
swCRTdesign: An R Package for Stepped Wedge
Trial Design and Analysis

Emily C. Voldal
University of Washington

Navneet R. Hakhu
University of California, Irvine

Fan Xia
University of Washington

Patrick J. Heagerty
University of Washington

James P. Hughes
University of Washington

Abstract

—!!!—an abstract is required—!!!—

Keywords: stepped wedge trial, cluster randomized trial, shiny, R.

Emily C. Voldal, Navneet R. Hakhu, Fan Xia, Patrick J. Heagerty, James P. Hughes 1

Supplemental materials: swCRTdesign syntax and use
The full documentation for the most recent version of swCRTdesign can be found at https://cran.r-
project.org/web/packages/swCRTdesign/swCRTdesign.pdf. This appendix provides a more
thorough explanation and description of how to use these functions.

1. Creating a design
The functions swPwr and swSim both depend on defining a SWT design through swDsn:

swDsn(clusters, tx.effect.frac = 1, extra.time = 0, all.ctl.time0 = TRUE)

This function defines how many time points and clusters the design has, and the treatment
effect for each cluster and time. The clusters argument is a vector that defines the number
of sequences (via the length of the vector) and clusters per sequence (via the components of
the vector). If observation continues after all sequences have switched to treatment, this can
be specified using extra.time. The default is for all sequences to start on control; if the first
sequence starts on treatment at the first time point, set all.ctl.time0 to FALSE. If there is
a fractional treatment effect, this is defined as a vector tx.effect.frac; recall that a value
of 1 corresponds to the standard design with no delay of full treatment effect.
The swDsn function outputs important information about the design that has been created.
Some of the output mirrors the input, like tx.effect.frac and extra.time. The swDsn
function also reports the total number of sequences (n.waves), the total number of clusters
(n.clusters), the number of clusters per sequence (clusters), the total number of time
points (total.time), and two design matrices swDsn and swDsn.unique.clusters. In the
matrix labeled swDsn each entry is the treatment effect for that cluster at that time; 0
represents the control, and 1 represents the full treatment effect. Rows correspond to clusters,
and columns correspond to time points. The matrix swDsn.unique.clusters is similar, but
each row represents a sequence, and does not indicate how many clusters are in each sequence.
For example, the design below has four sequences with five clusters each (20 clusters total),
all starting on control. Examining the design matrix makes it easy to check the design.

R> library("swCRTdesign")
R> design <- swDsn(clusters = c(5, 5, 5, 5))
R> design$swDsn.unique.clusters

[,1] [,2] [,3] [,4] [,5]
[1,] 0 1 1 1 1
[2,] 0 0 1 1 1
[3,] 0 0 0 1 1
[4,] 0 0 0 0 1

It is possible to create more complicated designs using swDsn. For example, here is a design
with extra time between sequences crossing over, extra time at the end, and a fractional
treatment effect:

R> design.complex <- swDsn(c(10, 0, 10, 0, 10, 0), tx.effect.frac = c(0.5),
+ extra.time = 2, all.ctl.time0 = TRUE)
R> design.complex$swDsn.unique.clusters

2 The swCRTdesign R Package

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0 0.5 1 1.0 1 1.0 1 1 1
[2,] 0 0.0 0 0.5 1 1.0 1 1 1
[3,] 0 0.0 0 0.0 0 0.5 1 1 1

Inserting 0’s in the clusters vector can also be used to add extra time points before any
sequences have crossed over.

2. Calculating power

Power is calculated using swPwr:

swPwr(design, distn, n, mu0, mu1, sigma, tau, eta, rho, gamma, icc, cac,
alpha = 0.05, retDATA = FALSE, silent = FALSE)

The function swDsn can be used to define the design. The assumed distribution of the
response can be either Gaussian (’gaussian’) or Bernoulli (’binomial’), specified by distn.
The number of observations for each cluster at each time point can be the same for all clusters
and time points (n a scalar); differ by cluster, but the same at all time points within a
cluster (n a vector); or differ by both cluster and time, in which case n is a matrix with
rows corresponding to clusters and columns corresponding to time. When n is not a scalar,
clusters should be ordered by when they cross over, with the first clusters receiving treatment
listed first. The mean outcomes in the control and treatment groups, mu0 and mu1, are also
required to calculate power. The correlation structure of the data can be defined in two
ways: through the SD parameterization (tau, eta, rho, gamma), or through ICC and CAC
(icc, cac). Using ICC and CAC is only possible under the assumption that there are no
random treatment effects (i.e., η=0). If η = 0 (so ρ = 0 also), the same results can be
achieved by specifying either tau and gamma (with eta = 0, rho = 0) or icc and cac. If
the data is Gaussian, both parameterizations require an entry for sigma. Attempting to mix
the parameterizations (e.g., icc = .1, tau = 0, eta = .02) will result in an error message.
The silent = FALSE default prints a warning to users with code that was written for earlier
versions of swCRTdesign because of a change in the order of arguments; after any necessary
adjustments this can be changed to TRUE to hide the warning. When n is not a scalar, silent
= TRUE also represses a reminder to check the order of clusters in n.

3. Simulating data

Most of the arguments in swSim mirror those in swPwr:

swSim(design, family, log.gaussian = FALSE, n, mu0, mu1, time.effect,
sigma, tau, eta, rho, gamma, icc, cac,
time.lab = NULL, retTimeOnTx = FALSE, silent = FALSE)

The simulated data can be Gaussian, Bernoulli, or Poisson, defined by family. Some families
allow a log link (Bernoulli and Poisson) or logit link (Bernoulli). Setting log.gaussian =
TRUE when the family is Gaussian simulates log-Gaussian data, i.e., data whose log follows
a Gaussian distribution. If there is a time trend (βj in Equation 1), it is specified using
time.effect. Typically, the first entry in the time.effect vector should be 0, so mu0 and

Emily C. Voldal, Navneet R. Hakhu, Fan Xia, Patrick J. Heagerty, James P. Hughes 3

mu1 are mean outcomes in the control and treatment groups at baseline. The ICC/CAC input
is only available for Gaussian families.
The user must ensure that inputs are on the correct scale as determined by the family and
link. For example, if family = binomial(link = "log"), and the expected probability of
an event in the control group is 0.1, the correct entry for mu0 would be log(0.1). Similarly,
tau, eta, rho, and gamma are all random effects added to a linear model for log(µij), where
the outcome has a Bernoulli(µij) distribution. That is, we replaced µij in Equation 1 with
log(µij). For log-Gaussian data, all parameters are on the log scale, e.g., mu0 is the mean of
the log-transformed outcomes in the control group, and sigma is the standard deviation of
the log-transformed outcomes.
The data generated by swSim are the outcome response.var, the treatment effect tx.var, the
time time.var, and the cluster ID cluster.var for each observation. Setting retTimeOnTx
to TRUE produces an additional column in the output, timeOnTx.var, which is the cumulative
time on treatment (set to 0 during control periods).

4. Summarizing and plotting data
To use swSummary to summarize a SWT data set, one must specify the outcome response.var,
treatment indicator tx.var, time index time.var, and cluster ID cluster.var variables:

swSummary(response.var, tx.var, time.var, cluster.var, data, type = "mean",
digits = 16, fcn.Call = FALSE)

For convenience, if a data set is passed to data, the four variable arguments (response.var,
tx.var, time.var, and cluster.var) may be column names instead of vectors. Summaries
can be provided based on the mean, the sum, or the number of individuals per cluster per
time, controlled by type. The output of swSummary includes the summary statistic of interest
by sequence and time (response.wave) or by cluster and time (response.cluster).
The function swPlot takes a SWT data set and creates a plot of the mean response over time.
Data input is the same as swSummary:

swPlot(response.var, tx.var, time.var, cluster.var, data,
choose.mfrow = NULL, by.wave = TRUE, combined.plot = TRUE,
choose.xlab = "Time", choose.main = NULL, choose.pch = NULL,
choose.cex = 1, choose.tx.col = NULL, choose.tx.lty = c(2, 1),
choose.ncol = 2, choose.tx.pos = "topright", choose.legend.pos = "right")

The default is to plot one line for each sequence, but the mean response can be plotted for each
cluster by choosing by.wave as FALSE. Sequences can be split into separate plots by choosing
combined.plot as FALSE. A number of other arguments allow the user to customize labels,
legends, line types, and colors if defaults are not appropriate, and are analogous to plotting
options in base R; see swCRTdesign documentation. For convenience, choose.legend.pos
can be set to "mouseclick", which allows the user to specify the location of the legend by
clicking on the plot.

5. Extended EPT trial example
This is a continuation of the EPT trial example. For the purposes of demonstration, suppose
the authors now wish to simulate data for a design with transition periods, where there is one

4 The swCRTdesign R Package

time point for each sequence where treatment has been administered but no data is collected.
We can do this by recording a sample size of zero in those time periods, as follows. For
simplicity, we return to the original scenario and assume there were 162 observations per
cluster at every time period and a balanced design.

R> #Matrix of sample sizes for one cluster per sequence:
R> n.one.cluster.per.sequence <- cbind(rep(162, 4),
+ (matrix(162, ncol = 4, nrow = 4) - diag(162, nrow = 4)))
R> n.one.cluster.per.sequence

[,1] [,2] [,3] [,4] [,5]
[1,] 162 0 162 162 162
[2,] 162 162 0 162 162
[3,] 162 162 162 0 162
[4,] 162 162 162 162 0

R> #Matrix of sample sizes for the full design:
R> n.all.clusters <- matrix(rep(n.one.cluster.per.sequence, each = 6),
+ nrow = 24)
R> #Using a matrix of sample sizes for n:
R> example.data.bernoulli.transitions <- swSim(design = design.bernoulli,
+ family = binomial(link = "log"), n = n.all.clusters,
+ mu0 = log(0.05), mu1 = log(0.035), time.effect = 0,
+ tau = 0.33, eta = 0, rho = 0, gamma = 0, silent = TRUE)

Transition periods can also be specified like this in swPwr.

6. Simulation-based power example

THIS WHOLE SECTION IS NEW
The swSim function allows a user to easily simulate data from one SWT. Below is an example of
how to use this function to calculate power, using the lme4 package to fit mixed models (Bates
D, Maechler M, Bolker B, and Walker S; see https://CRAN.R-project.org/package=lme4).

R> library("lme4")
R> set.seed(74)
R> #Function: simulate one SWT, fit an appropriate mixed model,
R> #and return the p-value corresponding to the treatment effect estimate
R> OneSWT <- function(){
+ #Simulate data
+ my.data <- swSim(design = swDsn(c(6, 6, 6, 6, 6)), family = 'gaussian',
+ n = 50, mu0 = 0, mu1 = 0.1, time.effect = 0,
+ sigma = 1,
+ tau = 0.1, eta = 0.2, rho = 0.01, gamma = 0.1)
+ #set up variables for random effects
+ my.data$fcluster <- factor(my.data$cluster.var)
+ my.data$ftime <- factor(my.data$time.var)

Emily C. Voldal, Navneet R. Hakhu, Fan Xia, Patrick J. Heagerty, James P. Hughes 5

+ my.data$clustime <- interaction(my.data$fcluster, my.data$ftime)
+ #Fit mixed model
+ my.model <- lmer(response.var ~ time.var + tx.var +
+ (tx.var | fcluster) + (1 | clustime), data = my.data)
+ #Note: (1|clustime) induces random time
+ #according to the model described in this paper;
+ #(tx.var | fcluster) induces both
+ #random treatment and random cluster effects as described.
+ #To fit a model with random cluster effects when there are not
+ #random treatment effects, (1 | fcluster) can be used.
+ #To fit the full model with rho=0,
+ #use ...+ (tx.var || fcluster) + (1|clustime).
+ return(summary(my.model)$coefficients["tx.var", 3])
+ #Return t value from treatment effect coefficient
+ }
R> #Replicate many times
R> #(using a small number of replications for this demonstration)
R> t.val.list <- replicate(n = 100, OneSWT())
R> #Calculate rejection rate, using a normal approximation
R> #For designs with large sample sizes,
R> #this should be a reasonable approximation.
R> mean(2 * (1 - pnorm(abs(t.val.list))) < 0.05)

[1] 0.46

In this case, although the number of replications executed here is quite small, results are
similar to the closed-form swPwr results:

R> swPwr(design = swDsn(c(6, 6, 6, 6, 6)), distn = 'gaussian', n = 50,
+ mu0 = 0, mu1 = 0.1, sigma = 1,
+ tau = 0.1, eta = 0.2, rho = 0.01, gamma = 0.1, silent=TRUE)

[1] 0.4286845

Since swSim is more flexible than swPwr (e.g. Poisson outcomes, different links), it may
sometimes be necessary to rely on simulation-based power calculations.

7. Technical details

THIS WHOLE SECTION IS NEW
The closed-form calculations implemented in swPwr have been tested via comparison to
simulation-based power estimates, and perform as expected. The swCRTdesign package was
first posted to CRAN in 2016 (???), and subsequent versions have corrected errors and made
adjustments based on user feedback.
Computation time for swPwr is limited mainly by inversion of a matrix whose dimension is
the product of the number of time points and the total number of clusters. This is typically

6 The swCRTdesign R Package

trivial when computing power for a single design. However, to make a smooth power curve in
the GUI, swPwr may be run thousands of times, and larger designs are noticably slower than
SWT designs with a small number of clusters or time points. Future work could be done to
reduce this computation time, since the matrix has a specific form.

Affiliation:
Emily Voldal
Department of Biostatistics
University of Washington
Department of Biostatistics, Box 357232
University of Washington
Seattle, WA 98195
E-mail: voldal@uw.edu

mailto:voldal@uw.edu

