Supplementary Information Phytochemical-based nanocomposites for the treatment of bacterial biofilms

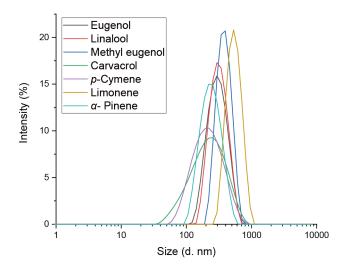
Cheng-Hsuan Li,^{†,‡} Xinhong Chen,^{∞ ,[‡]} Ryan F. Landis,[†] Yingying Geng,[†] Jessa Marie Makabenta,[†] William Lemnios,[†] Akash Gupta,[†] and Vincent M. Rotello^{*},[†]

[†]Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States ∝Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P. R. China.

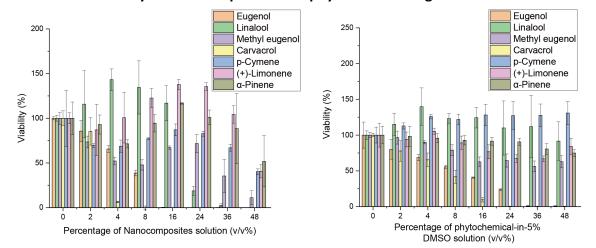
[‡]C.-H. Li and XH. C contributed equally

Corresponding Author *E-mail: rotello@chem.umass.edu

Table of contents


Figure

Size distribution of nanocomposites	S2
Antimicrobial activity of nanocomposites and phytochemicals against bacterial biofilms	S2 -S4
Biomass of bacterial biofilms after NCs treatment	S5
Cytotoxicity of nanocomposites to 3T3 fibroblast cells	S5


Table

MBEC ₉₀ and GI ₅₀ of Nanocomposites	. S6
Bacterial strains information	. S6

Size distribution of nanocomposites

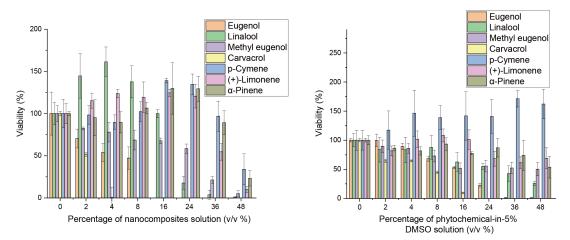


Figure S1 Average diameters of nanocomposites loaded with different phytochemicals in phosphate buffer saline (150 mM) were determined by DLS (Malvern Zetasizer Nano ZS)



Antimicrobial activity of nanocomposites and phytochemicals against bacterial biofilms

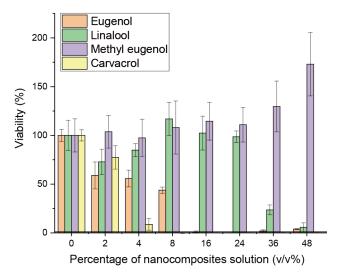

Figure S2 Viabilities of *E. coli* (CD2) biofilms after a three-hour treatment with a) NCs or b) phytochemicals in 5 v/v% DMSO solution. Data were presented as mean \pm standard deviation and represented three independent experiments.

Figure S3 Viabilities of *P. aeruginosa* (CD1006) biofilms after a three-hour treatment with a) NCs or b) phytochemicals in 5 v/v% DMSO solution. Data were presented as mean \pm standard deviation and represented three independent experiments.

Figure S4 Viabilities of *E. cloacae* complex (CD1412) biofilms after a three-hour treatment with a) NCs or b) phytochemicals in 5 v/v% DMSO solution. Data were presented as mean \pm standard deviation and represented three independent experiments.

Figure S5 Viabilities of *S. aureus* (CD489, MRSA) biofilms after a three-hour treatment with nanocomposites loaded with eugenol, linalool, methyl eugenol, or carvacrol. Data were presented as mean ± standard deviation and represented three independent experiments.

Biomass of bacterial biofilms after NCs treatment

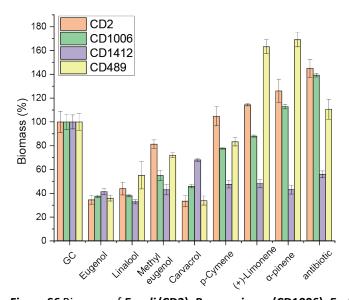
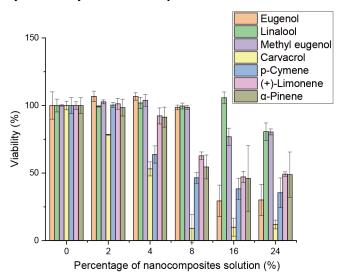



Figure S6 Biomass of *E. coli* (CD2), *P. aeruginosa* (CD1006), *E. cloacae* complex (CD1412), and *S. aureus* (CD489) biofilms after a three-hour treatment with NCs. The concentrations were either the corresponding $MBEC_{90}$ of the NCs (if applicable) or 48 v/v%. Furthermore, biofilms were treated with antibiotics as controls. Specifically, Gram-negative bacterial biofilms were treated with 10 × MIC of colistin while Gram-positive biofilms were treated with 10 × MIC of vancomycin. Data were presented as mean ± standard deviation and represented three independent experiments.

Cytotoxicity of nanocomposites to 3T3 fibroblast cells

Figure S7 Viabilities of **3T3 fibroblast** cells after a three-hour treatment with NCs. The viabilities were determined using Pierce LDH cytotoxicity assay. Data were presented as mean \pm standard deviation and represented three independent experiments.

		MBEC 90 (v/v %)			GI ₅₀ (v/v %)
Encapsulated phytochemical	CD2	CD1006	CD1412	CD489	- 3T3
	E. coli	P. aeruginosa	<i>E. cloacae</i> complex	S. aureus	Fibroblast cell
Eugenol	13.8	11.86	12.23	9.27	8.89
Linalool	25.98	26.83	30.03	37.9	27.14
Methyl eugenol	nd	43.21	39.14	nd	nd
Carvacrol	3.44	2.96	2.22	3.55	3.9
<i>p</i> -Cymene	nd	nd	28.88	nd	6.62
Limonene	nd	nd	21.64	nd	13.88
α-pinene	nd	nd	29.22	nd	9.83

MBEC₉₀ and GI₅₀ of Nanocomposites

Table S1 NCs' minimum concentration to eradicate 90% of biofilms (MBEC₉₀) against four bacteria strains and their concentrations to inhibit 50% fibroblast cell proliferation (GI_{50}). The abbreviation "nd" indicated not determined.

Bacterial strain information

	Riley Strain Name	CD-2	CD-1412	CD-1006	CD-489
	Species	E. coli	E. cloacae complex	P. aeruginosa	S. aureus - MRSA
	Date Isolated	9/11/2011	7/12/2006	4/23/2012	3/12/2001
	Specimen	UCC	UCC	UCC	UCS
	CFU/mL	>100,000	>100,000	>100,000	>100,000
	Note		Urine from nephrostomy tube		
Aminoglycosides	Amikacin (Amikin)		S		
	Gentamicin (Garamycin)	S	I	S	S
	Kanamycin High				
	Level				
	Tobramycin (Nebcin)		R		
β-Lactam	Ampicillin (Omnipen, Polycillin)	R		S	
	Ampicillin/sulbactam (Unasyn)	I		S	R
	Amoxicillin/CA (Augmentin)				R
	Aztreonam (Zithromax)				
	Oxacillin (Prostaphlin)				R
	Penicillin				R
	Piperacillin (Pipracil)				
Cephalosporin	Ceftazidime				
	(Fortaz, Tazicef)				
	Cefaclor				R

	(Ceclor, Ceclor CD)				
	Ceftriaxone	S	S	S	R
	(Rocephin)		5	5	
	Cefotaxime				R
	Cefazolin	S	R	S	
	(Ancef, Kefzol)	5	IX.	,	
	Ceftizoxime				
	Cefepime (Maxipime)	S	S	S	
	Cefoxitin (Mefoxin)	S	R	S	
	Cefuroxime-Sodium				R
	Cefuroxime-Axetil				
	(Ceftin)				
	Ertapenem				
Carbapenem	Imipenem (Primaxin)			S	R
cansapenen	Meropenem				
	(Merrem)				
	Azithromycin				
Macrolides	(Azactam)				
	Erythromycin				
	Ciprofloxacin (Cipro)	S	S	S	
Fluoroquinolone	Levofloxacin	S	S	S	R
	(Levaquin)	0			
	Ofloxacin (Floxin)				
Lincosamides	Clindamycin				
	(Cleocin)				
Oxazolidinones	Linezolid (Zyvox)		S		S
Antimycobacterial	Rifampin				S
	(Rifadin, Rimactane)				5
Folate pathway	Trimethoprim/Sulfa	S	R	S	S
inhibitors	(Gantanol)	5	ĸ	3	3
Tetracycline	Tetracycline				S
Glycylcyclines	Tigecycline				
Glycopeptides	Vancomycin				S
Citebebunes	(Vancocin)				

 Table S2 All strains were harvested and tested for susceptibility in Cooley Dickinson Hospital Microbiology

 Laboratory (Northampton, MA). S: Susceptible; I: Intermediate; R: Resistant.