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Table S1. Wild-type sequences selected from (1) for the variant pool 

 

# Ribozyme Sequence (random region) 

1 S-2.1-a ATTACCCTGGTCATCGAGTGA 

2 S-1A.1-a CTACTTCAAACAATCGGTCTG 

3 S-1B.1-a CCACACTTCAAGCAATCGGTC 

4 S-3.1-a AAGTTTGCTAATAGTCGCAAG 

 
  



Figure S1. Standard curve for qPCR measurement, fitted by ‘stats.linregress’ function from ‘SciPy’ 

Python package. 

 

 
 
 
  



Figure S2. Relative standard deviation vs. mean of total RNA measured for each set of reacted sample 

triplicates, quantified by spike-in sequence (circles) or qPCR + Qubit (crosses). The mean relative 

standard deviations are similar for spike-in method (0.165) and for qPCR + Qubit method (0.176). 



Text S1. Using customized kinetic models in the ‘k-seq’ package. Kinetic models with a closed form 

integrated rate law can be written as a python function, with the independent variables and parameters to 

be estimated as the input arguments, and the dependent variables as the return values. The function can 

be passed to the `k_seq.estimate` module for k-Seq fitting.  
In general, rate constants can be determined by varying either time points or concentrations. The 

choice depends on experimental concerns. In the case of the aminoacylation ribozymes studied in this 

work, varying the initial concentration of substrate BYO was experimentally desirable for the following 

reasons. First, because BYO hydrolyzes in aqueous solution, fixing the time point simplified the form of 

the kinetic model for fitting (namely, introducing a constant factor to the exponential rather than a time-

dependent exponential of an exponential; please see Supporting Text S3 in (1) for details). Second, in 

practice, the spin column purification step took about 5 min, which prevented accurate sampling at early 

times. Instead, a longer time (90 min) could be used at low substrate concentrations to probe the same 
activity regime. While substrate degradation or a need for timing accuracy may favor use of a 

concentration series, a time series may be desirable in other circumstances, such as if the amount of 

ribozyme or substrate is limited. The ‘k-seq’ package may be used to fit either type of data by passing the 

appropriate function.  

As another example, k-Seq data can be fit to second-order kinetics. The integral form for second-order 

kinetics can be expressed as 

ln
𝑠! − 𝑠"
𝑠!

− ln
𝑐! − 𝑠"
𝑐!

= −(𝑐! − 𝑠!)𝑘𝑡 

where 𝑠! is the initial amount of the sequence, 𝑠" is the amount of reacted sequence at time 𝑡, 𝑐! is the 

initial substrate concentration, and 𝑘 is the second-order rate constant. Let 𝑠" = 𝑓𝑠0 where 𝑓 is the 

reacted fraction. The reacted fraction 𝑓 (as the dependent variable measured in k-Seq experiment) can 

be written as: 

𝑓 = 1 −
(𝑐! − 𝑠!)𝑒#(%!#&!)("

𝑐! − 𝑠!𝑒#(%!#&!)("
. 

This function can be used to fit the k-Seq experiments with varying time 𝑡 or varying initial substrate 

concentration 𝑐!, and a maximum amplitude may be added as a parameter if desired. 

  



 
 
Figure S3. Illustration of the 6 regions selected to sample sequences and their fitting values from 

simulated reacted fraction dataset, with the boundary values for true 𝐴, 𝑘, and 𝑘𝐴 indicated in the table 

(N/A = not applicable). These regions are separately analyzed in Figure S4-S9. 
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Figure S4. Selected fitting results from Region 1 (0.1	 < 	𝐴	 < 	1, 0.1	 < 	𝑘𝐴	 < 1	min#)M#)) in simulated 

reacted fraction dataset with different relative error. Each curve plot shows the reacted fraction (in 

triplicates) at various initial BYO concentrations (orange crosses), fitting curves from point estimation 

(blue line), and fitting curves from 20 repeated fitting or 20 bootstrapped samples (grey lines); fitted 𝑘, 𝐴 

values for the curves are shown in the corresponding heatmap (red crosses) under each curve plot. For 

visual guidance, background color of the heatmap indicates the relative values of mean squared error 

(normalized in each plot; blue to yellow is lower to higher error) over the parameter space given the data. 

The white dashed line marks kA = 1	min#)M#). An ideal fitting result would have converged fitting optima 

and is both numerically stable (from repeated fitting) and robust to noise (from bootstrapping). A large 

variance along the line of 𝑘𝐴 = constant indicates the model is not identifiable, i.e., 𝑘 and 𝐴 cannot be 

separately estimated. (react. frac. = reacted fraction.) 
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Figure S5. Selected fitting results from Region 2 (0.1	 < 	𝐴	 < 	1, 1	 < 	𝑘𝐴	 < 10	min#)M#)) in simulated 

reacted fraction dataset with different relative error. See caption of Figure S4 for explanation. 

 

BootstrappingRepeated fitting



Figure S6. Selected fitting results from Region 3 (0.1	 < 	𝐴	 < 	1, 𝑘𝐴	 > 10	min#)M#)) in simulated reacted 

fraction dataset with different relative error. See caption of Figure S4 for explanation. 
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Figure S7. Selected fitting results from Region 4 (𝐴	 < 	0.1, 0.1 < 𝑘𝐴	 < 1	min#)M#)) in simulated reacted 

fraction dataset with different relative error. See caption of Figure S4 for explanation. 
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Figure S8. Selected fitting results from Region 5 (𝐴	 < 	0.1, 1 < 𝑘𝐴	 < 10	min#)M#)) in simulated reacted 

fraction dataset with different relative error. See caption of Figure S4 for explanation. 
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Figure S9. Selected fitting results from Region 6 (𝐴	 < 	0.1, 𝑘𝐴	 > 10	min#)M#)) in simulated reacted 

fraction dataset with different relative error. See caption of Figure S4 for explanation. 
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Table S2. Summary of visual examination of model identifiability from repeated fitting (no resampling) and 

bootstrapping. ‘Y’ indicates regions where 𝑘 and 𝐴 appear that they can be separately estimated, ‘N’ 

indicates regions where they do not appear to be separately estimable. Results from repeated fitting 

account for the numeric effect from different initial values and results from bootstrapping also account for 

the effect of sample noise. 

Method 
Relative 

error (ϵ) 
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

Repeated 
fitting 

0.0 N Y Y N Y Y 

0.2 Y Y Y Y Y Y 

0.5 Y Y Y Y Y Y 

1.0 Y Y Y Y Y Y 

Bootstrapping 

0.0 N Y Y N Y Y 

0.2 N N Y N Y Y 

0.5 N N N N N N 

1.0 N N N N N N 

 
 
  



Figure S10. Distribution of metric values for sequences from 6 selected regions from the simulated 

reacted fraction dataset, with various noise level. Histogram bars are stacked for visibility. Both metrics σ* 

and γ captured the trend of model identifiability as summarized in Table S2. In contrast, Δ𝐴 failed to 

capture the difference in model identifiability between sequences with different regions and sample noise.  

 
 

  



Figure S11. Distribution of 𝛾 (A) and 𝜎* (B) for sequences within Hamming distance of 2 to the family 

centers from the variant pool k-Seq experiment. Example fitting results are shown for sequences within 

each score range (labels on the left) of 𝛾 (C) and 𝜎* (D). For explanation of (C) and (D), also see caption 

of Figure S4. Sequences with low metric scores for both metrics showed good model identifiability while 𝑘 

and 𝐴 cannot be separately estimated for those with high metric scores. 𝑘 and 𝐴 for most sequences up 

to double mutants could not be estimated separately. 
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Figure S12. Correlation between model identifiability metrics 𝛾 and 𝜎* for analyzable sequences in the 

variant pool k-Seq experiment. Sequences within Hamming distance of 2 to the family centers (𝑑 ≤ 2) 

showed good correlation between the two metrics (Spearman’s ρ = 0.945, p-value = 0.000); larger 

variance was observed for sequences with 𝑑 > 2 due to lower counts and noisier measurements. 

 

  



Figure S13. Processing of sequence reads. (A) Number of raw paired-end reads in each sample. The 

input sample (unreacted) had 3x of other samples for total DNA input for sequencing. (B) Percent of total 

reads retained after paired-end reads joining, filtering (removal of spike-in sequence and sequences that 

are not 21 nt long or with ambiguous nucleotides ‘N’), and checking for analyzability (has non-zero counts 
in the input pool and in at least one of the reacted samples) 
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Table S3: Categorization of analyzable and non-analyzed sequence reads. We used a stringent criterion 

for joining, namely exact matching of the sequence reads in both directions. While this resulted in a 

substantial fraction of discarded reads, the benefit of improved sequencing error was important. The next 

largest category was sequences detected in the unreacted sample but not in the reacted samples; these 
are presumed to be relatively inactive sequences and tended to be higher-order mutants. To check that 

the analyzability requirement did not miss highly reactive sequences that were under-represented in the 

unreacted pool, we determined the mean counts for sequences that were found in the reacted samples 

but not in the unreacted sample. The highest mean count for those sequences was 3.6 reads, indicating 

that these sequences were not seen at high enough copy number after reaction to be considered a 

reliable candidate as an active sequence. However, the possible appearance of such candidates would 

depend on the specific experimental design and ribozyme being studied.  
 

 Unreacted sample Reacted samples (s.d.) 

Analyzable 77.9% 87.7% (0.6%) 

Failed joining of paired-end reads 

(perfect match required) 
10.0% 8.7% (0.4%) 

Spike-in sequence 0.5% 1.2 (0.3%) 

Failed quality control (required 21-nt 

region with no ‘N’ nucleotides) 
5.4% 1.9 (0.3%) 

Not detected in other sample 6.2% (not detected in a 

reacted sample) 

0.5% (0.2%) (not detected in 

the unreacted sample) 

  



Text S2. Variant pool design. 

We defined a sequence with d substitutions (Hamming distance) compared to the wild-type sequence as 

a d-th order mutant. For each partially mutated library (a single family) with randomized length L=21 

residues and mutation rate 𝜂, the fraction of a d-th order mutant in the pool is 

 𝑝+ = (1 − 𝜂),#+	(-
.
)+    (S1) 

The 𝜂 maximizing the fraction of a single d-th order mutant satisfies 𝑑𝑝+/𝑑𝜂 = 0, thus 

 η/ = arg maxη 𝑝+ = d/L (S2) 

and the maximum fraction for a d-th order mutant in the variant pool is 

 𝑝+, max = Q1 − +
,
R
,#+

Q +
.,
R
+
  (S3) 

We used Equation S3 to determine the optimal 𝜂 maximizing the fraction of a given order of mutant in the 

pool. For a sample with 𝑁 total reads, the expected counts for a d-th order mutant is 𝑝+𝑁. 
  



Figure S14. Expected counts for mutants in mixed variant pools of four wild types given different mutation 

rate (𝜂) and 107 total reads, calculated using Equation S1. For mutants with 𝑑 > 2, the maximum number 

of expected counts is not sufficient for all possible d-th order mutant sequences to be estimated 

accurately (i.e., counts are < 10-100 at this sequencing depth), showing a limitation of the variant pool 

library. 

  



Text S3. Effects of sequencing error in the variant pool. 

From Equation S1, the relative abundance ratio between a d-th mutant and a (d+1)-th mutant is 

 𝜙	 = 	𝑝+/𝑝+6) =
.()#-)

-
  (S4) 

Assuming a constant sequencing error rate 𝜉 per nucleotide, and considering the effect of sequencing 

error only by substitution, the probability that a sequence will be misidentified as one of its one-mutation 

neighbors is 

 (1 − 𝜉),#) 7
.
 (S5) 

A d-th order mutant, it has 3𝐿 neighbors consisting of 𝑑 (d-1)-th mutants (i.e., one of the d mutated 

nucleotides reverted to the wild type), 2𝑑 d-th mutants (i.e., one of the d mutated nucleotides changed to 

one of other two possible mutations), and 3(𝐿 − 𝑑) (d+1)-th mutants (i.e., one of the 𝐿 − 𝑑 wild type 

nucleotides mutated). Assuming the real abundance for this d-th order mutant is 1, the (d-1)-th mutant is 

𝜙, and (d+1)-th mutant is 1/𝜙. The expected observed abundance for a d-th mutant, in a variant pool with 

mutation rate 𝜂 and sequencing error rate 𝜉 is 

 𝜌(𝑑,  𝜉,  𝜂)  =  (𝑑𝜙  +  2𝑑  +  (3𝐿 − 3𝑑)/𝜙)(1 − 𝜉),#) 7
.
+ (1 − 𝜉),  (S6) 

The fraction of abundance that originates from its neighbors due to sequencing error is 

 1 − ()#7)"

8(+, 7, -)
  (S7) 

 
  



Figure S15. Expected error from single-mutation neighbor sequences due to sequencing errors, for 

different orders of mutants (𝑑) and different rates of sequencing error (𝜉). Family centers (𝑑 = 0) are the 

most abundant sequences and would be least affected by sequencing error. With decreased error rate, 

the fraction of reads resulting from erroneous reads of neighboring sequences is decreased for each 

order of mutants. The mutation rate in synthesizing the variant pool is 9%. 

 
 

  



Figure S16. Alignment of gel-shift assay results for selected sequences (𝑘𝐴 between 50 ~ 700 min#)M#), 

measured by gel-shift) reported in (1) against the k-Seq results of the variant pool reported in this work. 
Data from the gel-shift assay were fit following the same schema as the k-Seq experiments: for each 

sequence, reacted fractions from all replicates were pooled for point estimation and bootstrapping (100 

samples). The gel-shift results and the k-Seq results were each normalized to baseline activity to 

calculate the catalytic enhancement (1). Seven sequences were found to be analyzable in the variant 

pool, including the most and the least active sequences among the ten measured. A Pearson correlation 

of 0.835 (p-value = 1.94 × 10#9) and a Spearman correlation of 0.750 (p-value = 5.22 × 10#9) were found 

between the k-Seq measured value from the variant pool and the gel shift-measured value. The results 

from two k-Seq experiments (analyzing the variant pool reported here and the enriched pool reported in 

(1)) were also well-correlated with a Pearson correlation of 0.904 (p-value = 5.16 × 10#.) and a Spearman 

correlation of 0.821 (p-value = 2.34 × 10#9). Thus, estimated 𝑘𝐴 was similar among k-Seq experiments 

and the gel-shift assay. The circular markers represent the point estimates of 𝑘𝐴 and the error bars 

indicate standard deviation estimated from bootstrapping.   

 
  



Figure S17. Fraction of sequences in which the estimated CI-95 (from bootstrapping or triplicates) 

includes the true 𝑘𝐴 values, for sequences with different true 𝑘𝐴 values. Sequences were ranked by true 

𝑘𝐴 values (from large to small) and each data point indicates the fraction of CI-95 that include the true 

value in each bin of 25,000 sequences. While CI-95 estimates from bootstrapping consistently includes 

~95% of true values, results from triplicates underestimate the uncertainty (i.e., over-confidence), 

especially for sequences with high 𝑘𝐴 values. 

 

 
 
 
 
 
 



Figure S18. Precision (fold-range: 97.5-percentile / 2.5-percentile) did not have a strong dependence on 

𝑘𝐴 (median of bootstrapping samples). A mild decrease to a plateaued was observed as median 𝑘𝐴 

increases. Each dot represents a sequence, colored by Hamming distance 𝑑 to the family center (see 

legend). 

 
 

 
  



Figure S19: Low amount of non-specific RNA binding. A gel shift assay was performed by incubating 100 

pmol of library RNA containing a random variable region (N = 25% A/G/C/T) with specified concentrations 

(in μM) of BYO or BFO (biotinyl-phenylalanyl-oxazolone) in 50 μL selection buffer for 90 minutes (1). After 

desalting, 5 μL streptavidin (New England Biolabs) was added to each sample, which were then 
incubated for 30 minutes, and analyzed by 8% native PAGE with SYBR Gold staining (Invitrogen). No 

quantifiable signal was seen on the gel without substrate, consistent with Figure 3B and S6A in reference 

(1). In addition, the fraction of RNA recovered by streptavidin beads in the absence of substrate was also 

quantified by HTS. A sample containing 100 pmol of RNA (a selected pool containing the four families 

studied here) was incubated in buffer without substrate for 90 min. RNA bound to the streptavidin beads 

was isolated, and 43 fmol of the spike-in sequence were added for quantification. The RNA was reverse-

transcribed and the DNA was sequenced by HTS to quantify the amount of non-spike-in sequence (edit 

distance to the spike-in sequence > 2). We recovered a fraction of ~ 1.3 × 10-5 of the initial RNA in the 

absence of substrate, compared to a fraction of ~ 1.8 × 10-3 recovered at the lowest concentration of BYO 

(2 μM) in the variant pool k-Seq experiment. Thus, the amount of RNA non-specifically bound to the 

beads is approximately two orders of magnitude less than the smallest amount of RNA recovered in this 

concentration series. 
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Figure S20. Dependence of accuracy (ratio of estimated 𝑘𝐴 over true 𝑘𝐴) on counts in the unreacted 

pool, from simulated count data. The dashed lines correspond to ratios as labeled. Ratios above 100-fold 

or below 0.01-fold are shown at the borders. The counts of the simulated pool have an uneven 

distribution similar to the unreacted sample of the variant pool. 

 

  



Figure S21: Accuracy and precision of 𝑘𝐴 estimation varies with 𝑘𝐴 and number of counts in the 

unreacted sample. A heatmap was constructed using simulated data with known true 𝑘𝐴, for (A) mean 

fold error (accuracy) and (B) mean fold range (precision) for 𝑘𝐴 estimation, binned over various true 𝑘𝐴 

and counts in the unreacted sample. Fold error is the ratio between the point estimate and the true value 

or the reciprocal of this ratio, whichever is greater than 1. Fold range is the ratio between the 97.5-

percentile estimate and 2.5-percentile estimate, indicating the range of uncertainty. It can be seen that 
low activity sequences can be reasonably well-estimated at higher counts. Specifically, 7089 simulated 

sequences had 𝑘𝐴 < 1 min#)M#) and counts > 1000. These sequences showed a mean fold error of 1.26 

± 0.17 (s.d.) between the point estimate and the true 𝑘𝐴 (accuracy) and a 2.04 ± 0.53 (s.d.) fold range for 

𝑘𝐴 estimation (precision). Hexagonal bins containing at least 10 sequences are shown. 
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Figure S22. Pool evenness for the pool enriched by selection and the designed variant pool. Pool 

evenness is evaluated by normalized entropy (−∑ 𝑝(𝑖) log 𝑝(𝑖)/ log𝑁:
;<) , where 𝑝(𝑖) is the fraction of 

sequence 𝑖 and 𝑁 is the number of unique sequences) for sequences with various minimum count 

thresholds in the unreacted samples. The variant pool is more even (higher normalized entropy) than the 

enriched pool. 
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