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ABSTRACT 

Rapid and accurate diagnosis of large vessel occlusions (LVOs) in acute ischemic stroke patients (AIS) using 

automated software could improve clinical workflow in determining thrombectomy eligible patients. Artificial 

intelligence based methods could accomplish this, however, their performance in various clinical scenarios, relative 

to clinical experts, must be thoroughly investigated. We aimed to assess the ability of Canon’s AUTOStroke Solution 

LVO application in properly detecting and locating LVOs in AIS patients. Data from 202 LVO AIS and 101 non-

LVO patients who presented with stroke-like symptoms between March 2019 and February 2020 was collected 

retrospectively. LVO patients had either an internal carotid artery (ICA) (n=59), M1 middle cerebral artery (MCA) 

(n=82), or M2 MCA (n=61) occlusion. CTA scans from each patient were pushed to the automation platform and 

analyzed. The algorithm’s ability to detect LVOs was assessed using accuracy, sensitivity, and Matthews correlation 

coefficients (MCCs) for each occlusion type. The following results were calculated for each occlusion type in the 

study (accuracy, sensitivity, MCC): ICA=(0.95, 0.90, 0.89), M1 MCA=(0.89, 0.77, 0.78), and M2 MCA=(0.80, 0.51, 

0.59). For the non-LVO cohort, 98% (99/101) of cases were correctly predicted as LVO negative. Processing time for 

each case was 69.8±1.1 seconds (95% confidence interval). Canon’s AUTOStroke Solution LVO application was able 

to accurately identify ICA and M1 MCA occlusions in addition to almost perfectly assessing when an LVO was not 

present. M2 MCA occlusion detection needs further improvement based on the sensitivity results displayed by the 

LVO detection algorithm. 
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INTRODUCTION 

Computed tomography angiography (CTA) is an imaging modality commonly used to determine the location of an 

occlusion in acute ischemic stroke patients (AIS). Once the occlusion is located, American Heart Association 

guidelines are applied to each case, assessing patient specific parameters, for the purpose of determining if a patient 

is mechanical thrombectomy eligible.1 Thrombectomy eligible patients meet the following criteria: a National 

Institute of Health Stroke Scale (NIHSS) score of at least 6, an Alberta Stroke Program Early CT Score 

(ASPECTS) of at least 6, a large vessel occlusion (LVO) within the internal carotid artery (ICA) or M1 middle 

cerebral artery (MCA), and meet the requirements for ischemic tissue volumes detailed in the DAWN or Defuse 

3 clinical trials when symptom onset is between 6 and 24 hours. If symptom onset is less than 6 hours, CT 

perfusion ischemic tissue volumes are not required.1-3 Within the aforementioned trials, infarct and penumbra, 

defined as unsalvageable and salvageable tissue respectively, thrombectomy eligible volume requirements vary based 

on the age, NIHSS score, and CT perfusion ischemic tissue ratio for the patient.2-4 Additionally, the American Heart 

Association guidelines state mechanical thrombectomy can be utilized for patients with an occlusion of the M2 MCA, 

although benefits for these patients may be uncertain.1 

  Within current clinical practice, the site of occlusion in CTA is determined by radiologists who are in charge 

of reading multiple medical images from all patients who enter their center. Since penumbra tissue can convert to 

infarct at a rate of 10.1 mL/hour, it is imperative that LVOs are detected as soon as possible to prevent increased loss 

of neurological function in AIS patients.5, 6 However, since potential LVO cases are not prioritized, it can lead to an 

increased window between the time a patient receives baseline imaging and when their penumbra is salvaged through 

mechanical thombectomy. Therefore, a more streamlined method needs to be developed to optimize radiologists tasks 

in detecting LVOs and the answer could lie with artificial intelligence. 

 Artificial intelligence based methods have shown great potential for localization of aneurysms, segmentation 

of infarct tissue, and prognosis of vascular lesion and surgical outcomes for delayed aneurysm occlusion .7-10 Recently, 

an artificial intelligence software for detecting LVOs was developed and implemented into the automation platform 

by Canon Medical Systems to provide a comprehensive stroke analysis for each patient. To optimize patient triaging 

to the endovascular intervention suite, this software immediately detects LVOs (ICA, M1 MCA, and M2 MCA 

occlusions) using CTA imaging, and provides the LVO location in both axial and coronal slices for radiologists and 

neurointerventionalists to interpret. 



 Within this study, we aimed to assess the performance of the AUTOStroke Solution LVO detection application 

in AIS patients. Additionally, we assessed the algorithm’s performance in comparison with clinical experts, in a wide 

range of anterior circulation occlusions.  

METHODS 

Patient Inclusion 

For this Health Insurance and Accountability retrospective study, institutional review board approval was obtained 

and informed consent was waived. In this study, we included patients with AIS symptoms upon comprehensive stroke 

center arrival. Each patient underwent non-contrast CT imaging to rule out hemorrhage, followed by CTA imaging. 

A total of 303 consecutive patients between March 2019 and February 2020 were included within this study, with 202 

patients being allocated to the LVO cohort and 101 patients being allocated to the non-LVO cohort. Patients included 

in the LVO cohort had either: a distal ICA occlusion (n=59), an M1 MCA occlusion (n=82), or a proximal M2 MCA 

occlusion (n=61). Not all LVO patients were required to have undergone mechanical thrombectomy as there may have 

been other contraindications making them ineligible. For those who underwent mechanical thrombectomy, 

thrombolysis in cerebral infarction (TICI) scores were recorded as a consensus by a neurosurgery attending and two 

endovascular fellows not involved in data collection. Non-LVO patients were required to have presented at the 

comprehensive stroke center with AIS symptoms and undergone AIS protocol imaging, but deemed negative for 

having any vessel occlusion.   

CTA Analysis 

CTA data was collected using 2 Aquilion ONE CT units (Canon Medical Systems Corporation, Otawara, Japan). The 

CT stroke protocol includes the acquisition of non-contrast CT, CTA, and CT perfusion scans. CTA volumes were 

reconstructed at 512 rows by 512 columns with an in-plane resolution of 0.4 mm and a slice thickness of 0.5 mm. 

Injection of 80 mL of Omnipaque 350 was conducted at a rate of 5 mL/second. Additional protocol parameters utilized 

were: a tube voltage of 120 kilovolt peak, a tube current ranging from 370-600 milliamperes, and a CT dose index of 

7.3 milligray. The stroke protocol scans and reconstruction time interval was between 3 and 5 minutes for all patients. 

 After acquiring the CTA data, an operator with 2.5 years of experience examining contrast enhanced CT data 

manually identified the occlusion site in each patient. This was conducted for comparison with the location of the 

suspected site of occlusion output from the automated LVO detection software. Automated analysis of each patient’s 

CTA was then conducted using the AUTOStroke Solution LVO application. Canon’s LVO detection application has the 



following image acquisition requirements to be used successfully: CTA of the head, axial acquisition only, a slice 

thickness no greater than 1.25 mm, a tube voltage between 80-140 kilovolt peak, a field of view above 170 mm, and 

a 512 by 512 image matrix. Additionally, the algorithm was trained on over 3,000 cases and validated on 476 cases 

which included distal ICA, M1 MCA, and proximal M2 MCA occlusions.11, 12 Due to the occlusion locations used for 

the training set, the algorithm used is constrained only to the listed regions. Severe motion and metal artifacts are 

additionally known to impact the performance in being able to detect LVOs. Furthermore, the algorithm may not 

detect small MCA occlusions in the presence of good collateral flow, or in the event no contrast is visible due to poor 

timing of the contrast injection during the CTA acquisition protocol.11, 12  

Once CTA data was pushed to the LVO detection software, automated analysis was conducted and results 

were exported to a workstation for interpretation. In the event an occlusion was not detected, the software simply 

exports the original CTA and a message stating “No findings suggestive of LVO identified.” In the event an LVO was 

detected, the software exports the original CTA, a resampled CTA with a slice thickness of 10 mm with the slice 

containing the occlusion stating “Suspected LVO identified,” as well as a coronal slice with the suspected LVO. Slices 

suspected to contain the LVO based on the algorithm were compared with the manually identified occlusion site. In 

the event the occlusion site (arterial location or hemisphere) differed between the automated algorithm and the manual 

identification, it was documented that the LVO detection was unsuccessful.      

Statistical Analysis 

Summary statistics for continuous variables and frequency distributions for categorical variables were tabulated for 

all analyzed patient data as well as for the LVO and non-LVO cohorts. All patient demographics were compared using 

student-t, chi-squared, and ANOVA statistical testing. Proper launch of the LVO algorithm was documented for each 

case to assure clinical workflow would not be hindered by the automated solution. For the LVO cohort, it was 

documented if the LVO algorithm correctly detected that an occlusion was present. Additionally, it was documented 

if the slice predicted to contain the occlusion contained the same region as what was indicated by the manual occlusion 

identification. Disagreements in arterial occlusion location or hemisphere side were documented. For the non-LVO 

cohort, it was similarly noted if the LVO application launched properly for each case and if an LVO was detected. In 

the event an LVO was detected, the suspected territory was noted along with any potential image artifacts or other 

vascular abnormalities, such as a stenosis, that may have caused the false positive result.  



Utilizing both the LVO and non-LVO cohorts, accuracy, sensitivity, specificity, positive predictive value, 

negative predictive value, F1 score, and Matthews correlation coefficient metrics were determined for the LVO 

detection algorithm. Accuracy, sensitivity, and specificity represent the proportion of cases correctly labeled in both 

cohorts, the LVO cohort, and non-LVO cohort respectively. Positive predictive value represents the proportion of 

correctly labeled LVO cases compared to the total number of predicted LVO positive cases, while negative predictive 

value represents the proportion of correctly labeled non-LVO cases compared to the total number of predicted non-

LVO cases. F1 score indicates the proportion of correctly labeled LVO cases compared to the total number of true 

positive, half of the false positive, and half of the false negative cases. Matthews correlation coefficient represents the 

correlation between the predicted and ground truth classifications, with 1 being a perfect correlation, 0 being random 

assignment, and -1 being complete disagreement between predictions and true labels. Subgroup analysis was 

additionally performed within the LVO cohort to assess the performance of the algorithm in detecting ICA, M1 MCA, 

and M2 MCA occlusions individually. Subgroup analyses utilized all of the aforementioned metrics and included all 

non-LVO cases for calculations. In addition, the following times were documented as 95% confidence intervals: time 

from pushing the CTA data to the automation platform until the LVO application launched and time from pushing the 

CTA data to the automation platform until results were exported to the clinical workstation. 

RESULTS 

Demographics for all patients, including LVO and non-LVO subcategories, are indicated in Table 1. Additionally, 

indicated in Table 1 are the proportions for each site of occlusion in the LVO cohort and the reperfusion status for the 

76.2% (154/202) of LVO patients who underwent mechanical thrombectomy. Intravenous thrombolysis was 

administered to 40.2% (62/154) of the LVO patients who underwent mechanical thrombectomy at a median time of 

115.0 minutes (interquartile range (IQR), 84.0-18.0 minutes) following symptom onset. Statistical significance 

(p<0.05) was only seen between the LVO and non-LVO cohorts for the time since onset of symptoms to CTA imaging 

and NIHSS score variables based on student-t and chi-squared tests. 

 

Table 1. Characteristics and Outcomes of Large Vessel and Non-Large Vessel Occlusion Patients 

Characteristic 
All, n=303 

Large Vessel Occlusion 

Patients, n=202 

Non Large Vessel 

Occlusion Patients, n=101 

Male sex, % 45.2% (137/303) 48.5% (98/202) 38.6% (39/101) 

Age, years, 

mean±standard deviation, 

[median] (IQR) 

69.8±14.5 [70.0] (60.0-

81.0) 

70.6±13.9 [71.0] (61.0-

82.0) 

68.2±15.7 [68.0] (60.0-

80.0) 



NIHSS score, 

mean±standard deviation, 

[median] (IQR) 

11.9±8.2 [11.0] (7.5-

15.0) 

15.2±7.0 [15.0] (10.0-

20.8) 
5.3±3.2 [4.0] (3.0-7.0) 

Site of occlusion 

Internal cerebral artery … 29.2% (59/202) … 

M1 middle cerebral artery … 40.6% (82/202) … 

M2 middle cerebral artery … 30.2% (61/202) … 

Time from onset of stroke 

to CTA imaging, minutes, 

mean±standard deviation, 

[median] (IQR) 

657.0±2055.8 [212.0] 

(110.5-644.0) 

404.5±743.4 [186.0] 

(104.8-461.5) 

1162.0±3356.4 [302.0] 

(124.0-877.0) 

Reperfusion cases … n=154 … 

Time from onset of stroke 

to reperfusion, minutes, 

mean±standard deviation, 

[median] (IQR) 

… 
464.6±955.7 [242.0] 

(144.5-423.8) 
… 

TICI 0 … 3.2% (5/154) … 

TICI 1 … 2.6% (4/154) … 

TICI 2a … 5.8% (9/154) … 

TICI 2b … 35.1% (54/154) … 

TICI 2c … 22.7% (35/154) … 

TICI 3 … 30.5% (47/154) … 

Empty cells correspond to non-applicable data based on category or combination of categories. Abbreviations: IQR-

interquartile range, NIHSS-National Institute of Health Stroke Scale, CTA-computed tomography angiography, 

TICI-thrombolysis in cerebral infarction. 

 

 

Subgroup patient demographics are indicated within Table 2 for patients with ICA, M1 MCA, and M2 MCA 

occlusions. Additionally, Table 2 indicates the reperfusion status for the subgroup of patients with each type of 

occlusion that underwent mechanical thrombectomy. ANOVA statistical testing between all three subgroups only 

indicated statistical significance (p<0.05) for the NIHSS score category. From Table 2, it can be seen that there is a 

direct correlation between the size of the occluded vessel, with ICA being the largest and M2 MCA being the smallest, 

and the severity of the NIHSS score calculated.  

 

Table 2. Characteristics and Outcomes of Large Vessel Occlusion Patients Based on Occlusion Site 

Characteristic ICA, n=59 MCA M1, n=82 MCA M2, n=61 

Male sex, % 45.8% (27/59) 50.0% (41/82) 49.2% (30/61) 

Age, years, 

mean±standard deviation, 

[median] (IQR) 

67.4±14.8 [68.0] (57.0-

78.0) 

72.9±12.5 [74.0] (65.0-

82.0) 

70.6±14.3 [69.0] (61.0-

82.0) 

NIHSS score, 

mean±standard deviation, 

[median] (IQR) 

17.1±7.1 [17.0] (12.5-

22.5) 

15.4±7.1 [15.0] (11.0-

20.0) 

13.0±6.5 [14.0] (8.0-

17.0) 

Time from onset of stroke 

to CTA imaging, minutes, 

mean±standard deviation, 

[median] (IQR) 

266.2±249.8 [166.0] 

(105.5-313.0) 

474.0±587.1 [253.5] 

(94.3-700.3) 

444.6±1139.6 [156.0] 

(114.0-373.0) 



Reperfusion cases n=38 n=72 n=44 

Time from onset of stroke 

to reperfusion, minutes, 

mean±standard deviation, 

[median] (IQR) 

302.4±249.8 [241.0] 

(135.5-400.8) 

532.1±624.4 [303.0] 

(159.3-640.3) 

494.2±1669.4 [200.5] 

(143.5-366.3) 

TICI 0 7.9% (3/38) 0.0% (0/72) 4.5% (2/44) 

TICI 1 5.3% (2/38) 1.3% (1/72) 2.3% (1/44) 

TICI 2a 0.0% (0/38) 5.6% (4/72) 11.4% (5/44) 

TICI 2b 31.6% (12/38) 36.1% (26/72) 36.4% (16/44) 

TICI 2c 21.1% (8/38) 20.8% (15/72) 27.3.% (12/44) 

TICI 3 34.2% (13/38) 36.1% (26/72) 18.2% (8/44) 

Abbreviations: ICA-internal carotid artery, MCA-middle cerebral artery, IQR-interquartile range, NIHSS-National 

Institute of Health Stroke Scale, CTA-computed tomography angiography, TICI-thrombolysis in cerebral infarction. 

 

Within Table 3, proportions are indicated for the amount of times the automated LVO application launched properly 

and how frequently the application correctly labeled a case as LVO positive or negative for the LVO and non-LVO 

cohorts. Chi-squared testing indicates statistical significance between the percentage of proper classifications for the 

LVO and non-LVO cohorts. Table 3 additionally indicates the times from pushing a case to the automated platform 

until the LVO application is launched and the results are received for interpretation. Student-t testing indicates a 

significant difference between processing time when there is an LVO present or there is not. 

 

Table 3. Proportion of instances where the LVO application was correctly launched and correctly classified the input 

case as LVO positive or negative. Time from pushing each case until the LVO application is launched and results are 

received are indicated as 95% confidence intervals. 

 All, n=303 Large Vessel Occlusion 

Patients, n=202 

Non Large Vessel 

Occlusion Patients, n=101 

Proper LVO application 

launch, % 

100.0% (303/303) 100.0% (202/202) 100.0% (101/101) 

Proper classification of 

LVO presence, % 

81.2% (246/303) 72.8% (147/202) 98.0% (99/101) 

Time from pushing case to 

LVO application launch, 

seconds 

26.6±0.7 26.3±0.9 27.1±0.8 

Time from pushing case to 

receiving LVO results, 

seconds 

69.8±1.1 71.5±1.5 66.5±1.1 

Abbreviations: LVO-large vessel occlusion. 

Three example cases of the LVO detection software correctly locating occlusions are indicated within Figure 1. The 

top, middle, and bottom rows indicate ICA, M1 MCA, and M2 MCA occlusions respectively with the red bounding 

boxes indicating the site of the occlusion in each case. Within Figure 2, 2 example cases are shown with the top row 

indicating a case where an LVO was not present but the algorithm predicted the presence of one due to the poor timing 

of the contrast bolus injection. The bottom row of Figure 2 demonstrates a false negative case where an LVO was 



present within the M1 segment of the MCA and the software did not detect its presence. The location of the LVO in 

this case is outlined in red with a clear disruption in vessel flow being noticeable. 

[insert Figure 1] 

[insert Figure 2] 

Metrics indicated in Table 4 represent the overall ability of the LVO detection software to accurately label cases as 

LVO positive or negative. Within each occlusion site category, all 101 negative LVO cases were utilized to determine 

true negative and false positive totals to calculate the metrics in Table 4. Matthews correlation coefficient shows an 

increase in classification accuracy for the larger occlusion sites (ICA and M1 MCA) compared to smaller M2 MCA 

occlusions. Additionally, for all cases where an occlusion was predicted, the occlusion site matched the manually 

determined site in all but one case. Within the aforementioned case, the occlusion was in the M1 MCA territory, but 

was predicted to be in the ICA territory.  

 

Table 4. Accuracy, sensitivity, specificity, positive predictive value, negative predicted value, F1 score, and Matthews 

correlation metrics corresponding to the LVO detection algorithm for all and each occlusion site.  

 All, n=303 ICA, n=160 MCA M1, n=183 MCA M2, n=162 

Accuracy 0.81 0.95 0.89 0.80 

Sensitivity 0.73 0.90 0.77 0.51 

Specificity 0.98 0.98 0.98 0.98 

Positive Predictive 

Value 

0.99 0.96 0.97 0.94 

Negative Predictive 

Value 

0.64 0.94 0.84 0.77 

F1 Score 0.84 0.93 0.86 0.66 

Matthews Correlation 

Coefficient 

0.67 0.89 0.78 0.59 

Abbreviations: LVO-large vessel occlusion, ICA-internal carotid artery, MCA-middle cerebral artery. 

DISCUSSION 

This study provided both a quantitative and qualitative assessment of an artificial intelligence based LVO detection 

algorithm in AIS patients. Additionally, this study assessed the ability of the LVO algorithm in determining when an 

occlusion was not present in LVO negative patients. Rapid detection of an LVO is essential in clinical workflow to 

determine which patients are mechanical thrombectomy eligible based on the American Heart Association’s 

guidelines.1, 13 Studies have shown that complete recanalization within the first 6 hours since symptom onset provides 

the best chance for good clinical outcome for AIS patients.14 Being able to streamline clinical workflow through the 

use of artificial intelligence has the potential benefit of allowing patients to more rapidly be sent to endovascular 



intervention suites for mechanical thrombectomy and therefore regain more lost neurological function. Furthermore, 

having an algorithm alert clinicians to the location of the occlusion, in addition to the presence, can further streamline 

the process and potentially act as an educational tool for those in clinical training. 

 Within the results of the study, patient demographic analysis indicated a statistical significance (p<0.05) 

between the time since onset of CTA imaging between the LVO and non-LVO cohorts. This is likely due to the 

severity of the patient’s stroke-like symptoms being worse for the LVO cohort causing patients to seek more 

immediate clinical assistance. Since the non-LVO cohort did not contain any stroke positive patients, symptoms were 

likely caused by some less serious underlying disease. Furthermore, subgroup analysis indicated the site of the 

occlusion statistically influenced the NIHSS score with the ICA category having the highest score, and M2 MCA 

category having the lowest. This can be explained because an occlusion within the ICA can lead to the prevention of 

blood flow to the distal vessels such as the M1 and M2 MCA segments. Therefore, having blood flow cut off to more 

regions of the brain would lead to more severe stroke symptoms. 

 Application results from the study indicate the automated platform correctly launched the LVO application 

for each case loaded which is essential to prevent the disruption of automated clinical workflow. In addition, the total 

processing time was deemed to be 71.5 seconds and 66.5 seconds for the LVO and non-LVO cohorts, respectively, 

with statistical significance indicated between the two cohorts. This significance occurs due to the software generating 

resampled 10 mm axial view CTAs and a coronal view as output results when an LVO is present. Even though a 

significant difference is seen, the time to process a case in both instances is still less (60%-78% faster) than the 

estimated 3-5 minutes required for CTAs to be read by a radiologist.15   

 Metrics shown within Table 4 indicate that as the occlusion site vessel decreases in size, so does the ability 

of the algorithm to detect the presence of the LVO. The overall accuracy of the algorithm (0.81), is significantly 

decreased by the algorithms limitation in detecting M2 MCA occlusions. Furthermore, sensitivity (0.51) and negative 

predictive values (0.77) are drastically decreased for the M2 MCA category due to the number of occlusions not 

detected. This decrease in prediction ability for the M2 segment of the MCA is likely due to the decrease in the 

amount of contrast seen within the voxels containing these vessels, since they encompass a much smaller region, 

compared to the ICA and M1 MCA segment. Since the intensity values in the image, along with location of the 

intensities corresponding to each other, are some of the main features artificial intelligence algorithms rely on, 

it is intuitive that an occlusion within a smaller vessel with less contrast would be a more difficult problem for 



a network to solve.16 From the aforementioned information, it can then be concluded that more false negatives 

would occur for the M1 occlusions compared to ICA occlusions since M1 segments take up smaller regions than 

ICAs due to their size, meaning the network has a larger area of high intensity values to detect when an ICA 

occlusion is present from contrast discontinuity. Although improved detection of occlusions within the M2 MCA 

territory is necessary, treatment guidelines by the American Heart Association only include recanalization of the M2 

MCA segmented when symptom onset is less than 6 hours.17 Furthermore, the guidelines state benefits from an M2 

MCA recanalization are uncertain, indicating the ICA and M1 MCA results are of more clinical importance as explicit 

recanalization guidelines and benefits are listed for these occlusion types.1, 13  

Another reason the sensitivity for the M2 segments is so low is potentially due to the training split used 

for the algorithm. If the algorithm was trained mostly on ICA and M1 occlusions, it would make sense that M2 

occlusions are tougher to predicted the presence of as the algorithm would not have seen as many of them 

during training. Additionally, since the algorithm was not trained on distal M2 occlusions, the inclusion of this 

type of occlusion in the training set could aid in the detection of all types of M2 occlusions. Some potential ways 

to improve the algorithm’s ability to detect these occlusions would be to first increase the training set for the 

M1 and M2 categories and potentially utilizes image pre-processing before training. Thresholding out the skull 

could improve detection ability of occlusions since both the skull and contrast have high intensity values 

compared to surrounding tissue meaning the algorithm may confuse the two at times. Furthermore, adoptive 

thresholding to isolate the vessel from surrounding brain tissue could be utilized so the network is only training 

on the vessels and not having to parse through irrelevant brain tissue intensity values. This would be very 

beneficial for M2 occlusions since visual contrast is less pronounced between the vessel and surrounding tissue, 

meaning isolation of the vessel would simply the network’s task. It should additionally be noted that the 

algorithm used to detect LVOs tracks the vessel from the ICA throughout the MCA. Therefore, if there is not 

a complete occlusion, the algorithm may not recognize the vessel as occluded, which may occur in the event of 

a partial occlusion. This is seen as an additionally limitation to the algorithm and can be improved by 

implementing vessel diameter calculation during tracking to make sure the vessel is of substantial width. 

Additionally, of the 147 cases where an LVO was detected, only 1 output results with the detected occlusion site being 

different from the manually determined site. The manually determined site was deemed to be a right M1 MCA 

occlusion, but the LVO detection algorithm output results indicating the occlusion to be in the ICA territory. Poor 



timing of the contrast bolus injection is likely the reason for the incorrect region determination by the automated 

software. As previously mentioned, intensity values within an image are a major feature utilized which explains the 

improper location seen. 

 Previously conducted studies have evaluated the performance of Viz.AI (San Francisco, CA) and RAPID 

(RapidAI, Menlo Park, CA) artificial intelligence algorithms in detecting LVOs. Both Viz.AI and RAPID grouped 

ICA and M1 MCA occlusions within their studies. When comparing Viz.AI and RAPID LVO results with the ICA 

and M1 MCA results from Canon’s automated LVO detection, it was found that all three algorithms had similar 

sensitivity results for ICA occlusions (~0.90), while Canon’s software had a slightly lower sensitivity compared to 

Viz.AI and RAPID for M1 MCA occlusions. Furthermore, Canon’s software and Viz.AI were found to have 

drastically higher specificity and positive predictive values compared to RAPID (Viz.AI specificity=0.83, positive 

predictive value=0.82, RAPID specificity=0.76, positive predictive value=0.43).18, 19 These higher specificity and 

positive predictive value metrics indicate Viz.AI and Canon’s software are more likely to identify cases as LVO 

negative when they do not have an LVO present. However, Canon’s software is also more likely to label M1 MCA 

occlusions as LVO negative in comparison with the other software as seen by each software’s negative 

predictive values (Canon M1 negative predictive value=0.84, Viz.AI negative predictive value=0.91, RAPID 

negative predictive value=0.98). This is of great importance since missing the presence of an occlusion is not 

clinically preferred over falsely identifying an occlusion. This is because a clinician can simply ignore the false 

positive occlusion prediction as opposed to the software entirely missing the occlusion and not allowing the 

patient to undergo reperfusion procedures.18, 19 In contrast, RAPID appears to show an overabundance of 

caution by labeling most cases as LVO positive based on the low positive predictive value and high negative 

predictive value metrics compared to the 2 other software. Further analysis was additionally conducted by 

RAPID, analyzing the ability of their software to detect proximal M2 MCA occlusions. The following metrics 

are seen with a high sensitivity of 0.86, low positive predicted value of 0.14, and high negative predictive value 

of 0.99.19 This shows a similar trend in overestimating the number of LVOs present compared to Canon’s 

software which tends to underestimate the number of LVOs. Again, this overestimation of LVOs present by 

RAPID software is preferred compared to Canon’s for M2 occlusions as it indicates RAPID is less likely to miss 

the presence of an occlusion, meaning more eligible patients will undergo reperfusion procedures. 



 Limitations of this study include not comparing the specific cases utilized in the study with other 

commercially available software. As previously stated, Viz.AI and RAPID have artificial intelligence algorithms 

developed, but they were not available to us for this study. A future comparison of LVO detection ability and how 

quickly each software streamlines clinical workflow should be conducted. Utilization of only one operator to 

determine the occlusion site is a second limitation to this study. One operator was utilized to decrease the 

variability in occlusion site determination compared to multiple operators determining the occlusion site for 

different portions of the dataset. However, utilizing multiple operators and a consensus system would have 

decreased the likelihood that any ground truth occlusion site would be labeled incorrectly. Another limitation to 

this study is no validation cases from an outside institution were used to assess Canon’s automated LVO detection 

algorithm. An additional limitation of the study is no patients with multiple occlusions were included. Although 

Canon’s LVO detection algorithm is stated to be capable of detecting multiple occlusions within a single patient, 

extensive studies with a proper sample size for both bilateral and tandem occlusions should be conducted in the future. 

The split of approximately two-thirds of the patients being in the LVO cohort and approximately one-third 

being in the non-LVO cohort is another limitation to the study. This is because the lower amount of non-LVO 

patients could impact the negative and positive predictive value results since there are fewer chances for true 

negative and false positives to occur. Although enough patients were included in the non-LVO cohort to ensure 

statistically significant claims could be made, the reasoning for the lower non-LVO sample size is there is a 

greater concern for false negatives in clinical practice compared to false positives. Therefore, since false 

negatives occur within the LVO cohort, more patients were included for this cohort.  

Furthermore, no posterior circulation or medium vessel occlusion patients (MCA M3 segment, 

anterior cerebral artery A2 or A3 segments) were included in the study as this artificial intelligence algorithm 

is highly dependent on the training data utilized. Since this algorithm was only trained on ICA, MCA M1, and 

MCA M2 occlusions, it would be nearly impossible for it to detect other types of occlusions it has not seen 

before. However, since it is possible future trials may show benefit to endovascular treatment of medium vessel 

occlusions, a future study should be conducted to train a neural network on medium vessel occlusion and 

posterior circulation occlusion patients to automatically predict their presence and streamline patient transfer 

to endovascular suites. A future multicenter validation study for both training and testing of the algorithm would 



improve the algorithm, creating a more generalized and robust method. A final limitation to this study is the degree 

of head movement was not quantified to see if that had any impact on the results of the study. 

CONCLUSIONS 

Canon’s AUTOStroke Solution LVO application was able to accurately identify ICA and M1 MCA occlusions in 

addition to nearly perfectly rule-out when an LVO was not present. M2 MCA occlusion detection needs further 

improvement based on the sensitivity results displayed by the LVO detection algorithm. Furthermore, having an 

automated method integrated with the onsite CT system provided a rapid stroke solution for comprehensive stroke 

centers. 
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FIGURE LEGENDS 

 

Figure 1. Indicates correctly labeled large vessel occlusions (LVOs) using the LVO detection algorithm for the 

internal carotid artery (top row), M1 middle cerebral artery (middle row), and M2 middle cerebral artery (bottom row). 

Left and right columns represent axial and coronal views respectively for each case. The site of occlusion is indicated 

by a red bounding box in each view for each case. 

Figure 2. Represents incorrectly labeled large vessel occlusion (LVO) and non-LVO cases based on the LVO 

detection algorithm output. The top row indicates axial and coronal views for a case without an LVO but was predicted 

to have an occlusion due to the poor contrast visible in the image. The bottom row shows a case where an LVO is 

present (indicated by red bounding box), but the algorithm did not predict an LVO to have occurred in this patient. 

 


