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This supplementary appendix describes the analysis method used to address the primary 
aim of the Sense2Stop micro-randomized trial. The method is based on a generalization of 
Robins’ multiplicative structural nested log-linear model [6] for use with data arising from 
a micro-randomized trial. It is an extension of the approaches described in [1, 2, 4] with 
the use of a log-link function to accommodate the primary outcome in this study, which is 
a vector of trichotomous outcomes.

1 Notation and Study Set-up

• Decision Point: Each minute within a user’s 12-hour day is a decision point. Over the

course of 10 days t = 1, . . . , T where T = 720× 10 = 7200.

• Primary Outcome: Yt = 1 if at minute t, the user is within a probably stressed episode;

Yt = 2 if at minute t, the user is within a physically active episode; Yt = 3 if at minute t,

the user is within a probably not stressed episode. We will assess the causal effect of the

intervention prompt at a decision point, t on the primary outcome in the subsequent

120 minutes, Yt+1, . . . , Yt+120.

• Missing Data Indicator: Mt is set to 1 if at minute t, the primary outcome, Yt is

observed and Mt = 0 if Yt is missing.

• Availability: It = 1 if user is available at time t and is 0 otherwise. At each of the 720

decision points per day, a user is considered available if they: (i) have not received a

random EMA in the last 10 minutes; (ii) have not received a smoking EMA in the last

10 minutes; (iii) have not received an EMI in the last hour; (iv) are at the peak1 of

either a probably stressed or probably not stressed episode; (v) satisfy other conditions:

1The peak of an episode is determined by the MACD method (See [7] for details.)
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data quality in the last 5 minutes is good2, they are not driving, phone battery level

is greater than 10%, not currently physically active3, e.g., walking or moving. An

available decision point is a decision point when It = 1. If Mt = 0 then It = 0.

• Intervention prompt randomization: At = 1 if randomized to receive an intervention

and is 0 otherwise. Delivery of intervention vs. no intervention is randomized only if

the user is available, It = 1.

• History (covariate data): Ht is all of the data we have observed on the user, up to and

including time t, including Mt, It and current stress classification, Yt, but excluding

randomizations, At.

• Covariates: The analysis will include three sets of covariates - Xt, Lt and Zt - all of

which are features (summaries) of the history Ht; Xt ⊂ Zt ⊂ Lt.

• Moderators: The analysis will include one moderator. For decision point t, Xt = 1 if

Yt = 1 and Xt = 0 if Yt = 3. Note that for a decision point to be available, the current

detection is either probably stressed (Yt = 1) or probably not stressed (Yt = 3).

• Lt is a vector of control covariates to reduce noise. To test the primary hypothesis,

Lt will include two covariates: episode-ind, an indicator of stress episode type at the

available decision point (probably stressed vs. probably not stressed) and intervention-

ind, an indicator for the randomization (intervention vs. no intervention). In Section

6, we provide the plan for choosing additional covariates in Lt.

• Zt is a vector of covariates for the missing at random assumption to hold. Zt is a subset

of Ht such that Yt+j is independent of Mt+j, conditional on Zt, It = 1, j = 1, . . . , 120.

We include Xt in Zt and we include Zt in Lt. So we always have Xt ⊂ Zt ⊂ Lt ⊂ Ht

by definition. In Section 6, we provide a plan for choosing Zt.

2 The Causal Effects

At every mth minute following an available decision point (i.e., at every mth minute following

minute t at which It = 1 and the user is randomized at minute t), there are two potential

intervention assignments: (1) intervention at time t and no other interventions for the next

m − 1 minutes and (2) no intervention at time t and no other interventions for the next

m−1 minutes. The potential outcomes corresponding to these two assignments are denoted

2Good quality data corresponds to not having more than 33% of a minute’s corresponding data missing

due to sensor detachment or sensor off the body, low phone or sensor battery, momentary wireless data loss

or software crash.
3Physical activity was determined by using activity recognition algorithms that automatically analyze

data from the AutoSense-based accelerometer to classify participants’ current activity.
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0̄ 0̄as Yt+m(Āt−1, 1, m−1) and Yt+m(Āt−1, 0, m−1), respectively. Recall that Yt+m is a trichotomous 
outcome (i.e., with category 1 denoting a minute in a probably stressed episode, category 2 
denoting a minute in a physically active episode and category 3 denoting a minute in a 
probably not stressed episode).

The causal effect we are interested in is, for k = 1, 2 and for m = 1, 2, . . . , 120,

P
{
Yt+m(Āt−1, 1, 0̄m−1) = k | It = 1, Xt

}
P
{
Yt+m(Āt−1, 0, 0̄m−1) = k | It = 1, Xt

} . (1)

For a given k ∈ {1, 2}, display (1) is the relative risk between the probabilities of Yt+m = k

for two potential intervention assignments. The relative risk in (1) is conditional on the

individual being available at decision point t because we are only interested in the causal

effect at available moments. The relative risk is conditional on whether the individual is

currently within a probably stressed or probably not stressed episode (Xt), because we are

interested in how the causal effect differs depending on the individual’s current stress level.

The causal effect in (1) is on the relative risk scale; a value greater than 1 indicates that

delivering an intervention increases the probability that the proximal outcome belongs to

category k in the m-th minute following the decision point.

In the analysis, we will model the causal relative risk in (1) using a log-linear model

P
{
Yt+m(Āt−1, 1, 0̄m−1) = k | It = 1, Xt

}
P
{
Yt+m(Āt−1, 0, 0̄m−1) = k | It = 1, Xt

} = eβk1Xt+βk0(1−Xt). (2)

Here, exp(β11), for which the first subscript corresponds k = 1 and the second subscript to

Xt = 1, captures the causal relative risk between the probabilities of an individual being

in a probably stressed episode at time t + m under the aforementioned two intervention

assignments, conditional on the individual being within a probably stressed episode at de-

cision point t. This model (2), assumes that the causal relative risks, βkj’s (k ∈ {1, 2, 3},
j ∈ {0, 1}), are the same for all 1 ≤ t ≤ T and 1 ≤ m ≤ 120. It is possible that the true

causal relative risk is different at different t and for different m; in such cases the estimated

βkx’s from the primary analysis serves as an average over 1 ≤ t ≤ T and 1 ≤ m ≤ 120. See

Section 5 below.

We further assume a log linear model on the missingness data indicator:

E
{
Mt+m(Āt−1, at, 0̄m−1) | It = 1, Ht

}
= eZ

T
t ξ+atZ

T
t η. (3)

This model is auxiliary in the sense that the parameters ξ and η are not of interest for

our primary analysis, and its purpose is solely to facilitate estimation of the parameters of

interest, βkx.
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3 Randomization Probabilities

In this section we review how the randomization probabilities in the Sense2Stop trial will be

determined4. These randomization probabilities will be used in the estimation of the causal

effects in Section 4.

Each day, the goal is to deliver interventions uniformly over all the available decision

points. One of the difficulties in Sense2Stop is that the total number of available decision

points is not known ahead of time, because availability is affected by many time-varying vari-

ables (see Section 1). To overcome this difficulty and deliver interventions uniformly over all

the available decision points, the algorithm that determines the randomization probabilities

makes use of and generalizes a sequential algorithm [5] from the EMA literature.

We first provide an intuitive account of how the randomization probability is determined.

In the Sense2Stop study, every day comprises 12-hours (or 720 minutes) within which each

minute is a candidate for an available decision point. At each available decision point (i.e.

at minute t where It = 1), the randomization algorithm calculates the difference between:

(i) the number of interventions to be delivered in the entire 720-minute day; and (ii) the

number of interventions that have been delivered so far in the day; and divides this difference

by a forecast of the number of available decision points left in the day. This ratio is the

randomization probability at decision point t.

We provide a more detailed explanation in the following. This is a special case of the

method developed in [3], where instead of splitting the day into k time blocks, we instead

consider each 12-hour day to be one block of time, i.e., k=1. We also provide the values of

the tuning parameters when applying the method in [3] to the Sense2Stop trial. Note that

the randomization probabilities will be calculated separately for available decision points

during a probably stressed episode (Xt = 1) and available decision points during a probably

not stressed episode (Xt = 0). The tuning parameters used as inputs of the randomization

algorithm are the following:

• Nx is the average number of interventions to be delivered during the day for episode

type x (x = 0, 1). x = 1 refers to a probably stressed episode and x = 0 refers to a

probably not stressed episode.

• λ ∈ (0, 1) is a tuning parameter that controls the variability in sampling available

decision points.

• g(x, r) is a forecast of the remaining number of available decision points in the current

day with Xt = x, where r denotes the remaining time (in minutes) in the current day.

4For a more general description on the algorithm used to assign ran-

domization probabilities in the Sense2Stop trial, see [3]. The open source

production code can be found at https://github.com/MD2Korg/mCerebrum-

Configuration/tree/master/1.0/Northwestern/STU00201566/mCerebrum/org.md2k.ema scheduler.
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x = 1 refers to a probably stressed episode and x = 0 refers to a probably not stressed

episode. For a discussion on the limitations of forecasting in this setting, see [3].

Furthermore, let s index the episodes that will involve randomization to intervention vs.

no intervention. That is, s indexes episodes that include decision point t where It = 1. In the

Sense2Stop trial, we plan to only conduct randomization to intervention vs. no intervention

one minute following the peak (i.e., t + 1) of either a probably stressed or probably not

stressed episode given that the individual is available (i.e., It = 1). Ts is the minute count

occurring one minute following the peak of episode s. For example, suppose the peak of the

sth episode occurs during minute 150 of an individual’s 720 minute day, then Ts = 151.

The randomization probability in Sense2Stop for delivering an intervention prompt vs.

no prompt at an available decision point is

pt(Ht) =

NXt −
t−1∑
τ=1

[λτAτ + (1− λτ )pτ (Hτ )]1{Xτ=Xt}

1 + g(Xt, 720− Ts)
, for Xt ∈ {0, 1},

where λτ = λTs−Tτ . Note that when s = 1 the sum in the numerator is defined as 0, e.g.,

in this case, pt(Ht) is equal to NXt/(1 + g(Xt, 720 − T1)). In addition, the randomization

probability is restricted within the interval [0.05, 0.95] for probably stressed episodes and

[0, 1] for probably not stressed episodes.

The values of the tuning parameters are λ = 0.4,

N0 =

{
1.6, if during pre-lapse

1.65, if during post-lapse
, N1 =

{
2.25, if during pre-lapse

3, if during post-lapse
,

and the function g depends on another tuning parameter ηx which takes on values

η0 =

{
1.1, if during pre-lapse

1.2, if during post-lapse
, η1 = 0.5.

4 Estimation

We describe a three-step procedure for estimating parameters in the causal effect of interest,

βkx for k ∈ {1, 2} and x ∈ {0, 1}.

4.1 Step 1: Form the weights

The method uses a weighted regression approach. For x ∈ {0, 1}, we calculate the numerator

probabilities as follows. For x = 0, 1, let

p̂(x) =
P
∑T

t=1 It1(Xt = x)pt(Ht)

P
∑T

t=1 It1(Xt = x)
. (4)
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The weight is

Ŵt =

{
p̂(x)

pt(Ht)

}At { 1− p̂(x)

1− pt(Ht)

}1−At
×

120∏
m=1

1(At+m = 0)

1− pt+m(Ht+m)
.

By design, all users who receive an intervention at an available decision point (t when

It = 1) will not receive another intervention in the next hour. However, this is not true

of users who do not receive an intervention at an available decision point. Intuitively, the

weights Ŵt subsets and reweights data from users so that only data from users who do not

receive an intervention in the following 120 minutes following an available decision point is

used in estimation (which is consistent with the causal estimand in display (1)).

4.2 Step 2: Estimating the Missingness Mechanism

We compute (ξ̂, η̂) that solves the following estimating equation:

P
T∑
t=1

120∑
m=1

ItŴt

{
e−AtZ

T
t ηMt+m − eZ

T
t ξ
}[ Zt
{At − p̂(Xt)}Zt

]
= 0. (5)

4.3 Step 3: Estimating β, the Parameter of Interest

Let eL
T
t αk be a working model for

P{Yt+m(Āt−1, 0, 0̄m−1) = k | Ht, It = 1},

where Lt are the control variables. This model does not need to be correct for the resulting

estimator for β to be consistent; rather, this model is used to reduce estimation variance.

Define the residuals for k = 1, 2, 1 ≤ t ≤ T , 1 ≤ m ≤ 120 as follows:

Rktm(α, β) = e−At{Xtβk1+(1−Xt)βk0}1(Yt+m = k)− eLTt αk . (6)

The estimators for (α1, α2, β10, β11, β20, β21) solve the following equation:

P
T∑
t=1

120∑
m=1

ItŴte
−ZTt ξ̂−AtZTt η̂Mt+m



R1tm(α, β)Lt
R2tm(α, β)Lt

R1tm(α, β){At − p̂(Xt)}Xt

R1tm(α, β){At − p̂(Xt)}(1−Xt)

R2tm(α, β){At − p̂(Xt)}Xt

R2tm(α, β){At − p̂(Xt)}(1−Xt)


= 0, (7)

where P indicates that one should evaluate the formula with each user’s data and then average

the results over all users. The estimators for the parameters in (2) are (β̂10, β̂11, β̂20, β̂21).
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4.4 Variance-Covariance Estimation

The variance-covariance matrix of (β̂10, β̂11, β̂20, β̂21) can be estimated by the lower-right 4×4

submatrix of n−1V −1n Σn(V −1n )T . Σn and Vn are defined as follows.

For ease of notation in this section, let Bt = At − p̂(Xt). Define

UN(ρ) =

[∑T
t=1 It1Xt=0 {pt(Ht)− ρ0}∑T
t=1 It1Xt=1 {pt(Ht)− ρ1}

]
,

UM(η, ξ, ρ) =
∑T

t=1

∑120
m=1 ItWt(ρ)

{
e−AtZ

T
t ηMt+m − eZt

T ξ
}[ Zt

BtZt

]
,

U1(α, β, ξ, η, ρ) =
∑T

t=1

∑120
m=1 ItWt(ρ)e−Zt

T ξ−AtZTt ηMt+mDt(ρ)

[
R1tm(α, β)

R2tm(α, β)

]
.

We consider the following dimensions: dim(ρ) = 2, dim(η) = dim(ξ) = q, dim(α) = 2q,

dim(β) = 4. Let

U(ρ, η, ξ, α, β) =

 UN(ρ)

UM(η, ξ, ρ)

U1(α, β, ξ, η, ρ)


(4q+6)×1

.

Define Σn by

Σn = P
{
U(α̂, β̂, ξ̂, η̂, ρ̂)U(α̂, β̂, ξ̂, η̂, ρ̂)T

}
.

To define Vn, we introduce the following additional notation. Let q be the dimension of

Zt. Let ~Xt = (Xt, 1−Xt)
T . Let β1 = (β10, β11)

T and β2 = (β20, β21)
T . Recall that Dt is

Dt =


Lt 0q×1

0q×1 Lt

Bt
~Xt 02×1

02×1 Bt
~Xt


(2q+4)×2

.

Define Vn by Vn = P(V ), with

V =

V11 0 0 0 0

V21 V22 V23 0 0

V31 V32 V33 V34 V35


(4q+6)×(4q+6)

,
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where

V11 =

[
−
∑T

t=1 It1Xt=0 0

0 −
∑T

t=1 It1Xt=1

]

V21 =
T∑
t=1

120∑
m=1

ItŴt

{
e−AtZ

T
t η̂Mt+m − eZt

T ξ̂
} 2At−1

p̂(Xt)At{1−p̂(Xt)}1−At
Zt{

2At−1
p̂(Xt)At{1−p̂(Xt)}1−At

Bt − 1
}
Zt

 ~XT
t

V22 =
T∑
t=1

120∑
m=1

ItŴt

{
−eZtT ξ̂

}[ Zt
Bt Zt

]
Zt

T

V23 =
T∑
t=1

120∑
m=1

ItŴt

{
e−AtZ

T
t η̂Mt+m

}[ Zt
Bt Zt

]
(−AtZT

t )

V31 =
T∑
t=1

120∑
m=1

ItŴte
−ZtT ξ̂−AtZTt η̂Mt+m

2At − 1

p̂(Xt)At {1− p̂(Xt)}1−At
Dt

[
R1tm(α̂, β̂)

R2tm(α̂, β̂)

]
~XT
t

+
T∑
t=1

120∑
m=1

ItŴte
−ZtT ξ̂−AtZTt η̂Mt+m


0q×2
0q×2

−R1tm(α̂, β̂) ~Xt
~XT
t

−R2tm(α̂, β̂) ~Xt
~XT
t



V32 =
T∑
t=1

120∑
m=1

ItŴte
−ZtT ξ̂−AtZTt η̂Mt+m


R1tm(α̂, β̂)Lt
R2tm(α̂, β̂)Lt

R1tm(α̂, β̂)Bt
~Xt

R2tm(α̂, β̂)Bt
~Xt

 (−ZtT )

V33 =
T∑
t=1

120∑
m=1

ItŴte
−ZtT ξ̂−AtZTt η̂Mt+m


R1tm(α̂, β̂)Lt
R2tm(α̂, β̂)Lt

R1tm(α̂, β̂)Bt
~Xt

R2tm(α̂, β̂)Bt
~Xt

 (−AtZT
t )
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V34 =
∑T

t=1

∑120
m=1 ItŴte

−ZtT ξ̂−AtZTt η̂Mt+m


−eLtT α̂1LtLt

T 0q×q
0q×q −eLtT α̂2LtLt

T

−eLtT α̂1Bt
~XtLt

T 0q×q
0q×q −eLtT α̂2Bt

~XtLt
T



V35 =
∑T

t=1

∑120
m=1 ItŴte

−ZtT ξ̂−AtZTt η̂Mt+m

×


−e−At ~XT

t β̂11(Yt+m = 1)AtLt ~X
T
t 0q×2

0q×2 −e−At ~XT
t β̂21(Yt+m = 2)AtLt ~X

T
t

−e−At ~XT
t β̂11(Yt+m = 1)AtBt

~Xt
~XT
t 0q×2

0q×2 −e−At ~XT
t β̂21(Yt+m = 2)AtBt

~Xt
~XT
t


5 Weighted-Average-Ratio Interpretation of the Esti-

mators

Our estimators β̂kx are consistent for the true βkx in (2). When (2) is an incorrect model

(e.g., when the relative risk varies depending on t or m), the “true” βkx are not well defined.

In such cases, our estimator can be interpreted as a projection onto model (2).

In particular, estimators β̂k0, β̂k1 are consistent estimators of the following quantities:

β′k0 = log

∑T
t

∑120
m=1E

{
1(Yt+m(Āt−1, 1, 0̄m−1) = k) | It = 1, Xt = 0

}
P (It = 1, Xt = 0)∑T

t

∑120
m=1E

{
1(Yt+m(Āt−1, 0, 0̄m−1) = k) | It = 1, Xt = 0

}
P (It = 1, Xt = 0)

, (8)

β′k1 = log

∑T
t

∑120
m=1E

{
1(Yt+m(Āt−1, 1, 0̄m−1) = k) | It = 1, Xt = 1

}
P (It = 1, Xt = 1)∑T

t

∑120
m=1E

{
1(Yt+m(Āt−1, 0, 0̄m−1) = k) | It = 1, Xt = 1

}
P (It = 1, Xt = 1)

. (9)

Each can be interpreted as a ratio of two weighted averages. For example, consider k = 1

(the outcome being classified as probably stressed), and

β′10 = log

∑T
t E

{∑120
m=1 1(Yt+m(Āt−1, 1, 0̄m−1) = 1) | It = 1, Xt = 0

}
P (It = 1, Xt = 0)∑T

t E
{∑120

m=1 1(Yt+m(Āt−1, 0, 0̄m−1) = 1) | It = 1, Xt = 0
}
P (It = 1, Xt = 0)

.

Note that
∑120

m=1 1(Yt+m(Āt−1, 1, 0̄) = 1) is the number of minutes classified as probably

stressed after receiving an intervention at time t. So

E

{
120∑
m=1

1(Yt+m(Āt−1, 1, 0̄) = 1) | It = 1, Xt = 0

}

is the conditional mean of the number of minutes classified as probably stressed after receiving

an intervention at time t among individuals who are available and classified as probably not

stressed at time t. Therefore, eβ
′
10 is the ratio of two weighted averages: The numerator
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is the weighted average, across time, of the conditional mean of the number of minutes

classified as probably stressed after receiving an intervention among individuals who are

currently available and classified as probably not stressed; the denominator is the weighted

average, across time, of the conditional mean of the number of minutes classified as probably

stressed after not receiving an intervention among individuals who are currently available

and classified as probably not stressed. The weight, P (It = 1, Xt = 0), at each decision point

is the probability of being available and classified as probably not stressed.

6 Choosing Zt and Lt

6.1 Choosing Zt

In order to justify the MAR assumption for the missing data in our primary outcome, we

will investigate which covariates prior to an available decision point (i.e., at t when It = 1)

are predictive of missing minutes within the primary outcome. Note that missing minutes

within the proximal outcome are either due to bad quality stress episode data or completely

missing episode data.

We will consider the following for candidate covariates that may predict missing episodes:

• x1: ID (Integer with values in {1, . . . , 48})
• x2: Day in MRT (Integer with values in {1, . . . , 10})
• x3: Indicator that user is within a probably stressed episode at time of available decision

point (Binary with values in {1, 0})
• x4: Length (in minutes) of the episode from start to peak. Note that the episode

includes the available decision point which is one minute following the peak.

• x5: Indicator that the previous episode is missing (Binary with values in {1, 0}). Pre-

vious refers to the episode prior to the episode that contains the available decision

point.

• x6: Indicator that the previous episode is classified as probably stressed (Binary with

values in {1, 0}).
• x7: Indicator that the previous episode is classified as probably not stressed (Binary

with values in {1, 0}).
• x8: Length (in minutes) of the previous episode from its start to end.

• x9: Previous day’s proportion of minutes within 12 hour day that the user is physical

active.

• x10: Previous day’s proportion of minutes within 12 hour day with bad quality REP

Data.

• x11: Previous day’s proportion of minutes within 12 hour day with bad quality ECG

Data.
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• x12: Number of interventions sent on the previous day

• x13: BMI on day 1 of study (continuous variable from 18 to 46)

• x14: Gender (0 = female, 1 = male)

• x15: Age (integer from 20 to 63)

• x16: Age started smoking (Integer from 20 to 63)

• x17: Total Fagerstrom score (Integer from 0 to 9)

• x18: Weekday (1 = weekday, 0 = weekend)

• x19: Hour of day (integer with values in {1, . . . , 23})
• x20: Indicator for morning (1 = morning, 0 = other)

• x21: Indicator for afternoon (1 = afternoon, 0 = other)

• x22: Indicator for night (1 = night, 0 = other)

We will use a logistic regression model for the binary outcome: missing or not missing

episode, and we will train and test the predictive performance of this model with cross

validation (i.e., we train on one portion of data and test on another that the model has not

yet seen and we do this multiple times). For predictive performance, we will use the weighted

F1 score5. We will consider the 5 most influential6 covariates from the best performing model

(i.e., the model with the highest weighted F1-score ≥ 0.6. If we achieve such a model, these

covariates will be added to Zt for the primary analysis.

6.2 Choosing Lt

We will investigate which covariates, if introduced into the analysis, will likely reduce vari-

ability in the estimation of β. Natural control covariates under consideration are pre-decision

point measures of the outcome. For example,

• The minutes in the prior 120 minutes from the available decision point that are within

a probably stressed episode; and

• The minutes in the prior 120 minutes from the available decision point that are phys-

ically active.

In addition, we will consider the following identifying covariates:

• ID (Integer with values in 1, . . . , 48)

• Day in MRT (Integer with values in 1, . . . , 10)

5The weighted F1 score is defined as the weighted average of {2× (precision× recall)}/(precision + recall)

for both of the classes in the binary outcome. Precision is the fraction of relevant instances among the

retrieved instances, while recall is the fraction of the total amount of relevant instances that were actually

retrieved.
6We will use the magnitude and sign of the coefficients to detect the influence of the covariates given that

the data was standardised prior to the model fit.
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• Indicator that user is within a probably stressed episode at time of available decision

point (Binary with values in {1, 0})
• Minute identifier for the corresponding minute following an available decision point

(Integer with values in {1, . . . , 120})
• Weekday (1 = weekday, 0 = weekend)

• Hour of day (integer with values in {1, . . . , 23})
• Indicator for Morning (1 = morning, 0 = other)

• Indicator for Afternoon (1 = afternoon, 0 = other)

• Indicator for Night (1 = night, 0 = other)

All numerical covariates will be converted to their standard scores. Each row within this

data set corresponds to a minute’s outcome within the 120 minutes following an available

decision point (i.e., there are up to 120 minutes, or 120 rows in this data set, corresponding

to an available decision point).

To learn which of these variables explain the minute level outcomes we will use a multi-

class logistic regression model for the multi-class outcome: physically active minute, probably

stressed minute and probably not stressed minute.

We will train and test the predictive performance of a multi-class logistic regression model

with cross validation (i.e., we train on one portion of data and test on another that the model

has not yet seen and we do this multiple times). For predictive performance, we will use

the weighted F1 score7. We will consider the 5 most influential8 covariates from the best

performing model (i.e., the model with the highest weighted F1-score ≥ 0.6. If we achieve

such a model, these covariates will be added to Lt for the primary analysis.
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