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SUMMARY
Locomotion requires a balance between mechanical stability and movement flexibility to achieve behavioral
goals despite noisy neuromuscular systems, but rarely is it considered how this balance is orchestrated. We
combined virtual reality tools with quantitative analysis of behavior to examine how Drosophila uses self-
generated visual information (reafferent visual feedback) to control gaze during exploratory walking. We
found that flies execute distinct motor programs coordinated across the body to maximize gaze stability.
However, the presence of inherent variability in leg placement relative to the body jeopardizes fine control
of gaze due to posture-stabilizing adjustments that lead to unintended changes in course direction. Surpris-
ingly, whereas visual feedback is dispensable for head-body coordination, we found that self-generated
visual signals tune postural reflexes to rapidly prevent turns rather than to promote compensatory rotations,
a long-standing idea for visually guided course control. Together, these findings support a model in which
visual feedback orchestrates the interplay between posture and gaze stability in a manner that is both
goal dependent and motor-context specific.
INTRODUCTION

Every step we take is defined by an interplay between behavioral

goals, the reasons why movement is executed in the first place,

and mechanical stability mediated by postural reflexes, which

keep our body balanced aswemove through complex and unpre-

dictable environments.1–3 This interplay requires the brain to esti-

mate self-generated movements to determine whether the motor

programs at work are executed as intended and to correct them

otherwise.4 In addition, postural reflexes ought to be tuned flexibly

within some permissive range if behavioral goals are to succeed.5

The brain estimates self-motion by integrating internal motor-

related activity with mechanical and visual information.4,6 Yet

how the brain uses this internal estimate to balance behavioral

goals with postural stability requirements is poorly understood.

Visual animals move their eyes and head in a structured

manner following a combination of fast gaze shifts (saccades)

and fixations that maintain gaze stable.7–13 In vertebrates, gaze

saccades and fixations are controlled by distinct motor pro-

grams.12,14–18 Saccades are initiated centrally by a common

command to rotate the eyes and neck together, whereas eye fix-

ations are controlled by compensatory eye rotations initiated by

proprioceptive or vestibular signals in the cervical-ocular and

vestibular-ocular reflexes.19–24 Likewise, in walking insects, sac-

cades are characterized by syndirectional yaw-rotations of head

and body,25,26 whereas gaze stabilization during roll and pitch

movements of the body is based on compensatory head rota-

tions dependent on proprioceptive systems.27–31 These struc-

tured eye and/or head rotations are complemented with body

movements that control course and further reduce motion
4596 Current Biology 31, 4596–4607, October 25, 2021 ª 2021 The A
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blur.1,12,14,15,17 At the same time, noise within sensorimotor sys-

tems32 and uncertainties in the interaction between limbs

and the environment2 can cause postural perturbations. Such

perturbations lead to rapid (stepwise) readjustments in body

posture33–36 that may affect gaze stability goals. Thus, the

trade-off between gaze stability for accurate visual and spatial

perception8,12 and posture control during exploratory walking

provides an opportunity to examine the role of self-motion esti-

mation on tuning such trade-off.

While vision is the primary beneficiary of gaze stabilization, it is

also an important contributor to its control, complementing non-

visual stabilization mechanisms.30,37,38 In both vertebrates and

invertebrates, experiments in which visual motion stimuli are pre-

sented uncoupled from the animal’s behavior induce directed

rotations of the eyes, or the head and body known as the

optokinetic responses (OKRs), or optomotor responses (OMRs),

respectively.39–42 Several models have proposed that OKRs and

OMRs operate via a feedback control system inwhich visual error

signals are minimized by compensatory turns, thereby reducing

gaze and course deviations,41,43,44 although it remains unclear

how OMRs coordinates movement across the body for gaze sta-

bility. Moreover, much less is known about how vision controls

gaze stability in the absence of external visual perturbations,

when visual input is self-generated (visual feedback).45–49 In in-

sects, the sufficiency ofOMRmechanisms to guarantee gaze sta-

bility under self-generated conditions has been challenged.48

OMRs depend on visual velocity signals that must be integrated

to maintain the orientation of head and body fixed.48,50 Indeed,

OMRs are modeled by a proportional-integral feedback control

system.44,49,51 The integral aspect of the controller is prone to
uthors. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. An experimental paradigm to study the role of visual feed-

back in exploratory walking

(A) Left: two control systems affecting gaze during walking. Right: possible

walking trajectories when each system controls behavior. OMR: optomotor

response system; PS: posture stabilizer system.

(B) Virtual reality setup for freely walking flies (STAR Methods).

(C) Top: low-magnification view of a walking fly. Bottom: the corresponding

high-magnification view with head (red segment), body (green cross), and leg

(colored dots) tracked.

(D) Occupancy probability in darkness (top) and in light (bottom).

(E) Virtually constrained visual feedback. See also Video S1.
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error accumulation andmay not be accurate and fast enough for a

smooth control of gaze with rapid postural adjustments (Fig-

ure 1A). Alternatively, menotaxis52 or other object-based re-

sponses53 may support gaze stabilization.
Here, we examine how Drosophila melanogaster uses visual

feedback to control gaze stability during exploratory walking.

Wefirst establishedanexperimental paradigm inwhich the flydis-

plays regular gaze stabilization behavior and in which we control

andmanipulate visual feedbackprecisely (Figure 1).Bycombining

virtual reality tools with quantitative analyses of movement, we

found that flies execute distinct motor programs coordinated

across thebody tomaximize gaze stability. Visual feedback is crit-

ical for gaze stabilization without affecting the accompanying

head-body coordination. Instead, visual feedback prevents rota-

tions inducedbypostural reflexes rather thanpromotingcompen-

satory turns. Altogether, our findings suggest that visual feedback

orchestrates the interplaybetweenbehavioral goals—gaze stabil-

ity—and postural stability requirements in an exploring fly.

RESULTS

An experimental paradigm to study the role of visual
feedback in exploratory walking
To study the role of visual feedback in gaze control, we sought to

establish a paradigm in which three conditions were met. First,

the fly should display frequent walking paths with stable gaze.

Second, movements across the body should be tracked in freely

walking individuals. Third, visual feedback should be precisely

manipulated. To this end, we developed FlyVRena,54 a virtual re-

ality system for flies walking freely in a circular arena (Figures 1B

and 1C). A heatedwall prevents flies from following the perimeter

of the arena (Figure 1D). To track movements of the head, body,

and legs, we recorded high-magnification videos of the walking

fly using a galvo-based high-resolution system coupled to posi-

tional information from a low-magnification tracking system55

(latency <16 ms). Visual stimuli were projected onto the arena’s

floor in closed loop with the position of the fly (maximum latency

of 40 ms). To measure the fly’s ability to detect FlyVRena’s stim-

uli, we compared behavior under natural versus reversed gain

(RG) conditions (Figures S1A and S1B). In RG a leftward turn of

the fly results in a leftward instead of a rightward rotation of the

visual world, which induces continuous turning or circling

behavior56 (Figure S1C). We define visual influence as the prob-

ability of circling under natural versus RG, ametric of the specific

effect a virtual world has on the behavior of an individual fly (Fig-

ure S1D). Thus, FlyVRena allowed us to examine how the fly uses

specific visual feedback to control gaze.

To examine the potential contribution of yaw visual feedback

on gaze stabilization, we decouple the rotational and transla-

tional components of the fly’s visual feedback (Figure 1E; Video

S1). Using the low-magnification system, the position of the

visual stimuli was updated with the fly’s position. This configura-

tionminimized translational visual feedback and facilitated keep-

ing the angular size of objects on the fly’s retina constant during

walking. Thus, in our experimental paradigm, flies explore a visu-

ally controlled virtual world where we can track movement

across the body at high resolution and precisely manipulate

self-generated visual information.

Exploratory walking paths reveal two distinct motor
contexts
To elucidate the organization of body movement underlying the

exploratory paths (Figure 2A; Video S1), we obtained an
Current Biology 31, 4596–4607, October 25, 2021 4597
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Figure 2. Distinct regular dynamics and specific transitions define the structure of exploration

(A) Example walking path.

(B) Distribution of segment durations. Red: continuous locomotion; black: stationary segments and onset/offset of walking (N = 84 flies; n = 64,467 segments).

(C) Hierarchical organization of continuous walking (Figure S2).

(D) Left: representative velocity profiles per cluster for 233ms segments. Right: example clusters with (magenta and dark green) or without (lime and dodger blue)

angular bias, across segment durations (average ±SD)

(E) Left: one-step probability transition matrix between clusters. Right, top: second-to-fourth transition modes (Figure S2D; STAR Methods). Right, bottom:

velocity profiles of the largest contributors to each transition mode. See also Video S1.
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unbiased description of critical body kinematics linked to the

motor programs at play57 (Figure S2A). The continuous character

of locomotion poses a challenge for an unbiased segmentation

of body kinematics. Therefore, we implemented an unsupervised

segmentation of multivariate time series using a principled adap-

tive approach58 (Figure S2A; STAR Methods). Briefly, we model

local dynamics in variable time windows with first-order linear

models, using the forward and angular velocities and respective

accelerations as inputs. In line with previous work,57 body kine-

matics were segmented into a set of windows ranging from 180
4598 Current Biology 31, 4596–4607, October 25, 2021
to 500 ms (Figure 2B). To group similar dynamics, we ran pair-

wise comparisons across all the segments to construct a dissim-

ilarity matrix. Subsequently, we applied hierarchical clustering

followed by a principledmergingmethod via a logistic regression

model (5-fold cross-validated binary classification, separability

>99%; Figure 2A; STAR Methods). Applying this method on

our dataset (84 flies, 441 min of recordings) led to 10 clusters

representing body kinematics during continuous walking that

were organized into three main branches (Figure 2C; for other

behaviors, see Figure S2B). Two of these branches contained
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kinematics with prominent angular velocity profiles accompa-

nied by forward velocity profiles displaying decelerations fol-

lowed by accelerations (Figure 2D, cyan, magenta, dark violet,

and dark green). In addition, these branches contained clusters

with prominent angular bias and high forward velocity profiles

(Figure 2D, black, blue, orange, and spring green). By contrast,

the third branch contained clusters that on average lacked prom-

inent angular velocity profiles and were accompanied by high

and steady forward velocity profiles (Figure 2D, dodge blue

and lime clusters). Thus, body kinematics can be organized

into regular sets of dynamics across different timescales

revealing characteristic properties of the fly’s exploratory

walking.

To examine the temporal organization of clusters, we identi-

fied common transition patterns between them (Figure 2E). We

performed a singular-value decomposition (SVD) on the one-

step probability transition matrix between clusters and obtained

a ranked description of the most relevant transitions (transition

modes)59 (Figure 2E; STARMethods). Because the first transition

mode contains mainly steady-state transitions (Figure S2D;

STAR Methods), we focused our analysis on the subsequent

modes. The highest contribution to the second mode corre-

sponds to transitions between angular peak-like rotations and

reductions in the angular velocity (Figure 2E, right). The third

and fourth mode’s highest contributors include transitions from

the steady forward velocity clusters to either the same clusters

or to initiations of peak-like rotations, respectively (Figure 2E,

right). Altogether, these findings indicated the presence of two

main distinctive body motor programs, characterized either by

angular spike-like events resembling body saccades25,26

(angular peak plus relaxation) that are executed in about 56%

of the time (14,978 segments), or by segments with steady

high forward velocity (forward runs) executed in about 44% of

the total time spent walking (11,744 segments). Thus, the orga-

nization of the body kinematics during exploration resembles a

fixation-saccade strategy in which the fly separates turning

from forward displacements.

The structure of exploratory walking is configured to
maximize gaze stability
A fixation-saccade strategy orchestrates specific motor pro-

grams across the body to maintain gaze stable.11,12,16,18 We

examined movement coordination between the head and body

with FlyVRena’s high-magnification system (Figure 3A; Video

S2). Because the computational load of the unsupervised anal-

ysis grows exponentially with data size, we leveraged the infor-

mation acquired from this analysis and developed a faster,

supervised identification of body saccades (Figures 3A, 3B,

S3, S4A, and S4B; STAR Methods). During body saccades,26

the head and bodymoved initially in sync regardless of light con-

ditions (8 ms resolution; Figure 3C). At the peak of the body

saccade, the head initiated a counter-rotation (Figures 3D and

S4C) that helped to stabilize gaze as the body completed its rota-

tion. Unlike in vertebrates,17,18 the head’s contribution to gaze

shifts was minor relative to that of the body (Figure 3E), perhaps

due to the head’s limited movement range (<20�) and the body’s

fast maneuverability. By contrast, and like the vertebrate

cervical-ocular reflex,22 during forward runs gaze stability is

increased by opposite rotations of the head and body, with the
head following the body by 66 ms regardless of light conditions

(Figures 3F and 3G). Together, these findings reveal a structural

organization of exploration that is independent of visual condi-

tions and that is configured to increase gaze stability while re-

stricting the duration of gaze shifts.

Visual feedback rapidly controls course stability during
forward runs
The limited contribution of the head relative to the body on gaze

control (Figure 3E) suggests that gaze stability increases with

course stability.47,49 To examine course stability, we calculated

path straightness per forward run (Figures 3A and 4A; STAR

Methods). Consistent with gaze stabilization, walking paths

were straighter in light versus darkness or with weak visual feed-

back (Figures 4A–4D and S1; see also Robie et al.60). The in-

crease in path straightness was associated with a decrease in

deviations from a stable body orientation (body angular devia-

tions) (Figure 4B). If the fly uses the projected stimuli for course

control, then the stronger the visual influence of the stimuli, the

straighter the forward runs should be. To examine this predic-

tion, we designed visual worlds with variable influence on the

behavior of individual flies (Figures 4C and S1). We found that

although size or density of dots influenced behavior non-mono-

tonically across the population, visual influence and walking

performance were always strongly correlated, i.e., the larger

the visual influence, the straighter the forward run (Figure 4E).

This finding indicates that self-generated visual signals reduce

the magnitude of body rotations and straighten forward runs

when motor programs across the body are coordinated to main-

tain gaze stable.

To test how fast visual feedback affects course control, we

calculated path straightness as a function of the duration of for-

ward runs across virtual worlds (Figure 4F). Forward runs lasting

only 300 ms were straighter under strong versus weak visual

feedback. Moreover, short, body kinematics (�180 ms) within

clusters linked to forward runs displayed reduced body angular

deviations under strong visual feedback (Figure 4G). Altogether,

these observations suggest that visual feedback controls course

stability at a timescale close to the step cycle of the walking fly.61

Visual feedback prevents pairwise interlimb
correlations underlying postural adjustments
To understand how visual feedback controls path straightness at

fast timescales, we first examined the relationship between inter-

limb coordination and course control. To characterize interlimb

coordination, we used machine learning tools to track each

leg’s tip position in two dimensions62,63 (Figure 5A; Video S3;

STAR Methods). We labeled forward runs across visual condi-

tions based on the cumulative body angular deviations normal-

ized by the traveled distance (path deviation; Figure 5B). Regard-

less of the magnitude and direction of the path deviation, on

average, flies walked with tripod gait (Figures 5C and S5A), char-

acteristic of high-speed walking (Figures 2 and S2; see also

Mendes et al.61 and Wosnitza et al.64). Thus, path deviations

are not caused by changes in gait structure; instead, they may

be caused by changes in leg kinematics.

To examine whether variations in single-leg kinematics affect

body angular deviations, we extracted the location orthogonal

(lateral) and parallel (longitudinal) to the body axis of the anterior
Current Biology 31, 4596–4607, October 25, 2021 4599
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B C Figure 3. The structure of exploration re-

veals head-bodymotor programs thatmaxi-

mize gaze stability independent of vision

(A) Walking paths under light and dark conditions.

f, forward runs; bs, body saccades, also indicated

by colored dots.

(B) Corresponding time series of the head angle

and the angular and forward velocities. Left:

darkness. Right: light. Body saccades are indi-

cated in red. Forward runs are indicated in cyan

(Figure S3; STAR Methods).

(C) Cross-covariance between the head angle

and body angular velocity during saccades in light

(N = 33; n = 1,022) and dark (N = 24; n = 4,252)

conditions (grand mean ± SEM). Gray: same with

shuffled body angular velocity.

(D) Left: definition of head, gaze, and body angles.

Right: angular velocity of the body (black), head

(gray), and gaze (purple) during saccades of 300 to

400�/s (average ± SD), N = 57; n = 1,232) (Fig-

ure S4).

(E) Same as in (D) for angular position.

(F) Same as (C) during forward runs in light (N = 33;

n = 840) and dark (N = 24; n = 2,663) conditions.

(G) Left, top: the body, head, andgazeanglesduring

example forward run segments. Bottom: same for a

fly with a head fixed to the body. Right: comparison

between the body versus gaze angle standard

deviation in light (N = 33), dark (N = 24), and head

fixed under light (N = 16) conditions (***p < 0.005,

Wilcoxon signed-rank test). See also Video S2.
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extreme position (AEP) and posterior extreme position (PEP) of

each leg relative to the body.61 The AEP and PEP can vary up

to 0.3 body lengths (BLs), irrespective of the magnitude and di-

rection of path deviations (Figure 5D). Interestingly, the lateral

AEP of front legs changed systematically with path deviations

(Figure 5D). This effect was clearer at a single-step level, where

correlations between lateral leg placement and body angular de-

viations were more prominent for front than middle legs, and it

was not observed in hind legs (Figure 5E). Front legs showed

no correlation between the longitudinal AEP and body angular

deviations, whereas the middle and hind legs showed variable

correlations (Figure S5B). These findings indicate a specific rela-

tionship between each leg’s placement and body deviations,

strongly suggesting that variability in limb kinematics causes

self-paced path deviations during forward runs.

Notably, the lateral placement of a front leg in a single step (FLx)

is not sufficient to explain the body angular deviations. In
4600 Current Biology 31, 4596–4607, October 25, 2021
consecutive steps, if an initial displace-

ment is not followed by a syndirectional

FLx from the contralateral leg, body

angular deviations don’t occur (Figure 5F).

Bycontrast, if the initial displacement is fol-

lowed by a correlated FLx, the magnitude

of the correlation directly relates to the

magnitude of the body angular deviation

(Figure 5F). Changes in FLx over a step

can displace the fly’s center of stability

away from its center of mass (Figure 5G),

thereby momentarily decreasing posture
stability.65,66 To recover stability, posture control systems could

either adjust lateral foot placement in the next step, like in hu-

mans,67 or dynamically engage viscoelastic properties of the

musculoskeletal system, as observed in the cockroach.68 Our

data are consistent with the first possibility. Initial FLx displace-

ments were typically followed by contralateral FLx displacements

in the same direction (Figures 5G and S5E). These front-leg pair-

wise correlations are strongly correlated with body angular devia-

tions regardless of visual conditions (Figure S5D). However, the

degree of the interlimb correlation was stronger in darkness and

gradually reduced with stronger visual feedback (Figures S5E

andS5F). Consistently, posture stability recoverywasmore robust

in darkness than when visual feedback was available (Figures 5H

and S5G). These findings show that posture control induces

bodyangular deviations, thereby shiftinggazewhen the fly intends

tokeep it stable (Figure3).Ourdatashowthatvisual feedbackcon-

trols gaze stability by tuning down rapid postural adjustments.
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Figure 4. Visual feedback rapidly controls path straightness during forward runs

(A) Original walking paths (left), isolated forward runs (middle), and path straightness of forward runs (right) under light (top) or dark (bottom) conditions (STAR

Methods).

(B) Left: mean path straightness under light (gray) or dark (black) conditions (grand mean± SEM,Wilcoxon rank-sum test). Right: average body angular deviations

versus average path straightness.

(C) Different visual environments.

(D) Similar to (A), under two different visual environments (1� and 10� dots).
(E) Path straightness as a function of visual influence, varying dot size (left, t test) or density (right, t test) (STAR Methods; Figure S1).

(F) Mean path straightness versus forward run duration under different visual environments (averaged±SD).

(G) Body angular deviations versus segment duration under different visual environments for clusters with high forward velocity (***p < 0.001; **p < 0.01; *p < 0.05,

Wilcoxon rank-sumtest two-sided with Bonferroni correction). Across-condition sample sizes: lime, 311–997 segments; dodge blue, 208–642 segments.
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External visual perturbations induce body rotations with
specific interlimb coordination
Next, we asked whether visual perturbations leading to body

rotations induced similar interlimb coordination. We induced vi-

sual perturbations either by OMR visual stimuli (Figure S6A) or

by RG (Figure S1A). During OMR, flies turn at high forward
velocity or with saccades (data not shown) in the direction of

the stimulus rotation (Figure S6A). In these biased forward runs,

the body angular deviations were correlated with the front legs’

lateral AEP and anti-correlated with the hind legs’ lateral AEP

(Figure S6B). Under RG, flies circle56 with near-perfect tripod

gait (Figures S1 and S6C–S6E; Video S4). Like the OMR, the
Current Biology 31, 4596–4607, October 25, 2021 4601
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Figure 5. Visual feedback prevents pairwise interlimb correlations underlying postural adjustments

(A) Left: tracking labels of leg position. Right: time series of head angle, body velocities, and leg positions parallel (Y) or orthogonal (X) to body direction. Red

shade: body saccade; cyan shade: forward run. BL, body length.

(B) Forward runs aligned at the starting position, colored by path deviations.

(C) Number of legs in the air during forward runs versus path deviation (average ±SD, N = 52 flies; n = 15,754 forward runs).

(D) Distributions of leg landing and lift-off positions with respect to the body, color coded by path deviation. Arrows: movement from the center of the landing to

the center of the lift-off distributions.

(E) Leg X landing position in a single step (grand mean ±SEM, N = 52 flies; n = 42,524 high-quality steps; STARMethods) versus the body angular deviation in that

step (Figure S5). Color code is the same as in (A).

(F) Body angular deviations versus front-leg-correlated lateral movement classified by the direction of the initial leg displacement (left: blue; right: red; grandmean

± SEM, N = 52 flies; n = 42,524 high-quality steps).

(G) Schematic of the relationship between posture stability change (Dsi and Dsi+1), front-leg lateral displacement (DFLxi), correlated front-leg lateral movement in

consecutive steps (DFLxi+1), and body angular deviations (a).

(H) Posture stability increase (%Ds) following an initial leg displacement versus average path straightness under different visual environments (grandmean±SEM,

colored). Chance was calculated by shuffling the step sequence. See also Video S3.
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body angular deviations were correlated with the front legs’

lateral AEP and anti-correlated with the hind legs’ lateral AEP

(Figure S6F). By contrast, the longitudinal AEP was unaffected

under RG (Figure S6G). The consistent anti-correlation between

the hind legs’ lateral AEP and the body angular deviations during

open- and closed-loop visual perturbations was never observed

in natural conditions (Figures 5 and S6B, static condition).

Furthermore, we found that head-body coordination under RG

differs from the anti-correlation found under natural conditions

(Figure S6I). Altogether, our data suggest that, regardless of the

gait structure (Figures S6D, S6E, and S6H), a different movement

pattern across the body emerge under visual perturbations.

Motion-sensitive circuits are crucial for the rapid tuning
of posture by visual feedback
To determine the specific visual circuits tuning down postural

adjustments, we silenced the activity of T4/T5 cells, the first
4602 Current Biology 31, 4596–4607, October 25, 2021
population of neurons with direction-selective visual-motion re-

sponses,69 via the selective expression of the inward-rectifier

potassium channel Kir2.1 (Figure 6A). These experimental flies

displayed characteristic exploratory paths (Video S4), suggest-

ing that visual motion information is not required for the fixa-

tion-saccade structure of exploratory walking (Figures 6B and

6C, left).

Silencing the activity of T4/T5 cells did not affect the dynamics

of saccades (Figures 6D and S7D). However, walking paths dur-

ing forward runs under strong visual feedback were markedly

less straight in experimental flies compared with controls,

resembling walking in darkness. This effect was not explained

by an impairment in head body coordination (Figures 6B and

6C, right; Figures S7D and S7E). Consistent with this observa-

tion, we found that front-leg pairwise correlations were more

prominent in experimental than in control flies (Figure 6E). This

finding strongly suggests that pathways postsynaptic to T4/T5
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Figure 6. Motion-sensitive circuits are crucial for visual tuning of

postural reflexes

(A) Left: schematic of the fly optic system highlighting direction-selective and

motion-sensitive T4/T5 cells. Right: selective expression of Kir2.1:GFP in T4/

T5 cells (green).

(B) Walking path straightness of controls (light/dark blue) and experimental

exemplar flies (orange) in light (top) and dark (bottom) conditions. Visual

environment: 10� dots.

ll
OPEN ACCESSArticle
cells mediate the tuning of postural reflexes to maintain walking

straight and gaze stable.

DISCUSSION

Gaze stability is fundamental for visual and spatial perception.70

Here, we demonstrate that exploratory walking Drosophila

attempt to keep gaze stable bymoving forward in fixeddirections

while coordinating head and body rotations in antiphase (Figures

2 and 3). However, maintaining gaze stable during walking is not

trivial because of internal and external sources of noise.We iden-

tified one component of this noise, the variability of leg place-

ment, that momentarily decreases posture stability and triggers

rapid limb adjustments that induce changes in course direction,

thereby impairing gaze stabilization (Figure 5). We further show

that the fly uses visual feedback to stabilize gaze at the expense

of posture (Figures 4 and 5). Mechanistically, self-generated vi-

sual motion cues prevent rather than promote compensatory

body rotations (Figures 5 and 6), a long-standing idea for visually

guided course control71 (Figure 7A). Moreover, external visual

disturbances induced a different leg movement pattern from

theoneobservedunder natural conditions. Taken together, these

findings establish that self- and externally generated visual infor-

mation engages different mechanisms to control goal-directed

and visually guided locomotion.Overall, ourwork suggests a crit-

ical role for visual feedback in orchestrating the interplay between

posture andgaze stability in amanner that is bothgoal dependent

and motor-context specific.

Active, self-paced visual control of walking
In flies, course control is thought to depend on compensatory

systems.42,43,49,71–74 The proposed models rely on a combina-

tion of directional and non-directional components,43,75–77 which

together act via compensatory turns until an internal error signal

is minimized.43,44,49,72 In flight, the directional (optomotor)

component depends on a feedback system with integrative

components.43,44,49 Several lines of evidence show that these

compensatory systems cannot fully explain our findings during

walking. First, the fly’s course control critically depends on visual

motion pathways, in contrast to position-based oriented behav-

iors.75,77 Furthermore, while flies follow discrete high-contrast

edges (Figure S7C), they seem not to fixate on single dots (Fig-

ure S7A). Second, we found no evidence for the presence of

actively generated small-amplitude turns, suggested to consti-

tute an operant trial-and-error strategy for the optomotor system

under closed-loop conditions.49,72 Third, visual feedback does

not generate compensatory turns, but rather prevents body rota-

tions. Fourth, while optomotor mechanisms could support gaze

stability in flying insects, the gain of the OMR, in our case on

average 0.56, is too low to guarantee straight walking.48,78
(C) Visual influence (left) and path straightness (right) across visual environ-

ments. Color code same as in (B). Grand mean ±SEM, Wilcoxon rank-sum

test: *p < 0.05; **p < 0.01; ***p < 0.005.

(D) Dynamics of the first principal component of body saccades in control

(blue) and experimental flies (orange). Grand mean ±SEM.

(E) Front-leg lateral displacement (DFLXi+1) versus the contralateral leg

displacement in the preceding step (DFLXi) in controls (blue) and experimental

flies (orange). Grand mean ±SEM. See also Figures S6, S7, and Video S4.
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Figure 7. Goal-directed rapid tuning of postural reflexes by visual

feedback

(A) Left: in the context of gaze stabilization, visual feedback tunes down

postural reflexes, thereby preventing body rotations. Right: in the context of

saccades, we found no effect of visual feedback (Figures 6D and S4A).

(B and C) Schematic of potential circuit architectures by which visual feedback

tunes postural reflexes within ventral nerve cord circuits. (B) Visual descending

neurons (VDNs) may project to interneurons within VNC to tune sensitivity to

postural reflexes. (C) VDNs directly connect to either motor neurons (MNs) or

leg proprioceptive sensory neurons (SNs) to control leg placement.
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Reversing the gain of the virtual reality system or presenting an

OMR stimulus induced additional components of limb place-

ment absent under natural conditions, which likely contribute

to compensatory turns. Altogether, we propose that parallel

mechanisms exist for course control that depend on self- versus

externally generated visual motion. While external perturbations,

such a gust of wind or asymmetries in the locomotor apparatus

induced by acute limb damage, rely on optomotor mechanisms

for proper course control, the fast action of visual feedback re-

ported here is critical in the context of self-paced variability dur-

ing walking, where every step is prone to multiple sources of

noise.3
4604 Current Biology 31, 4596–4607, October 25, 2021
Neural mechanisms involved in visual tuning of posture
control
It takes �35 ms or half the stance period61,62 (Figure S5C) for vi-

sual motion signals to excite T4/T5 postsynaptic neurons (T. Fu-

jiwara, personal communication). Thus, to control leg placement,

visual feedback could act upon the swinging leg if descending

signals to the ventral nerve cord (VNC) travel fast with minimal

delay. T4/T5 cells connect to visual projection neurons,79–81

many of which receive extra-retinal82,83 information that further

accelerates visual processing.84,85 In addition, visual projection

neurons project to regions densely innervated by descending

neurons.86 In insects, descending neurons carry task-specific

signals to modulate reactive forces, interlimb coordination, and

leg placement.87,88 At the same time, local circuits within the

VNC perform stepwise adjustments to control posture in the

presence of internally and externally generated noise.33–36

Here, we show that posture reflexes respond to variability in

leg placement via spatial interlimb correlations, which cause

small changes in body orientation while recovering posture sta-

bility (Figure 5). Although the mechanisms underlying these

spatial correlations remain unclear, we speculate that informa-

tion about leg landing position in contralateral pairs contributes

to postural adjustments, likely via the activity of interneurons

integrating information across segments within the VNC88 and

whose gain can be gated by visual feedback (Figure 7B). Alterna-

tively, visual descending pathways may act on a step-by-step

manner on leg sensory-motor systems89 (Figure 7C). Very little

is known about the identity and mechanisms by which neurons

within the VNC modulate leg placement or how visual descend-

ing circuits interact with such population of interneurons. The

findings reported here constitute a possible framework to

examine these important questions in the context of active vision

and its role in goal-directed walking.

Anyonewho tried towalk while blindfolded knows that vision is

fundamental for course control. There is evidence supporting a

role for vision in human leg placement,46 suggesting that a

similar mechanism to the onewe demonstrate in fliesmay under-

lie course control in humans.67 Investigating the role of visual

feedback under naturalistic conditions in a system with a trac-

table number of neurons and a comprehensive array of

anatomic, genetic, and physiological tools will produce a con-

ceptual framework to elucidate the interplay between visual

feedback and posture control during locomotion suitable for

comparative studies across species and scenarios.
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42. Götz, K.G., and Wenking, H. (1973). Visual control of locomotion in the

walking fruitflyDrosophila. J. Comp. Physiol. 85, 235–266.

43. Poggio, T., and Reichardt, W. (1973). A theory of the pattern induced flight

orientation of the fly Musca domestica. Kybernetik 12, 185–203.

44. Roth, E., Reiser, M.B., Dickinson, M.H., and Cowan, N.J. (2012). A task-

level model for optomotor yaw regulation in Drosophila melanogaster: A

frequency-domain system identification approach. In 2012 IEEE 51st

Proceedings of the IEEE Conference Decision and Control, (IEEE),

pp. 3721–3726.
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Deposited data

Raw and Pre-processed Data This paper Mendeley, https://doi.org/10.17632/

tvw5k48b6p.2

Equipment

Infrared Cameras IDS IDS UI-3240CP-NIR/ IDS

UI-3360CP-NIR-GL

Infrared LEDs Osram 850nm SFH 4235-Z

LED current power supply TENMA 72-10480

LED projector Texas Instrument DLP Lightcrafter 4500

Telecentric lens Telecentric Lens 220mm WD CompactTL
Galvo mirrors Thorlabs GVS012/M - 2D
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Eugenia

Chiappe (eugenia.chiappe@neuro.fchampaliamaud.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data reported in this paper can be found at Mendeley data: https://doi.org/10.17632/tvw.

All original codes used for behavior analysis are available at https://github.com/ChiappeLab.
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Any additional information required to reanalyze the data reported in this work is available from the Lead Contact upon request,

Eugenia Chiappe (eugenia.chiappe@neuro.fchampalimaud.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly Strains
Drosophila melanogaster were reared on a standard fly medium and kept on a 12hr light/12hr dark cycle. Experiments were per-

formed with 2-to-4-day old flies with clipped wings from eclosion. Although at the beginning of this study we examined both females

and males, under our experimental conditions we found that males display more robust and continuous walking behavior compared

to females. Thus, in this study, we focused our analysis on male flies. We used the recently derived ‘‘Top Banana’’ WT line (TP, a gift

from the Dickinson lab) because they engaged in exploration more readily than other WT lines (Figures 1, 2, and 3, comparisons

across WT lines are not shown). Experiments were performed uniformly throughout the day since the variation of the time of the

experiment could not explain relevant behavior variability (data not shown). An intersectional approach designedwith Otd-nls:FLPo90

restricted the effector expression to the population of neurons of interest. The complete set of transgenic flies and their specific sour-

ces are listed in the Key resources table.

METHOD DETAILS

Immunostaining
Isolated brains were fixed for 30 min at room temperature in 4% paraformaldehyde in PBS, rinsed in PBT (PBS, 0.5% Triton X-100

and 10 mg/ml BSA), and blocked in PBT + 10% NGS for 15min. Brains were incubated in primary antibodies (1:25 mouse nc82 and

1:1000 rabbit antibody to GFP) at 4�C for three days. After several washes in PBT, brains were incubated with secondary antibodies

(1:500 goat-anti rabbit: Alexa Fluor 488 and 1:500 goat-anti mouse: Alexa Fluor 633) for three days at 4�C. Brains were mounted in

Vectashield, and confocal images were acquired with a Zeiss LSM710 scope with a 403 oil-immersion or 253 multi-immersion

objective lens.

Virtual Reality setup for exploratory walking
Single flies walked freely in a 90mm circular arena with walls heated up to 42�C by an insulated nichrome wire (Pelican Wire

P2128N60TFEWT). In order to prevent walking on the ceiling, the arena was covered with a glass plate pre-treated with Sigmacote

(Sigma).91 The fly was video recorded using a near infrared camera (IDS UI-3240CP-NIR) at a frame rate of 60Hz and resolution

900x900 pixels. The camera has attached a 2x expander (Computar EX2C), a wide field lens (Computar 5mm 1:1:4 ½), and a filter

against visible light (Thorlabs AC254-100-A-ML). The illumination was set beneath the arena by IR LEDs (850nm SFH 4235-Z), pow-

ered by a current power supply (TENMA 72-10480). The centroid position and orientation of the fly were determined via real time

tracking. The tracking algorithm first performed a background subtraction using an image of an empty arena, followed by the appli-

cation of a pixel intensity threshold. From the distribution of pixels within the contour of the thresholded image, the 2D centroid and

main orientation were estimated. The final estimate of the position and orientation of the fly was given by a Kalman filter, which com-

bined the recorded data with prior knowledge about the system to statistically minimize the difference between the real and esti-

mated values.

Visual stimuli were projected onto a rear projection material (Da-Lite High Contrast DA-Tex), attached to the floor of the arena. We

used a small LED projector (DLP Lightcrafter 4500, Texas Instruments) at a frame rate of 60Hz and a pixel size of 160px/mm. A

custom-made software (FlyVRena, https://github.com/tlcruz/FlyVRena)54 generated the virtual worlds. FlyVrena implements the

real time tracking of the position and orientation of the fly. FlyVrena uses computer game development libraries to render virtual ob-

jects and update their behavior accordingly (closed loop). The delay between the fly movement and the update of the world is about

40ms (as measured using a photodiode, Vishay BPW21R), which is generated mainly from the lag of the projection system. Virtual

worlds were 2D environments with sets of textured square-based random dots (Figures 1, 2, 3, 4, 5, and 6 and S1–S7; Video S1) or

textured square-based bars (‘‘windmill environment’’; Figure S7). The models of the textured squares were designed in Blender

(https://www.blender.org), the textureswere generated inMATLAB andAdobe Illustrator, and rendered using the FlyVRena software.

Following FlyMad,55 high-resolution images of the fly were recorded at 120fps and 1024x544 pixel resolution with a near infrared

camera (IDS UI-3360CP-NIR-GL) and a telecentric lens (Edmund Optics 1x, 220mmWD CompactTL Telecentric Lens). The camera

pointed to a pair of galvo mirrors (Thorlabs GVS012/M - 2D Large Beam (10mm) Diameter Galvo System) whose orientation was

controlled by the FlyVRena software based on the instantaneous position of the fly to maintain the fly centered in the high-resolution

frame (16ms lag; Video S2).

The size of our experimental arena (> 50BL) together with its aversive walls, circumvented the fly’s innate centerphobism92 and

promoted longer excursions throughout the arena (Figure 1D). Under these conditions, we found that flies organize their behavior

in two distinctive phases with characteristics that resemble what has been described as saccades in walking flies26 and fixation-

saccade in patrolling and exploratory flying flies.93,94 Under our experimental conditions, the fly may be structuring its behavior simi-

larly while searching for an exit or a cool spot within the aversive landscape generated by the hot walls. Therefore, we refer to the

behavior as exploratory walking.
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Data pre-processing for free walking assays
Post experiment, the change in the position of the fly was transformed to forward and side velocities, whereas the change of its orien-

tation was transformed to angular velocity. Jump events of the fly were detected by a threshold in the fly acceleration (200mm/s2) and

eliminated from subsequent analysis. Heading direction was inferred based on the persistence of the forward velocity, and if aver-

aged forward speed between two jumps was negative, then orientation was rotated by 180� and velocities were re-calculated. All

velocity signals within a window of 166ms centered at a jump were set to zero. The speeds were smoothed with a lowess algorithm

with a window of 100ms. Activity was defined as translational speed greater than 0.5mm/s, or angular speed greater than 20�/s for at
least 166ms. On the other hand, inactivity bouts smaller than 333ms were considered activity. Walking bouts were a subgroup of

activity bouts in which a sequence of movement lasted for at least 333ms.

Unsupervised segmentation of movement dynamics
After pre-processing the data (84 flies, total number of walking segments = 64467, total time of spent walking = 441 minutes, per-

centage of time spent walking = 54 ± 17%), the description of the kinematics of the walking behavior consisted of time series of

the angular and forward velocities, and their respective derivatives (accelerations). Under our experimental conditions, side velocities

were minimal during forward runs, and highly coupled to angular velocity during turns. We used an adaptive methodology proposed

in Costa et al.58 to segment these input time series into locally linear dynamical systems of varying length. Briefly, in an iterative

manner, the algorithm searches for ‘‘dynamical breaks,’’ that is, points at which therewould be a need to switch between onemodel’s

dynamics and another to best fit the data among arbitrarily defined set of candidate windowsWi, i = 1.N. A windowWi is modeled

by locally fitting a first order Autoregressive Process (AR) defined as follows

xt = c!+Axt�1 + h! (1)

where the set of parameters q = ð c!,A,S) are estimated by least-square regression, with the coupling matrix A, the covariance matrix

of the error, S, and the intercept, c
!
. We denote Wk a window of length WðkÞ samples, and Wk + 1 as a window of length Wðk + 1Þ

samples, with qk and qk + 1 their respective models. A dynamical break is found if qk cannot model the dynamics in Wk +1, in which

caseWk is chunked and the search for dynamical breaks starts again. Otherwise, a comparison with a newpair of candidate windows

starts, i.eWk +1 andWk + 2: The algorithm finishes when it chunks all the input time series. For our analysis, we considered a minimum

candidate window of 10 frames at 60 Hz (�167ms) which corresponds to about 2 steps under fast tripod walking and a lower bound-

ary for consistent movement in freely walking flies.57 Thus, the choice of 10 frames as a starting candidate window gives us confi-

dence to be able to capture most chunks of consistent dynamics in the dataset.

An analysis of the timescales of walking behavior (Figure 2B) revealed that the distribution of the duration of continuous locomo-

tion-related dynamics decayed quickly after 350ms. Given that, our final analysis considered candidate windows from 167ms to

350ms (10-21 samples). Furthermore, we set the percentile of rejection under the null hypothesis that qk models Wk +1 to 98.5,

and the number of surrogates to construct the null hypothesis distribution to 1000. Varying these parameters did not affect the overall

distribution of segments (data not shown).

Clustering of movement dynamics
After segmenting the multivariate time series, we obtained 64467 segments of linear dynamics. A dissimilarity matrix is constructed

by performing a pairwise comparison between segments. Given two segments, A and B and their corresponding models qA andqB,

their distance (or dissimilarity) is computed by asking how likely the model of the concatenation of segments A and B, defined as qC,

canmodel the individual segments. Equation 2 shows themeasure of distance, whereL is a log-likelihood function. The output of this

procedure is a symmetric, positive-defined squared matrix of 64467 rows (Figure S2A).

da;b = La;c + Lb;c (2)

Then, a hierarchical clustering using Ward linkage is applied to the dissimilarity matrix. To define the final clusters, we performed

an iterative merging procedure. To start off, we used the lower level of the dendrogram obtained from the hierarchical clustering

defining several ‘‘microclusters.’’ Next, we compared pairs of neighboring microclusters – clusters that share the same immediate

common branch in the dendrogram, by first denoising the samples within each microcluster with Principal Component Analysis,

and then selecting the first two components (explaining approx. 75% of variance) to reconstruct them in the time domain. Then, for

each pair of microclusters, we compute a pairwise comparison between the samples to generate a dissimilarity matrix, using the

log-likelihood distance described in the unsupervised segmentation. The labels for each row of the matrix are the two microclus-

ters that are being compared. A Logistic Regression model was used to perform a binary classification (Figure S2A) such that two

clusters would be merged if the binary classifier’s ability to separate them lies below a certain threshold of performance, measured

by the Area Under the ROC Curve (AUC). To train and validate the binary classifier we randomly used 70% of the dataset, and the

30% remained for the test set. For the validation procedure, we used a cross-validation of five folds and a random grid search over

the regularization C term in the range of f�110;13g in logarithmic scale. The best estimator of this search was used to classify the

test set. The algorithm finishes when neighboring clusters cannot be further merged. For our dataset, we chose a threshold of

0.99 AUC.
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Analysis of transitions between clusters
To examine how the behavior discretized in clusters unfolds in time, we compute a one-step probability transition matrix between

continuous locomotion-related clusters. To account for the underlying structure of behavioral transitions, we performed a singu-

lar-value decomposition (SVD) on the one-step probability transitionmatrix. This factorization of thematrix allowed us to get a ranked

description of the most important transitions between clusters. The SVD factorization of a one-step transition matrix decomposes it

as a summation of transition modes. Therefore, the transition matrix A with m states can be expressed as follows:

A = USVT =
Xm

i = 1

si$UiV
T
i (3)

where the outer product of each left and right singular vectors UVT , together with the associated singular value, generates a rank-1

matrix that here we refer as a transition mode. The larger the associated singular value, the slower the timescale of the system is

reflected in the transition mode. The leading singular value contains information about long timescales –the steady-state of the sys-

tem, where there is little predictability of the current state, and therefore, it reflects the averaged probability of transitioning into any

other behavioral state.59,95 Because the larger clusters are the ones containing no angular bias (on averaged, ‘‘lime’’ and ‘‘dodge

blue’’), the first mode is characterized mainly by transitions from any clusters to these high forward velocity clusters (Figure S2E).

Thus, we focused our analysis on the subsequent modes. The second transition mode accounts for local transitions between

spike-like rotations followed by relaxations, in both directions. The third and fourth modes organized transitions from forward seg-

ments to either initiation of a rotation or continuation of high-forward velocity segments. This analysis shows the existence of two

main different motor contexts in which the fly transitions on one-step basis composed by fast angular rotations resembling body sac-

cades26 (spikes plus relaxations) and high-forward velocity segments.

Identification of spikes in the fly’s angular velocity
Spike-like dynamics described by the combination of angular velocity spikes and relaxation clusters corresponded to fast and ste-

reotyped rotations of the fly (Figure 2). To quickly classify events as spike-like, we took advantage of this stereotypy and used a

continuous wavelet transform strategy.96 For each walking bout, the continuous wavelet transform of the angular velocity was

computed using Gaussian wavelets, and a signal with power at a range of 10-15Hz was extracted (frequency signal). Note that while

the selection of the frequency band slightly affects the spike detection, it is not a determinant factor in subsequent analysis (Fig-

ure S3B). Next, the local maxima of the frequency signal, and of the absolute value of the angular velocity were calculated. If these

local maxima coincide between the two sets of local maxima, these were labeled as putative spike turns (Figure S3A). Putative spike

turns were filtered first to remove small local maxima (< 200�/s) that did not disrupt the forward velocity of the fly (variance of forward

speed < 3mm/s), and then to roughly match the signal with a template obtained via PCA on a subset of pronounced peak aligned

spike-like events (the first principal component explained�90% of the shape variance in a 500ms window and was used as the tem-

plate; Figures 6D and S4A). Putative spike turns in which the square distance between the scaled shape and the template was smaller

than a cutoff of 0.15 were labeled as angular spike events (Figure S3A). The free parameters of the classifier did not affect the results

over a wide range of possible parameters (Figure S3B).

To identify forwardwalking segments (‘‘forward runs’’), angular spike eventswere removed from thewalking bout. The remaining seg-

ments longer than 333ms, andwith an average forward velocity greater than 6mm/swere defined as forward runs throughout this study.

Local curvature, path straightness and visual influence
Local curvature is calculated with a running window of 333ms centered on each point of the fly’s path. A 333ms window centered on

each point of a forward segment was used to calculate the distance between the central data point and a line defined by the edges of

the window (instantaneous deviation from an ideal straight path). The path straightness of a forward run was defined as the sum of

traveled distances within the window divided by the sum of deviations. Path straightness per fly is the weighted average of all path

straightness per forward run, with weights given by the total distance walked in each forward run (Figures 4 and 6).

Under natural gain conditions, when a fly rotates to the left, the world rotates to the right. In contrast, under the reversed gain (RG)

condition, when the fly rotates to the left, the world rotates left too. The RGcondition induces a persistent rotation of the fly, a behavior

known as circling56 (Video S4). Visual influencewas defined as the difference between the probabilities of circling in RG versus natural

gain conditions (Figure S1). Under the dark condition we artificially divided the dataset into the same trial structure as in the random

dot stimulus experiment and calculated visual influence in the same way.

Due to the delay between the estimate of the fly’s position and orientation and the update of the visual environment (�40ms), when

the fly stopped walking under the reversed gain condition, the visual environment continued rotating with the previous angular ve-

locity of the fly for three consecutive frames. This brief ‘‘open-loop’’ segment was sufficient to induce a head optomotor response

(Figure S7). Typically, after the stimulus stops moving, the head remains with an offset position driven by the stimulation until the

fly initiates a behavior.

Head tracking
High-resolution images were filtered with a Gaussian filter (width = 16pixels), and background subtracted. Pixels that belonged to the

fly were estimated with a combination of edge detector operations, and morphological transformations until a connected object with
Current Biology 31, 4596–4607.e1–e5, October 25, 2021 e4
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dimensions like the fly was detected. The centroid and orientation of the object were used to translate and rotate the frame to keep a

vertical fly at the center of the frame. Next, a window around the headwas cropped from the frame. The top of the thorax of the flywas

masked out in the cropped frame, and the head was segmented using a combination of edge detector operations andmorphological

transformations. Head rotation was calculated via cross correlation with a template upright head.95 The head tracking error is the

squared error between the template and the rotated head. The head angle trace was smoothed using a lowess algorithm with a win-

dow of 83ms. Frames in which the head tracking error was high (top 2.5% of the frames) were removed from the original time series.

As an alternative strategy, we usedDeepLabCut to estimate the rotation of the headwith respect to the body of the fly.63We trained

a neural network with a subset of images where the fly was in the upright position (see above) with four labels to track: Left Eye, Right

Eye, Neck, and Thorax ending. After applying the tracking network to the full dataset, we transformed the positions of the labeled

points into head angles. No significant differences were observed when comparing the two methods (Video S2).

Leg position extraction
High resolution video frames were background subtracted. Pixels that belonged to the fly were estimated with a combination of edge

detector operations, and morphological transformations until a connected object with dimensions like the fly was detected. The

centroid and orientation of the object were used to translate and rotate the frame to keep an upright vertical fly at the center of

the frame. Next, a croppedwindow of 400x400px around the fly was stored in a new aligned video.We used DeepLabCut to estimate

the location of the following features from the high resolution aligned videos: top of the head, left eye, right eye, neck, tip of the thorax,

tip of the abdomen, tip of left front leg, tip of right front leg, tip of the left middle leg, tip of right middle led, tip of left hind leg and tip of

right hind leg. These features were thresholded based on the accuracy of estimation parameters and aligned to the low-resolution

preprocessed data.

Inter-leg phase was calculated by dividing the time delay in the cross covariance between leg position signals and the period as

measured in the autocovariance of those signals. Swing-stance transitions for each leg were calculated by detecting the local max-

ima (swing to stance -PEP) and local minima (stance to swing-AEP) in the leg position aligned to the body orientation. Landing po-

sition is taken as the transition from swing to stance, and a step is defined by the swing of a single tripod.

Single step analysis
For each individual leg, we used the AEP and PEP of the leg position signal to identify swing, stance, landing and lift-off. We calcu-

lated the deviations in body angle (same as path deviations) as the integrated angular velocity between consecutive lift-offs. We

correlate body angular deviations with the leg lateral and longitudinal displacement between lift-off and landing, the swing and stance

time between those same consecutive lift-offs (Figures 5, S5, and S6). Leg placement correlation was calculated by multiplying leg

lateral placement in consecutive steps (Figures 5, 6, and S6).

High quality steps

Only steps where we can identify stance and swing times larger than 16ms and smaller than 125ms, and swing amplitudes smaller

than 0.75BL are considered for analysis to remove tracking errors that can affect the landing position identification. High quality steps

include 68% of all detected steps.

Center of stability calculation
We calculated the landing positions of all the legs and considered for analysis only the steps where all the legs fulfilled the previous

established criteria for step quality. We considered legs belonging to a triangle when they land within 16ms of each other. We

consider the center of stability as the geometric center of the triangle defined by the landing positions of the legs. (Figure 5F). The

reduction in posture stability was calculated by the distance in the orthogonal direction to the fly orientation between the centroid

of the fly and the center of stability in a particular step (Figure 5F).

QUANTIFICATION AND STATISTICAL ANALYSIS

We performed a two-sided Wilcoxon signed-rank test for paired groups, two-sided Wilcoxon rank-sum test for comparisons be-

tween two independent groups and t test for the correlation analysis. In addition, for statistics in the cross-covariance analysis

we performed a resampling, bootstrapping based method where new velocity signals were created by shuffling the time of different

walking bouts, distorting the signal without affecting its general statistics. The new shuffled signal undergoes the same cross covari-

ance analysis, and the procedure is repeated 1000 times to obtain the shuffled distributions in Figures 3E and 3F.
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Figure S1. Visual influence over the fly’s walking movements, related  to Figures 1 and 4. (A) Visual 
feedback from a rightward rotation under natural (left) and reversed (right) gain conditions. (B) Left: example of 
exploratory walking paths under natural gain (light gray, NG) and reversed gain (dark gray, RG) under 10º 
random dots (top) and 1º random dots (bottom) visual environments. Right: corresponding  angular velocity time 
series. (C) Circling probability (probability of consecutive rotations towards the same direction, see Methods) as 
a function of dot size under NG (light colors) or RG (dark colors). (D) Visual influence as a function of visual envi-
ronments with varying dot size (left) or with varying dot density (right), MWWTest, *p<0.05, **p<0.01, ***p<0.005. 
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Figure S2: Unsupervised segmentation and classification of body kinematics, related  to 
Figure 2. (A) Schematic of the fly’s body movement. The position of the body center of mass was tracked, 
and the angular (black) and  forward (grey) velocities and the corresponding accelerations were extracted. 
Using the multivariate time series defined by velocities and accelerations, the unsupervised algorithm identified 
temporal segments of different length. Hierarchical clustering and logistic regression analysis were applied to 
the segments to obtain characteristic body kinematics (see Methods). (B) Dendrogram associated with the 
hierarchical clustering.  Note that a principled strategy was employed to select the final clusters based on their 
statistical separability (see Methods). (Ci) Representative time series for clusters related to stationarity. (Cii) 
Representative time series for clusters related to micro movements and walking initiations. (D) First transition 
mode from the SVD factorization of the one-step transition probability matrix.
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Figure S3: Body saccade supervised detection heuristics, related  to Figure 3. (A) Different steps 
involved in the identification of rapid spikes of angular velocity that are referred to as body saccades in this 
study. See Methods for a full description of each step. (B) Exploration of the parameter space of the body 
saccade detection heuristics. Top, the number of body saccades using different thresholds for the forward 
speed (Vf) reduction during a body saccade in light and dark conditions.  Middle, the number of body saccades 
using different thresholds for the template matching during a body saccade in light and dark conditions. Bottom, 
the number of body saccades using different wavelet frequency cuts for the putative body saccades in light and 
dark conditions. For all the sets of heuristic parameters used, the variations in the number of body saccades 
were generally small and did not affect the differences between experimental conditions. 
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Figure S4: Head-body coordination during body saccades, related  to Figure 3. A) Dynamics of the first 
principal component of the angular velocity during body saccades (variance explained > 90%, inset), in light (N = 33, 
n = 1022) and dark (N = 24, n = 4252) conditions. (B) Dynamics of the first principal component of the head 
movement during body saccades (variance explained ~70%), under various visual conditions and for different 
amplitudes of the body saccade. (C) Top: time series of the angular displacement of the body, head and gaze during 
body saccades of increasing amplitude. Bottom: time series of the angular velocity of the body, head and gaze 
during body saccades of increasing amplitude. 
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Figure S5: Leg movements during forward runs, related  to Figure 5. (A) Inter-leg phase as a 
function of deviation from straight path during forward runs. Blue shades: leg phases between legs belonging to the 
same tripod, red shades: leg phases between legs belonging to opposite tripods (N = 52 flies, n = 15754 forw. 
runs). (B) Leg Y landing position in a single step as a function of the body angular deviations detected in that step. 
Individual legs follow the color code shown in Figure 5A. (N = 52 flies, n = 42524 high quality steps) (C) Leg swing 
and stance time in a single step as a function of the body angular deviations detected in that step. (N = 52 flies, n 
= 42524 high quality steps) (D) Body angular deviations as a function of the correlated lateral movement of both 
front legs divided by the direction of the initial lateral movement (red: rightward, blue: leftward) and the visual 
environment (different shades). (E) Front leg X landing position as a function of the contralateral front leg X landing 
position in the preceding step for darkness (black) or 10º dots (gray) conditions. (F) Average front leg placement 
correlation in different visual conditions (N = 52, n = 42524 high quality steps). (G) Change in postural stability in 
consecutive steps under darkness (left, N = 24, n=  620 high quality steps) or 10º dots (right, N = 28, n =  2222 high 
quality steps) conditions (*** p<0.005, Wilcoxon signed-rank test).
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Figure S6. Leg movements during forward walking under external visual perturbations, related to 
Figure 5. (A) Average angular velocity under different open-loop rotations of the visual environment (red: clockwise 
visual rotation, CW; blue: counterclockwise visual rotation, CCW; black: static visual stimuli) for 1º dots and 10º dots. 
(B) Leg X landing position in a single step in a OMR paradigm as a function of the body angular deviations detected 
in that step. Visual environment: 10º dots. Individual legs follow the color code shown in Figure 5A. Left: static stimu-
li, middle: CW visual rotation, right: CCW visual rotation. (C) Example set of forward segments during reversed gain 
conditions aligned to the starting position. Color code corresponds to the magnitude of the walking path’s deviation 
during each segment. (D) Number of legs in the air at each frame during forward segments for different amounts of 
path deviation (N = 28, n = 11470 forward runs). A perfect tripod gait corresponds to 3 legs in the air at all times 
(dashed line). (E) Same as Figure S5A for forward runs under reversed gain. (F) Leg X landing position in a single 
step as a function of the body angular deviations detected in that step (N = 28, n = 22329 steps). Individual leg color 
code as in A. (G), (H) Same as  Figure S5B,C for forward runs under reverse gain. (I) Head-body coordination mea-
sured as the cross-covariance between head angle and body angular velocity during forward runs in natural and 
reversed conditions. Gray: same as in (Figure 3C).

0

90

270

180
In

te
r-

le
g 

ph
as

e

same tripod legs
opposite tripod legs

Le
g 

Y
 L

an
di

ng
 P

os
iti

on
 (B

L)

0.3

0.7

0.6

0.5

0.4

Le
g 

S
w

in
g 

Ti
m

e 
(m

s)

0

20

40

60

80

100

0 10-10

Le
g 

S
ta

nc
e 

Ti
m

e 
(m

s)

0

20

40

60

80

100

C E F

1 cm

Aligned forward
segments

10-10 0

Path Dev. 
(º/mm)

0

1

2

3

N
.º 

Le
gs

 in
 a

ir

av.: ~2.7

10-10 0
Path. Dev. (º/mm)

A

Le
g 

X
 L

an
di

ng
 P

os
iti

on
 (B

L)

0.1

0.2

0

-0.1

-0.2
0 10-10

B

D

-400

-200

0

200

400

0 10

A
ng

ul
ar

 v
el

oc
ity

 (º
/s

)

Time (s)
20

1º dots 10º dots

CW
CCW
Static

H

Le
g 

X
 L

an
di

ng
 P

os
iti

on
 (B

L)

0.1

0.2

0

-0.1

-0.2
0 10-10

Le
g 

X
 L

an
di

ng
 P

os
iti

on
 (B

L)

0.1

0.2

0

-0.1

-0.2
0 10-10

Le
g 

X
 L

an
di

ng
 P

os
iti

on
 (B

L)

0.1

0.2

0

-0.1

-0.2
0 10-10

Static 10º CW 10º CCW 10º

IG

0

0.4

0.8

-0.4

0 0.5-0.5

 shuffled data

Reverse N = 33
Natural N = 33

C
ov

ar
ia

nc
e 

B
od

y,
 h

ea
d

Time lag (s) 

Body Ang. Dev. (º) Body Ang. Dev. (º) Body Ang. Dev. (º)

Body Ang. Dev. (º)

Body Ang. Dev. (º)
0 10-10

Body Ang. Dev. (º)
0 10-10

Body Ang. Dev. (º)



Figure S7. Evidence for spatial integration of visual motion signals on gaze fixation, related 
to Figure 6. (A) Orientation preference distribution under NG for different visual environments. (B) Straightness 
of forward runs as a function of dot density, MWWTest, *p<0.05, **p<0.01, ***p<0.005. (C) Probability of the orien-
tation of a walking fly with respect to a black 45º bar. Bars are presented as a windmill visual environment under 
NG. Blue: control flies; orange: T4/T5 silenced flies. T4T5 silenced preference is shifted to one edge. (D) 
Head-body coordination measured as the cross-covariance between head angle and body angular velocity, during 
body saccades (left) or forward runs (right) in control (blue) and T4/T5 silenced flies (orange). (E) Head after-ef-
fects (see Methods) in control flies (right) and T4/T5 silenced flies (left) under NG and RG conditions. Events were 
separated for rightward (dark) and leftward (light) rotations before the fly stopped walking (dotted line).
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