (IQR),
1.5 × IQR, and >1.5 × IQR, respectively. The sample sizes for plots D-F are 100 (i.e., 100
random permutations).
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Figure S34. Taxonomic composition of the 2 sub-networks (Figure 4D) containing archaeal
ASVs, with the number of ASVs summarized at the A) family and B) genus taxonomic levels.
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Figure S35. The unedited gel image corresponding to the image shown in Figure S26B.
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