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Imaging Data Acquisition and Pre-processing
Resting-state fMRI collected via a Siemens 3.0 Tesla Magnetom Trio TIM whole-body MR scanner(Siemens, Malvern, PA)
included 146 brain volumes for each participant. The voxel size for the resting state fMRI acquisition was 3x3x3 mm3 with full
brain coverage. The other related parameters were: TR/TE=2000/30ms, flip=90o, FOV=200x200 mm, slice thickness/gap =
4mm/mm. We applied several standard preprocessing steps for resting-state fMRI data. It included despiking, slice timing
correction, motion correction, MNI(2mm) standard space registration, percent signal change normalization, linear trend removal,
movement removal, bandpass filtering from 0.009 to 0.08. and spatial smoothing with a 6mm FWHM Gaussian Kernel. Finally,
Power Atlas System was applied to aggregate the data into 264 ROIs. The average measurement for all voxels in each ROI was
used as a representative measure for that ROI.

DTI data was acquired on a Siemens 3-T TIM-Trio scanner at Emory University Hospital with the following acquisition
parameters: 39x2.5mm thick axial slices, matrix=128x128, FOV=220x220 mm with voxel size = 1.72x1.72x2.5mm3, with 60
directions, and a series of 4 b0 images. Standard pre-processing procedures, such as eddy current correction and bias-field
correction were applied to the diffusion weighted data. Subsequently, we use the FSL functions bedpostx and probtracx2 to
estimate the distribution of fiber tracts at each voxel and the count of white matter fibers tracts connecting all pairs of brain
regions, respectively. In order to obtain the SC scores, we followed the procedure in [11]. In particular, we computed the
average of the number of tracts reaching from the first to the second region, and from the second to the first region, divided by
the total number of tracts sent out. Fiber tracks passing through gray matter or cerebrospinal fluid were discarded. These SC
scores/strengths can be interpreted as the probability of structural connectivity between ROIs, and are made symmetric across
edges. The average SC strength across all participants is illustrated as a Figure in Supplementary Materials.

Calculating SC strengths using DTI data
The pre-processed DTI data was used to derive structural connectivity strengths between all pairs of brain regions used for our
functional connectivity analysis. In particular, the FSL functions bedpostx and probtracx2 were used on the pre-processed DTI
data to estimate the distribution of fiber tensors at each voxel and the count of white matter fibers tracts connecting all pairs of
brain regions, respectively. In order to obtain the SC scores, we compute p jk = average{N jk/N j∗,Nk j/Nk∗} ∈ (0,1), where N jk
equals the number of permissible tracts initiated at region j that pass through region k and N j∗ refers to the total number of
permissible tracts initiated at region j. Fiber tracks passing through gray matter or cerebrospinal fluid are discarded. These SC
scores can be interpreted as the probability of structural connectivity between regions j and k, which we often refer to as the
strength of SC, and were used to inform the estimation of dynamic functional connectivity under the proposed approach.

Description of Clinical Measures
The presence and severity of PTSD was determined via the PTSD symptom scale (PSS;[8]), is an 18-item self-reported
questionnaire that provides a measure of re-experiencing, avoidance, and arousal symptoms that have occurred in the 2 weeks
before test administration. Participants were classified as either typical controls or participants with PTSD (PTSD+) based on
DSM-IV criteria, consistent with earlier studies ([9],[14]). Participants were classified as PTSD+ if they endorsed the presence
of one or more symptom in the re-experiencing cluster (items 1–4); three or more symptoms in the avoidance and numbing
symptom cluster (items 5–11); two or more symptoms in the hyperarousal cluster (items 12–17); and symptom duration of 3
months or longer (as measured by question 18), in keeping with DSM-IV criterion for PTSD.

Resilience denotes the ability of an organism to adapt following adversity, such that resilient functioning refers to better
mental well-being compared to others with a similar degree of adverse experiences (childhood trauma in our case). We followed
the conceptual approach of [13], in which the level of resilient functioning is inferred from the residuals of the relation between
childhood trauma severity and psychological functioning. Figure 1 below shows those individuals as functioning better than
expected given their childhood trauma experiences using green lines that imply resilient functioning, or individuals who are
less resilient (implying vulnerable functioning) via red lines. Because of our focus on trauma and stress-related disorders,



we calculated a resilience score as the variance in PTSD symptoms beyond what would be expected based on childhood
trauma exposure, a primary environmental risk factor for PTSD. We estimated the linear association between childhood trauma
exposure (CTQ) and PTSD symptom severity (PSS), and extracted standardized residuals from each participant. Positive
residual scores indicate higher-than-expected PTSD symptoms, representing psychiatric risk. Negative residual scores indicate
lower-than-expected PTSD symptoms, representing psychiatric resilience. We show a graphical representation below, in an
expanded GTP sample (n=100 AA women), for further context.

The Beck Depression Inventory (BDI) is a psychometrically validated and widely used self-report inventory of current
depressive symptoms [2]. A total of 21 items assess the presence and severity of depressive symptoms over the past 2 weeks
rated on a scale of 0 (not at all/never) to 3 (extremely/every day). A total BDI score was calculated by summing all individual
items.

Figure 1. Resilience scores calculated as residuals from a linear regression model that uses PSS scores as the outcome and childhood
trauma as the covariate, using the data from GTP study.

Supplementary Method: Multimodal Dynamic Functional Connectivity

Statistical Model
Denote yt as the V ×1 vector of spatially distributed fMRI measurements over V voxels or regions of interest (ROI), at the
t-th time point (t = 1, . . . ,T ). Denote the SC probability corresponding to the edge ( j, l) as p jl where j 6= l, j, l = 1, . . . ,V,
and denote the corresponding SC probability matrix as P . These SC probabilities are obtained from DTI data, and are made
symmetric (i.e. p jl = pl j) as in [11]. We specify the following dynamic GGM

yt ∼ N(µt ,Ω
−1
P,Gt

), t = 1, . . . ,T, (1)

where N(µ,Ω−1) refers to a multivariate Gaussian distribution with mean µ and covariance matrix Ω−1, ΩP,Gt denotes the
inverse covariance or precision matrix at time point t that depends on the time-varying network Gt characterized by the vertex
set V and edge set Et , as well as brain SC information P . The vertex set V = {1, . . . ,V} consists of a set of pre-defined

2/20



voxels/ROIs or nodes, the edge set Et contains the set of all edges present in Gt , and {ΩP,G1 , . . .ΩP,GT } encodes the strength
of the time varying FC. The goal of change point modeling is to develop an algorithm that is able to learn the best fitting
partition of the time course defined by the change points 0 = a1 < a2 < .. . < aK < aK+1 = T so that Gt remains constant for
consecutive time points except for discrete jumps at the change points. These change points are unknown for our problems of
interest, and estimated in an unsupervised and data-adaptive manner. For conciseness, we denote ΩP,k as the constant precision
matrix for the k-th state phase corresponding to the interval (ak−1,ak]. throughout the article. A diagrammatic illustration for
our approach is provided in Figure 1 in the manuscript.

Structurally Informed Precision Matrix Estimation
Suppose the time course is partitioned into pre-specified non-overlapping intervals or state phases. The precision matrix
estimate for the kth state phase is obtained as a MAP estimator that is guided by given SC information via the edge-specific
shrinkage parameters in a Bayesian Gaussian graphical model as in [11] . This approach models the edge-specific shrinkage
parameters as random variables based on the given SC information and a baseline parameter that is independent of the brain
anatomy and controls variations in FC for a given SC level. The prior formulation encourages functional connections for edges
corresponding to non-zero structural connectivity as is often observed in literature [11], but allows one to learn the dynamic FC
in a data adaptive manner. Incorporating SC knowledge to compute FC is designed to improve the power to detect edges that
may otherwise not be identified due to noise in fMRI data, and provides greater accuracy in detecting temporal fluctuations in
the network. The final output involves a distinct sparse precision matrix for each state phase, with zeros implying the absence
of a connection.

Suppose the time course is partitioned into pre-specified non-overlapping intervals X1, . . . ,XK+1, where Xk = (ak−1,ak]
contains nk time scans such that ∑

k+1
k=1 nk = T . Conditional on these intervals, the sample mean and the covariance matrix for the

partition Xk are given by µ̂k = n−1
k ∑t∈Xk

yt and Sk = n−1
k ∑t∈Xk

(yt− µ̂k)(yt− µ̂k)
T respectively. The precision matrix estimate

for the kth state phase is obtained as a MAP estimator under a Bayesian version of the GGM in (1) involving appropriate prior
distributions as follows

yt ∼ N(µ̂k,Ω
−1
P,k) , π(ΩP,k | λk) =C−1

λ k,ν

V

∏
l=1

E
(
ω

P
k,ll ;

ν

2
)
∏
j<l

DE
(
ω

P
k, jl ;νλk, jl

)
1(ΩP,k ∈M+

V ),

π(λ k | θ k,ηk,P) = C
λ k,ν ∏

j<l
LN(θk, jl−ηk p jl ,σ

2
λ
), t ∈Xk, k = 1, . . . ,K +1, (2)

where π(·) represents the prior distribution, Cλ k,ν
is the intractable normalizing constant for π(ΩP,k) [11], λ k = {λk, jl , j <

l, j, l = 1, . . . ,V} denotes vector of edge-specific shrinkage parameters in π(ΩP,k), ν is the overall penalty parameter (higher
values imply greater network sparsity and vice-versa), E(·),DE(·),LN(·), denotes the exponential distribution, double exponen-
tial distribution, and log-normal distribution respectively, 1(·) is the indicator function, and M+

V denotes the collection of all
V ×V symmetric and positive definite matrices. We assign a log-normal type prior on λ k, which restricts the shrinkage parame-
ters to non-negative values and enables us to model the edge-specific shrinkage parameters in terms of the SC strengths. This
prior π(λ k | θ k,ηk,P) includes unknown hyper-parameters θ k = {θk, jl , j < l, j, l = 1, . . . ,V} which represent edge-specific
baseline effects that are independent of the given SC knowledge, and ηk that are positive random variables controlling the
average effect of SC on FC across the different state-phases. These hyperparameters are unknown and are modeled using priors
θk, jl ∼ N(θ0,σ

2
θ
), j < l, j, l = 1, . . . ,V and ηk ∼Ga(aη ,bη) respectively under a fully Bayesian specification (k = 1, . . . ,K+1).

The anatomically informed prior on the shrinkage parameters in (2) specifies a probabilistic relationship between the edge
specific shrinkage parameters and the given SC knowledge via η1, . . . ,ηK+1. In particular, increasing positive values of η

implies an increasing dependence of FC on the given SC, while small values of η implies a negligible relationship. Moreover,
the shrinkage parameters are stochastically monotonically decreasing with respect to the SC strength, under the restriction
η > 0. This implies that as the SC strength for the edge ( j, l) is increased, the corresponding shrinkage parameter λk, jl will
take smaller values in probability, resulting in ωk, jl values which are away from zero. In other words, the presence (absence) of
FC is encouraged for large (small) values of the corresponding SC strength, via the shrinkage parameters λ 1, . . . ,λ K+1. The
above model specifications are designed to respect the relationship between FC and SC commonly observed in literature [11].
Additionally, the baseline effects (θ 1, . . . ,θ K+1) corresponds to variations in neuronal activity that are independent of the brain
anatomy. Overall, increasing (decreasing) absolute values of θ discourages (encourages) the presence of the corresponding
edge, independent of the anatomical information. The proposed model enables (a) more flexibility in the FC-SC relationship by
allowing the possibility of strong FC corresponding to poor SC strengths, and vice-versa; and (b) heterogeneity in FC across
edges which possesses similar SC strength. We note that (2) adapts the approach in [11] to the case of dynamic FC involving
state phase specific networks.
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The posterior distribution for parameters corresponding to the state phase k is given by

P(ΩP,k,λ k,θ k,ηk | yt , t ∈Xk) = Ga(ηk;aη ,bη) ∏
t∈Xk

N(yt ; µ̂k;ΩP,k)π(ΩP,k | λk)π(λ k | θ k,ηk,P)π(θ k)π(ηk), (3)

where π(A | B) denotes the conditional distribution of A given B. One can optimize the log-posterior distribution (obtained
by taking the log-transform of the above posterior) to calculate the MAP estimate for the parameters Θk = (Ωk,λ k,λ k,ηk) as
Θ̂k = arg maxΘk

˙l(Θk), where

˙l(Θk) = −nk

2
log(det(ΩP,k))+

1
2

tr(SkΩP,k)+ν ∑
j<l

λk, jl |ωP
k, jl |+∑

j<l

(log(λk, jl)− (θk, jl−ηk p jl))
2

2σ2
λ

− (aη −1) log(ηk)+bη ηk +∑
j<l

(θk, jl−θ0)
2

2σ2
θ

−V log(
ν

2
)+

ν

2

V

∑
l=1

ω
P
k,ll . (4)

All the parameters in the objective function are updated iteratively until convergence for a fixed value of the sparsity parameter
ν . The precision matrix is updated given other parameters using the existing graphical lasso algorithm ([10]), whereas θ k,ηk,
are updated via a closed form expressions and λ k are updated via a Newton-Raphson step since a closed form solution does not
exist. The objective function (4) is optimized over a range of penalty parameter values ν and we choose the value of the penalty
parameter than optimizes some goodness of fit score such as the Bayesian Information Criteria (BIC) ([16]) that guard against
overfitting. For a given state phase, the update steps are described in Appendix A.

Structurally Informed Change point estimation
The above dynamic precision matrix estimation was conditional on pre-specified change points that are unknown in practice. We
now describe a data-adaptive algorithm for change point estimation, which is motivated by the dynamic connectivity regression
approach in [4] . The approach involves a greedy partitioning scheme which begins by obtaining estimates for the precision
matrix based on the entire time series using the structurally informed precision matrix estimation described above, subject to no
change points. The model is fit over varying sparsity levels, and the optimal network corresponding to the minimum Bayesian
Information Criteria (BIC) score is chosen. See Supplementary Materials for more details.

Upon completion of this step, the time course is split into two partitions {1 : ∆} and {(∆+1) : T}, with the understanding
that any split of the time course that results in a BIC reduction is acceptable. For each partition, the structurally informed
precision matrix estimation is performed independently to obtain the optimal network. This procedure is repeated along the
entire time path, with the data partitioned into two subsets corresponding to split points ranging from ∆+1 to T −∆+1. In
order to ensure reliable estimation of the network in each state phase we fix the minimum number of time scans (usually 5-10)
between consecutive change points. The partition with the smallest combined BIC score is chosen and, if this score is less
than the BIC score for the entire data set, the corresponding split point is identified as the first change point. The procedure
continues by recursively applying the same method to each individual partition element until they can no longer be split any
further, i.e. no additional reduction in BIC is seen. As the final output, the algorithm will have split the entire time course into
non-overlapping partitions. The number and location of the change points are thus determined in a data adaptive manner and
guided by SC knowledge, due to the structurally informed precision matrix estimation component. Although motivated by [5],
the proposed approach is distinct in terms of incorporating the brain SC information to compute dynamic FC, as well as being
scalable to high-dimensional networks via a novel sub-network sampling scheme described below.

A sub-network sampling scheme
In our experience, the change point estimation approach used described above may not yield accurate change point detection
results under rapid transitions of the network, and unfortunately it is not be scalable to a large number of nodes, as per our
experience with extensive simulations. To overcome such difficulties, we propose a novel heuristic sub-network sampling
strategy, which is based on the key observation that alterations in the network represented by change points may be detected
using only a subset of the nodes in the network, as long as the edges connected to at least one of these subset of nodes undergoes
temporal connectivity changes. One potential pitfall of this strategy is that the changes corresponding to the subset of nodes
may not be strong enough compared to the overall changes in the network at a given time point, in which case it may not be
detected. However, by repeatedly sampling random subset of nodes and computing the connectivity change points under each
of these subsets, the hope is that the true underlying change points will be detected by a large proportion of these sub-networks.
By drawing an adequate number of sub-networks and computing change points for each sub-network, one can ensure that all
important connectivity changes between subsets of nodes in the network are accounted for.

Our strategy is to apply the proposed multimodal dynamic FC approach to a randomly sampled subset of nodes V ∗ ⊂ V ,
which yields a set of change points associated with the corresponding dynamic sub-network. We then repeat this process over
multiple randomly sampled sub-networks (usually having 10 nodes each), thereby generating a collection of sets of change
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points. Then, the frequency of each time point being identified as a change point over the collection of sampled sub-networks
is computed. Finally, a systematic thresholding approach (described in Supplementary Materials) is proposed to detect the
important change points as those which show up most frequently across the sub-networks. A useful feature of this thresholding
mechanism is that one can obtain both discrete jumps in FC that is the hallmark of existing change point models, as well as
estimate transition periods comprising a collection of successive time scans, which is an added novelty of the approach. We
note that by increasing the number of sub-network samples, the accuracy for change point detection is expected to increase
although it comes at a cost of increased computation time. However, the approach can be parallelized over sub-networks,
thereby resulting in computational speed-ups, when needed.

Supplementary Algorithm: Computation for Structured Precision Matrix Estimation
We use the following update steps corresponding to the kth state phase (k = 1, . . . ,K+1) iteratively till we achieve convergence
in the objective function. We denote α = log(λ ) in what follows.

1. Update the precision matrices: We update the precision matrix for the kth stage phase in the (m+1)-th step as

Ω̂
(m+1)
P,k = arg min

Ω

{− logdet(Ω)+ tr(SkΩ)+
ν

2 ∑
j<l

expα(m+1)

k, jl |ω jl |+
ν

2 ∑
l

ωll}, (5)

where Sk is the empirical covariance matrix for the k-th bin, that is defined at the start of Section 2.1. The above can be
solved using a approximation solver, QUIC ([12]) , available in R.

2. Update the baseline effects via the closed form expression

θ̂
(m+1)
k, jl =

σ2
θ

(
α
(m)
k, jl +η

(m)
k p jl

)
+σ2

λ
θ0

σ2
θ
+σ2

λ

.

3. Update ηk via the closed form expression below where γ =
∑l<m p2

lm
σ2

λ

, ρ =− aη−1
σ2

λ

η̂
(m+1)
k =

−β
(m)
k +

√
(β

(m)
k )2−4γρ

2γ
, where β

(m)
k = bη +

∑l<m α
(m)
k, jl p jl

σ2
λ

− 1
σ2

λ

∑
j<l

θ
(m)
k, jl p jl .

4. Update αk when we got YYY ,,,ΩΩΩ(m)
P,k,,,µµµ

(m+1)
k and η

(m+1)
k with the following formula:

α̂αα
(m+1)
k = arg min

ααα

ν ∑
j<l

eαk, jl |ω(m)
k, jl |+∑

j<l

(αk, jl− (θ
(m+1)
k, jl −η

(m+1)
k p jl))

2

2σλ

As there is no closed form solution, we implement a Newton Raphson solver to find the optimal value. The above formula
could to re-expressed as:

arg min
ααα

exp(αααkkk)
′ |ω̃k

(m+1)|− 1
2σ2

λ

(αααkkk− (θ̃k
(m+1)−η

(m+1)
k P̃)

′
(αααkkk− (θ̃k

(m+1)−η
(m+1)
k P̃))

where αααkkk = {αk,12,αk,13 . . .αk,(p−1)p}, P̃ denotes the upper diagonal elements of the structural connectivity matrix P. ω̃k

and θ̃k denotes the upper diagonal elements of Ωk and θθθ kkk respectively. exp(αααkkk) is the element wise exponential for each
element of αααkkk. We could only focus upon the upper diagonal elements of αααkkk because ΩΩΩkkk is symmetric and we do not
shrink diagonal elements.
Based on step size ∆, the Newton Raphson updating equation is:

ααα
(m+1)
k = ααα

(m)
kkk −∆g(ααα(m)

k )H(ααα
(m)
k )−1
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where g(ααα(m)
K ) = νσ2

λ
D
|ω(m)

k |
eααα

(m)
k +[ααα

(m)
kkk − (θθθ

(m+1)
k −η

(m+1)P̃
k )],

and H(ααα
(m)
k ) = νσ2

λ
D
|ω(m)

k |
D
|eeeααα

(m)
k |

+ III. D
|ω(m)

k |
is a V (V−1)

2 × V (V−1)
2 diagonal matrix with elements as the upper triangular

elements of ΩΩΩ
(m)
k , and similarly for D

|eeeααα
(m)
k |

. Based on simple calculation, H is diagonal matrix and could be easily

inverted. The step size (∆) is searched using a back tracking line search for each update of αααk as in [3].

Supplementary Algorithm: Thresholding Strategy to Derive Change Points and Transi-
tion Periods
Suppose we sample J sub-networks containing v∗ nodes each, where v∗ < V ROIs are selected randomly from V for each
sub-network (the number of nodes may also be made different across sub-networks in principle). We then run the proposed
mDFC method for each sub-network to obtain a set of change points for the j-th sub-network as τ∗j ( j = 1, . . . ,J), with the
understanding that the number and location of change points may vary across sub-networks. The set of estimated change points
across all the sub-networks is aggregated to obtain the set of all identified change points τ∗ = ∪J

j=1τ∗j . Moreover, we also
calculate the corresponding frequencies with which each time point was identified as a change point across the sub-networks.
This is denoted by w = (w1, . . . ,wT ), with wt = 0 for those time points that are not identified as change points under any
sub-networks. The frequencies w can be interpreted as an approximate probability for each time point to be a change point, and
any time point t for which wt > 0 is treated as a potential change point. Given τ∗ and w, we then apply a grouping approach
to find out representative change points within this set, by identifying clusters of change points. In particular, two estimated
change points are grouped into one cluster if they are consecutive time points or spaced one time point apart. This grouping
method results in L < T distinct groups or clusters of change points (see Figure 2 for a visualization pertaining to our simulation
study).

Each cluster of change points is representative of a transition period for the network, that is more consistent with the
slower timescale of the haemodynamic activity. In order to eliminate false clusters of change points, we adopt the following
thresholding mechanism. First, the overall frequency of a particular cluster of change points is taken as the sum of the
frequencies for all the change points within that cluster. Subsequently, all clusters having a combined frequency below a certain
threshold are identified as false positives and eliminated. Based on extensive empirical experiments, we propose a threshold of
0.3J for the combined frequency for clusters, which proved to be a good choice in terms of identifying true change points and
eliminating false positives. Alternatively, the number of clusters may also be determined in a data adaptive manner using some
goodness of fit measure such as BIC. Once we get the final groups, one can designate a representative single change point for
each cluster as the median time point for that cluster. Thus, one is able to obtain both discrete jumps in FC that is the hallmark
of existing change point models, as well as estimate transition periods, which is an added novelty of the approach.

Description of Network Metrics
A description of the network metrics used for the analysis is provided below.

Global Efficiency A measure of information transmission across the entire brain calculated by averaging the inverse shortest
path lengths across all brain nodes. Higher values of global efficiency indicate more efficient information transmission.

Local Efficiency A node-specific version of global efficiency. We examined the average local efficiency over all nodes in the
brain.

Mean Clustering Coefficient (MCC) A measure of the interconnectedness of the brain network calculated by counting how
many of a brain node’s neighbors are also neighbors of each other, averaged over all nodes.

Small-Worldedness A measure of whether or not the brain exhibits small world properties calculated by examining the ratio
of normalized mean clustering coefficient to normalized characteristic path length, SW = MCC/MCC0

CPL/CPL0
. Here MCC0,CPL0,

refer to the metrics corresponding to a baseline distribution for each cohort and visit by generating 1000 surrogate random
networks with the same connection density as the estimated graph for the cohort/visit and then calculating the average
CPL and MCC for these surrogate graphs. The ratio of each metric to the average over the surrogate graphs is then taken
as the normalized metric. A ratio SW > 1 indicates that the estimated brain network exhibits more small-worldedness
than a random network.
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Validation Studies

Validation Studies Using Simulated Data
We conducted extensive simulation studies to evaluate the performance of the proposed approach, under different network
structures. In the first set of simulations (Scenario I), we generated data from an underlying change point model with three
change points (i.e. four state phases). A network and the corresponding precision matrix was constructed at each time point
(described below), and these were constant within each state phase. The measurements were generated under a Gaussian
distribution characterized by the time-varying precision matrix. We generated data for V = 20, 50 regions and with T = 300,
500 time points. In a second set of simulations (Scenario II), we allow the network to change more slowly over time, that is
more consistent with the timescale of the haemodynamic activity. In particular, instead of three change points as in the first
scenario, we now have three transition periods, each comprising seven consecutive time points. A certain percentage of the
edges are flipped from the network at the previous time point to obtain the modified network for the next time point within
each transition period. The network is assumed to be constant between two consecutive transition periods. This scenario is
more challenging since the network changes multiple times over the course of the experiment. The goal of this experiment is to
investigate if the proposed approach can detect the transition periods and whether it can approximate the true dynamic network
sufficiently well when the underlying assumptions of the proposed model may not hold. We generate data using three different
types of networks (details provided in Supplementary Materials). In addition to Scenarios I and II, we also reported results
under Erdos-Renyi networks for 100 nodes with three true change points, to test the performance in higher dimensions, and
investigated the scenario involving a large number of change points (10) with 50 nodes. These challenging settings help us
evaluate the performance of the methods for high dimensions and large number of fluctuations in the dynamic network. For
each simulation setting, 25 replicates were used. Using the simulated data, we investigated the ability of the proposed approach
in terms of its’ ability to recover the true dynamic network in comparison with competing approaches such as siGGM and DCR.
We note that while both the change point detection and the network estimation performance were reported under the DCR
approach and the SC naive version of the proposed method, the siGGM only reports the network estimation performance, since
it does not account for dynamic changes.

Networks Generated for Validation Experiments
We generated the functional network of the first bin using three different network structures: (a) Erdos-Renyi random graph [7]
that has the same probability for all connections; (b) scale-free graph that uses the preferential attachment model of [1]; and (c)
small-world random graph that was obtained using the [15] model, and which is motivated by the characteristics of real life
brain networks derived from fMRI data. Two different average densities for the network were used, 0.15 and 0.3, which indicate
sparse connectivity patterns in brain organization [6]. Once the functional network for the first state phase was generated, the
networks of the other three bins are generated by flipping a certain proportion of the edges of the first bin independently. This
implies a fixed proportion of edges in the functional network for the first bin were changed to be absent in the second functional
network, whereas a fixed proportion of pairs of nodes that were not connected in the first bin became connected in the second
bin. This procedure is repeated independently for all the bins to generate distinct networks for different state phases that have
similar densities and also share common patterns, while also exhibiting inherent differences.

Performance Assessment for Validation Studies
We evaluate the performance of the proposed method with respect to two aspects: the ability to estimate true change points and
accurately estimate the network. For data from Scenario I involving discrete connectivity jumps, the estimated change point is
determined to be a true positive when the temporal distance between the true and estimated change point is less or equal than 2.
For the case of data generated using Scenario II involving transition periods of seven consecutive change points, we denote an
estimated change point to be true positive if it lies within the +/−2 from the center of the transition period. We report the
proportion of true change points detected, and the number of false change points reported, averaged over all replicates. The
performance of the graph estimation was assessed by comparing the estimated network with the true network at each time point,
using the area under the curve (AUC) for the receiver operating characteristic (ROC) over different network sparsity levels. We
also look at sensitivity and specificity for the optimal network obtained by minimizing the BIC score. Sensitivity measures the
power to detect true connections and is equal to the proportion of true edges that are successfully detected in the estimated
network. Specificity represents the proportion of the absent edges that were successfully detected as absent, and is an indicator
of how well the false discoveries are controlled for. Higher values of AUC, sensitivity and specificity imply a more accurate
network estimation. All metrics are reported after averaging over all time points and replicates.

Results from Validation Studies
Figures 2, 3 and 4 report the results for the validation studies corresponding to Scenarios I and II. We note that we could not
report results under DCR for the 100 node scenario since the DCR is not scalable to high dimensional networks. Multimodal
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Dynamic FC Provides Near Perfect Estimation for Network Changes Figure 2(a)-(b) provides a visual illustration of the change
point detection performance under the first scenario, which plots the frequency with which each time point is detected as a
change point under the sub-network sampling scheme. In this Figure, the peaks in frequency are seen to concentrate around
the true jumps which illustrate the ability to accurately detect change points. The results in Figures 8 and 9 suggest that the
proposed approach is able to detect essentially almost all the true change points under both scenarios, as computed via the
proportion of change points detected. Moreover, the proportion of false change points detected (computed as the number of
falsely detected change points over replicates) is close to 0 or negligible. In contrast, the detection of false change points is much
higher under DCR, and it has poor performance in terms of detecting the true change points. In fact, the multimodal dynamic
FC approach has a significantly higher proportion of change points detected, and significantly lower number of false positives.
Additional experiments (not presented here) reveal that the performance of DCR improves when the total number of time points
in the experiment, along with the distance between consecutive change points is increased. However, for practical experiments
with a few hundred time points, the DCR approach seems to fail in terms of change point estimation. The proposed approach,
which incorporates SC knowledge and espouses a novel subnetwork sampling scheme, performs considerably better in terms of
detecting the true change points while incurring minimal false positives. Figure 2(b) presents the change point detection results
for the high-dimensional case of V = 100 for data simulated under the Erdos-Renyi network with three jump points. The Figure
clearly depicts high frequencies for change point detection around the true change points, thereby suggesting that the proposed
approach could successfully detect true change points based on the sub-network sampling mechanism. Finally, the results
for the case involving a higher number of true change points (10) with V = 50 regions and T = 500 time points, is presented
in Figure 2(c), which clearly shows peaks under the sub-network sampling scheme around all of the 10 true change points,
thereby indicating the power of the proposed approach in detecting discrete jumps. In order to accurately detect all the true
change points, we increased the number of sub-network samples to 100 for this case. For this case, the DCR approach fails to
detect an overwhelming majority of the jumps (results not reported). In addition, we assessed the performance of the proposed
approach when both the number of change points and ROIs increases. Simulation results (not presented here) shows that as
long as the number of sub-networks is large enough and true change points are not exceedingly close together, our method
successfully detects peaks around the true change points, under the sub-network sampling scheme. The computation time for
each sub-network is reasonable as long as the number of nodes in the sub-network is moderate - see Figure 2(d) for more details.
We conjecture that an increasing number of sub-networks will be required for a good performance as the number of nodes in the
network, as well as the number of true change points is increased. In summary, using a combination of a powerful sub-sampling
scheme and incorporating prior SC knowledge, the proposed method is shown to provide vast improvements over existing
approaches in literature in terms of detecting underlying true network changes. Multimodal Dynamic FC Results in Higher
Network Estimation Accuracy The results of graph estimation are reported in Figures 8 and 9. Compared to the competing
methods, the proposed method consistently has a significantly higher area under the Receiver Operating Characteristic Curve
(AUC) value for network estimation. In addition, it has a higher or comparable sensitivity and consistently has a significantly
higher specificity, implying lower false positives in graph estimation and suitable power to detect true positives. In several
cases, both the sensitivity and specificity under the multimodal dynamic FC were higher compared to the other two methods. A
higher AUC, along with higher specificity and comparable sensitivity, illustrates the ability of the multimodal dynamic FC
approach to better control for false positives while having a similar or higher power to detect true signals. We note that the
accurate estimation of the dynamic network under the multimodal FC approach illustrates the importance of using brain SC to
guide the estimation of dynamic FC.

Once the networks are generated, the corresponding precision matrix at each time point was constructed by randomly
generating off-diagonals from a uniform(-1,1) distribution corresponding to the edges in the network at that time point, while
fixing those off-diagonals corresponding to absent edges to be zero. The diagonal elements for the matrix are then recalibrated
by summing the absolute values of the off-diagonals in the corresponding row/column, and adding a positive constant to this
sum, so as to obtain a diagonally dominant matrix that is positive definite. Under a GGM, the fMRI observation at a particular
time point was generated from a Gaussian distribution having the time-dependent precision matrix constructed above. Moreover,
we generated the SC information based on the true FC, as in [11]. We specify that most edges that had strong FC (≥ 0.5) in first
bin also have a strong SC (≥ 0.5), while edges with weak SC (≤0.5) could have either strong or weak FC. We note that since
the networks in the latter bins were obtained by flipping edges in the network corresponding to the first bin, it is very likely
to have a non-trivial number of edges with small SC but large FC and large SC with weak FC, which violates the modeling
assumptions and presents a challenging scenario.

References
1. Barabási, A.-L., Albert, R. & Jeong, H. Mean-field theory for scale-free random networks. Physica A: Statistical

Mechanics and its Applications 272, 173–187 (1999).

2. Beck A., T., Steer R., A. & Brown G., K. Manual for the Beck depression inventory-II (Psychological Corporation, 1996).

8/20



3. Chang, C., Kundu, S. & Long, Q. Scalable Bayesian variable selection for structured high-dimensional data. Biometrics
74, 1372–1382 (2018).

4. Cribben, I., Haraldsdottir, R., Atlas, L. Y., Wager, T. D. & Lindquist, M. A. Dynamic connectivity regression: determining
state-related changes in brain connectivity. Neuroimage 61, 907–920 (2012).

5. Cribben, I., Wager, T. & Lindquist, M. Detecting functional connectivity change points for single-subject fMRI data.
Frontiers in computational neuroscience 7, 143 (2013).

6. Eavani, H. et al. Identifying sparse connectivity patterns in the brain using resting-state fMRI. Neuroimage 105, 286–299
(2015).
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Supplementary Table: Coordinates for ROIs in Power Atlas

The coordinates for the remaining ROIs are listed in the Table below.

ROI X Y Z Modules ROI X Y Z Modules
1 -25 -98 -12 Unspecified 46 66 -8 25 Sensory/somatomotor
2 27 -97 -13 Unspecified 47 -3 2 53 Cingulo-opercular
3 24 32 -18 Unspecified 48 54 -28 34 Cingulo-opercular
4 -56 -45 -24 Unspecified 49 19 -8 64 Cingulo-opercular
5 8 41 -24 Unspecified 50 -16 -5 71 Cingulo-opercular
6 -21 -22 -20 Unspecified 51 -10 -2 42 Cingulo-opercular
7 17 -28 -17 Unspecified 52 37 1 -4 Cingulo-opercular
8 -37 -29 -26 Unspecified 53 13 -1 70 Cingulo-opercular
9 65 -24 -19 Unspecified 54 7 8 51 Cingulo-opercular
10 52 -34 -27 Unspecified 55 -45 0 9 Cingulo-opercular
11 55 -31 -17 Unspecified 56 49 8 -1 Cingulo-opercular
12 34 38 -12 Unspecified 57 -34 3 4 Cingulo-opercular
13 -7 -52 61 Sensory/somatomotor 58 -51 8 -2 Cingulo-opercular
14 -14 -18 40 Sensory/somatomotor 59 -5 18 34 Cingulo-opercular
15 0 -15 47 Sensory/somatomotor 60 36 10 1 Cingulo-opercular
16 10 -2 45 Sensory/somatomotor 61 32 -26 13 Auditory
17 -7 -21 65 Sensory/somatomotor 62 65 -33 20 Auditory
18 -7 -33 72 Sensory/somatomotor 63 58 -16 7 Auditory
19 13 -33 75 Sensory/somatomotor 64 -38 -33 17 Auditory
20 -54 -23 43 Sensory/somatomotor 65 -60 -25 14 Auditory
21 29 -17 71 Sensory/somatomotor 66 -49 -26 5 Auditory
22 10 -46 73 Sensory/somatomotor 67 43 -23 20 Auditory
23 -23 -30 72 Sensory/somatomotor 68 -50 -34 26 Auditory
24 -40 -19 54 Sensory/somatomotor 69 -53 -22 23 Auditory
25 29 -39 59 Sensory/somatomotor 70 -55 -9 12 Auditory
26 50 -20 42 Sensory/somatomotor 71 56 -5 13 Auditory
27 -38 -27 69 Sensory/somatomotor 72 59 -17 29 Auditory
28 20 -29 60 Sensory/somatomotor 73 -30 -27 12 Auditory
29 44 -8 57 Sensory/somatomotor 74 -41 -75 26 Default-mode
30 -29 -43 61 Sensory/somatomotor 75 6 67 -4 Default-mode
31 10 -17 74 Sensory/somatomotor 76 8 48 -15 Default-mode
32 22 -42 69 Sensory/somatomotor 77 -13 -40 1 Default-mode
33 -45 -32 47 Sensory/somatomotor 78 -18 63 -9 Default-mode
34 -21 -31 61 Sensory/somatomotor 79 -46 -61 21 Default-mode
35 -13 -17 75 Sensory/somatomotor 80 43 -72 28 Default-mode
36 42 -20 55 Sensory/somatomotor 81 -44 12 -34 Default-mode
37 -38 -15 69 Sensory/somatomotor 82 46 16 -30 Default-mode
38 -16 -46 73 Sensory/somatomotor 83 -68 -23 -16 Default-mode
39 2 -28 60 Sensory/somatomotor 84 -58 -26 -15 Unspecified
40 3 -17 58 Sensory/somatomotor 85 27 16 -17 Unspecified
41 38 -17 45 Sensory/somatomotor 86 -44 -65 35 Default-mode
42 -49 -11 35 Sensory/somatomotor 87 -39 -75 44 Default-mode
43 36 -9 14 Sensory/somatomotor 88 -7 -55 27 Default-mode
44 51 -6 32 Sensory/somatomotor 89 6 -59 35 Default-mode
45 -53 -10 24 Sensory/somatomotor 90 -11 -56 16 Default-mode
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ROI X Y Z Modules ROI X Y Z Modules
91 -3 -49 13 Default-mode 136 4 -48 51 Unspecified
92 8 -48 31 Default-mode 137 -46 31 -13 Default-mode
93 15 -63 26 Default-mode 138 -10 11 67 Ventral-attention
94 -2 -37 44 Default-mode 139 49 35 -12 Default-mode
95 11 -54 17 Default-mode 140 8 -91 -7 Unspecified
96 52 -59 36 Default-mode 141 17 -91 -14 Unspecified
97 23 33 48 Default-mode 142 -12 -95 -13 Unspecified
98 -10 39 52 Default-mode 143 18 -47 -10 Visual
99 -16 29 53 Default-mode 144 40 -72 14 Visual

100 -35 20 51 Default-mode 145 8 -72 11 Visual
101 22 39 39 Default-mode 146 -8 -81 7 Visual
102 13 55 38 Default-mode 147 -28 -79 19 Visual
103 -10 55 39 Default-mode 148 20 -66 2 Visual
104 -20 45 39 Default-mode 149 -24 -91 19 Visual
105 6 54 16 Default-mode 150 27 -59 -9 Visual
106 6 64 22 Default-mode 151 -15 -72 -8 Visual
107 -7 51 -1 Default-mode 152 -18 -68 5 Visual
108 9 54 3 Default-mode 153 43 -78 -12 Visual
109 -3 44 -9 Default-mode 154 -47 -76 -10 Visual
110 8 42 -5 Default-mode 155 -14 -91 31 Visual
111 -11 45 8 Default-mode 156 15 -87 37 Visual
112 -2 38 36 Default-mode 157 29 -77 25 Visual
113 -3 42 16 Default-mode 158 20 -86 -2 Visual
114 -20 64 19 Default-mode 159 15 -77 31 Visual
115 -8 48 23 Default-mode 160 -16 -52 -1 Visual
116 65 -12 -19 Default-mode 161 42 -66 -8 Visual
117 -56 -13 -10 Default-mode 162 24 -87 24 Visual
118 -58 -30 -4 Default-mode 163 6 -72 24 Visual
119 65 -31 -9 Default-mode 164 -42 -74 0 Visual
120 -68 -41 -5 Default-mode 165 26 -79 -16 Visual
121 13 30 59 Default-mode 166 -16 -77 34 Visual
122 12 36 20 Default-mode 167 -3 -81 21 Visual
123 52 -2 -16 Default-mode 168 -40 -88 -6 Visual
124 -26 -40 -8 Default-mode 169 37 -84 13 Visual
125 27 -37 -13 Default-mode 170 6 -81 6 Visual
126 -34 -38 -16 Default-mode 171 -26 -90 3 Visual
127 28 -77 -32 Default-mode 172 -33 -79 -13 Visual
128 52 7 -30 Default-mode 173 37 -81 1 Visual
129 -53 3 -27 Default-mode 174 -44 2 46 Fronto-parietal
130 47 -50 29 Default-mode 175 48 25 27 Fronto-parietal
131 -49 -42 1 Default-mode 176 -47 11 23 Fronto-parietal
132 -31 19 -19 Unspecified 177 -53 -49 43 Fronto-parietal
133 -2 -35 31 Unspecified 178 -23 11 64 Fronto-parietal
134 -7 -71 42 Unspecified 179 58 -53 -14 Fronto-parietal
135 11 -66 42 Unspecified 180 24 45 -15 Fronto-parietal
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