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Abstract

Background: Recent technological advances have resulted in an unprecedented increase in publicly
available biomedical data, yet the reuse of the data is often precluded by experimental bias and a lack
of annotation depth and consistency. Missing annotations makes it impossible for researchers to find
datasets specific to their needs. Findings: Here we investigate RNA-seq metadata prediction based
on gene expression values. We present a deep-learning based domain adaptation algorithm for the
automatic annotation of RNA-seq metadata. We show how our algorithm outperforms existing linear
regression based approaches as well as traditional neural network methods for the prediction of tissue,
sample source, and patient sex information across several large data repositories. By using a model
architecture similar to siamese networks the algorithm is able to learn biases from datasets with few
samples. Conclusion: Using our novel domain adaptation approach we achieved metadata annotation
accuracies up to 12.3% better than a previously published method. Using the best model we provide a list
of more than 10,000 novel tissue and sex label annotations for 8,495 unique SRA samples. Our approach
has the potential to revive idle datasets by automated annotation making them more searchable. The
source code as well as an example are available at: github.com/imsb-uke/rna_augment

Key words: RNA-seq metadata, data reusability, automated annotation, machine learning, domain
adaptation, bias invariance

Introduction

Next generation RNA-sequencing (RNA-seq) has been

a pillar of biomedical research for many years [1,

2]. It allows researchers to simultaneously quantify

and compare the expression of tens of thousands

of genomic transcripts. A continuous drop in cost

makes RNA-seq a widely available method of choice to

uncover the molecular basis of biological development

or disease [3, 4]. As a result of this, recent years
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have seen a strong growth in publicly accessible RNA-

seq data. The actual reuse and integration of this

data, however, has been largely limited by the lack

of consistent metadata annotation and individual

dataset bias [5, 6]. The lack of metadata annotation

for RNA-seq samples, such as tissue of origin,

disease or sex phenotype, prohibits experimenters

from finding data that is relevant to their research.

Moreover, dataset biases [7] due to differences in

protocols and technologies [8] or of a biological nature

hinder integration and comparative analysis.

To allow for efficient data reuse, publicly available

data has to be harmonized and well annotated with

standardized metadata and subsequently be made

accessible (and searchable) [9]; This practice is

followed by the Genotype-Tissue Expression Project

(GTEx) [10], and The Cancer Genome Atlas

(TCGA). Nevertheless, the primary database for

next-generation sequencing projects, the Sequence

Read Archive (SRA) [11], stores raw sequencing

information that lacks rigorous standards of curation,

which limits the reusability of its data.

Efforts to predict missing or sparse metadata

in public RNA-seq resources have shown promising

results. For instance, recently published studies used

text mining approaches to retrieve missing annotation

from associated abstracts or free text annotations in

the data sources [12, 13, 14]. Others have used RNA-

seq expression values for phenotype prediction. For

example, machine learning (ML) has successfully been

applied to disease and cell type classification [15, 16]

or survival outcomes on TCGA data [17]. Others

have taken advantage of prior domain knowledge such

as gene regulatory networks for enhanced feature

selection [18, 19]. Recently a linear regression model

fitted to GTEx data has been presented for the

prediction of tissue, sex and other phenotypes of

SRA and TCGA samples [20]. These efforts provide

evidence that missing RNA-seq metadata can be

successfully predicted based on genomic expression

values using ML approaches.

Artificial neural networks (ANNs) in their various

forms and functions consistently outperform classical

ML approaches in a large variety of biological

tasks, including classification, data generation

and segmentation [21, 22, 23, 24]. Given large

training datasets these algorithms can learn complex

representations of data by automatically weighting

and combining features non-linearly. This has led

us to hypothesize that ANN based models could

increase the performance in metadata prediction

beyond that of classical ML approaches such as

linear regression. Of special interest in this context

is domain adaptation (DA) [25], a subfield of ML

which aims to specifically alleviate problems conferred

by dataset bias [26]. The aim of DA is to build and

train ANNs on a source domain in such a way that

the model performs well on a biased target domain.

One strategy that has been successfully applied is

interpolation between source and target domain by

training feature extractors on an increasing ratio of

target to source domain data [27]. Another popular

strategy is adversarial training by applying two loss

functions. The first loss function forces the model to

learn weights for class prediction while the second

forces the model to learn to ignore differences between

the source and target domain [28]. Tzeng et al.

adapted this idea [29], proposing a model using a

separate source and target encoder using them as

’real’ and generator input for a generative adversarial

network [30] that is capable of ignoring bias. For the

case of scarce target data a similar approach was

previously proposed using siamese networks [31, 32].

All these methods have been implemented and applied

by us for RNA-seq phenotype prediction and found

not to be scalable to a situation with hundreds of

different and scarce target domains, encountered, for

instance, in the SRA.

Here we present a DA approach capable of

leveraging a number of dataset biases, boosting

generalizability of phenotype prediction. We developed

the model using three data sources (GTEx, TCGA

and SRA) of different size and with a different degree

of bias. To validate our approach we compare it to a

previously suggested linear model (LIN) [20] as well as

a standard supervised multi-layer perceptron (MLP)

on prediction of tissue of origin, sex and sample

source. Importantly, we find that our DA network

significantly outperforms the strongly supervised LIN

model by up to 12.3% in prediction accuracy. We

subsequently apply trained models to generate and

make available new metadata for 8,495 unique SRA

samples.
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Methods

Data Acquisition

To train and test models we gathered data from

three different sources, each with a different level

of homogeneity, which we define as the number of

unique dataset biases present within one data source

(Supplementary Figure 1). Biases stem from the

unique circumstances, protocols and reagents used as

well as biological factors of the study [7, 8]. Here

we define a dataset as all the RNA-seq samples

from one study based on the assumption that they

were obtained and processed under equal conditions.

To avoid additional biases by the use of different

bioinformatic alignment pipelines [33] all data was

downloaded from recount2 (release 13.09.19, https://

jhubiostatistics.shinyapps.io/recount/). Recount2

aggregates raw RNA-seq data from different sources

and re-runs the data through the Rail-RNA alignment

pipeline [34]. The RSE V2 files of all available

RNA-seq projects (n=2,036) from recount2 were

downloaded using the recount R package (v 1.11.13).

The downloaded data was separated into three

different data sources according to their origin. Figure

1A gives a general overview of the data obtained, the

pre-processing steps and data set preparation.

GTEx

The Genotype-Tissue Expression Project v6 (https:

//www.gtexportal.org/) comprises 9,662 samples from

554 healthy donors across 31 tissues. GTEx

strives to build a highly homogeneous dataset with

strict guidelines on donor selection, biopsy and

sequencing methodology (more information at: https:

//www.gtexportal.org/home/documentationPage). We

considered the GTEx data source to have a single

dataset bias.

SRA

From the Sequencing Read Archive, a total of 2,034

studies containing a total of 49,657 samples were

downloaded from recount2. Every SRA study was

potentially processed at a different site by a different

technician following different standards. In addition,

the underlying biological condition of the samples

is often unclear. We assume each study to have

a unique dataset bias which makes the SRA a

highly heterogeneous data source. In addition, data

annotation is not standardized resulting in sparse

metadata with low fidelity.

TCGA

RNA-seq data for The Cancer Genome Atlas (https:

//www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga) was downloaded consisting

of 11,284 samples spanning 26 tissues. While

there are 740 samples of healthy donors across 20

tissues, more than 90% of the samples are tumor

biopsies from different tissues and different stages

of tumor progression. TCGA accepts sequence data

from different locations using different sequencing

technologies. Despite the high level of standardization

and reliability of metadata information, heterogeneity

is also inherent to the TCGA dataset due to the

biological context (cancers, stages) albeit not as

pronounced as in SRA.

Preprocessing of SRA Data Source

In this study we focus on bulk mRNA-seq data,

as it is by far the most frequent RNA type in

either of the three data sources used. The following

approaches were used to remove data from single-

cell and small RNA-seq studies from further analysis:

First, we identified small RNA-seq data on the basis

of the total fraction of small RNA counts and protein

coding RNAs. Specifically, we considered a subset

of the Gencode gene types (i.e. protein coding and

processed pseudogene vs. rRNA, miRNA, misc RNA,

snRNA and lincRNA). Every sample that had its

maximum total count fraction not allocated to

either protein coding or processed pseudogene was

removed from further analysis (Supplementary Figure

2). Second, we removed single-cell RNA-seq studies

by scanning titles and abstracts for variations of

the words ’single cell’ and manually validated and

excluded the identified samples. In addition to this

semi-automatic validation step we manually validated

the 50 largest projects within the SRA data source

and removed samples that did not qualify as bulk

RNA-seq data. Most importantly, we noticed a large

number of technical replicates in the remaining SRA

data. Using technical replicates to train and test

a classification model inflates the reported metrics.

Therefore only samples with a unique experiment

accession (SRX) were retained. From the 49,657 SRA

samples downloaded initially, 29,685 samples and

1,833 unique studies passed our preprocessing steps.

Metadata

We considered three different phenotypes for expression

based prediction. Explicitly, we predicted the tissue of

origin of a biopsy (e.g. heart, lung, kidney, ovary), the

https://jhubiostatistics.shinyapps.io/recount/
https://jhubiostatistics.shinyapps.io/recount/
https://www.gtexportal.org/
https://www.gtexportal.org/
https://www.gtexportal.org/home/documentationPage
https://www.gtexportal.org/home/documentationPage
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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patients’ sex, and sample source (denoting whether

the sample was from a patient biopsy or a lab grown

cell line) (Figure 1A).

GTEx and TCGA

Tissue and sex annotation for GTEx were extracted

from the official sample annotation table as provided

by GTEx (GTEx Data V6 Annotations SampleAttributesDS.txt,

from https://storage.googleapis.com/gtex_analysis_

v6/annotations). An annotation file for TCGA was

provided by recount2. For tissue and sex annotation

we took columns gdc cases.project.primary site and

gdc cases.demographic.gender respectively. Sample

source was assumed to be of type biopsy for all GTEx

(n=9,662) and TCGA (n=11,284) samples.

SRA

For the SRA samples we relied on normalized

metadata provided by MetaSRA [14]. Available

SRA identifiers were downloaded through the GUI

on http://metasra.biostat.wisc.edu by searching for

all 31 GTEx tissues (site accessed on 11.09.2019).

Supplementary Table 1 lists assumed mappings from

GTEx tissue names to MetaSRA tissue names where

no direct mapping was available. Of the 31 tissues

available for GTEx we were able to identify samples

for 26 in MetaSRA, resulting in 6,183 annotated

SRA samples. Sample identifiers for sex were accessed

through the same GUI by searching for male organism

and female organism + Homo sapiens cell line which

resulted in 3,240 annotated SRA samples. Sample

source was determined using the sqlite file provided

by MetaSRA (metasra.v1-5.sqlite, http://metasra.

biostat.wisc.edu/download.html, colum sample type)

resulting in 28,043 annotated samples across six

sample source categories.

Tissue Label Harmonization

GTEX, TCGA and SRA have 17 common tissue types

(Supplementary Figure 3). Bladder was removed due

to its small sample size (GTEX n=11). We kept

samples of comparable size in SRA (adrenal gland

n=14, testis n=14, pancreas n=17 in the SRA training

data), as the SRA training data is mainly used for

bias injection, such that size was not considered an

exclusion criterion. This resulted in 5,480, 8,624, and

3,252 tissue annotated samples across 16 tissues for

GTEx, TCGA and SRA, respectively (Supplementary

Tables 2 and 3).

Dimensionality Reduction and Normalization

The downloaded gene count table provided counts

for 58,037 genes (Gencode v25, GRCh38, 07.2016).

First standard log2 Transcript per Million (TPM)

normalization was applied to normalize for gene

length and library size. We next reduced the number

of input features (genes), aiming to keep features

that contain information and removing potentially

uninformative features. First, all non-protein coding

genes were removed, reducing the gene set by 65.5%

to 19,950 genes. For sex classification only protein

coding genes on the X and Y chromosome (n=913)

were selected. For retaining only genes that show

significant dispersion across tissues, we computed

the Gini coefficient [15, 35, 36] for all remaining

genes across all GTEx samples. Housekeeping genes,

for example, are known to be expressed similarly

across tissues and would score a low Gini coefficient

(i.e. high dispersion). Low and high cutoffs were

applied during hyperparameter optimization. For

tissue classification, genes with Gini coefficients

g between 0.5 and 1 were retained, resulting in

a features space of dimension d=6,974. For sex

classification, genes with 0.4 < g < 0.7 were used

(d=190). Sample source classification included genes

with 0.3 < g < 0.8 (d=8,679) (Supplementary Table

2).

Dataset Preparation

Phenotype Classification Experiments.

Tissue: To ensure that dataset biases are not shared

between train and test sets, SRA data was always

split on the study level. For tissue of origin prediction

the two largest SRA studies per class were put in the

training set. This ensured maximal bias variability in

the remaining test data, ensuring a realistic test score.

Of the 178 SRA studies containing tissue annotated

samples, 30 studies were selected for the training set

(n=1,721) and 148 studies for the test set (n=1,531)

(Supplementary Tables 2 and 3). Sex: In total,

159 SRA studies contained samples annotated with

male and or female by MetaSRA. These studies were

combined into the training set (studies=78, n=2,317),

and test set (studies=81, n=923) (Supplementary

Tables 2 and 3). For model validation GTEx was

randomly split into training and test sets with a 80:20

ratio for both sex and tissue classification. Sample

Source: A confidence cutoff of > 0.7 was applied

(provided by MetaSRA), reducing the total amount

of annotated samples for SRA from 23,651 to 17,343.

For each of the two selected SRA categories (i.e.

https://storage.googleapis.com/gtex_analysis_v6/annotations
https://storage.googleapis.com/gtex_analysis_v6/annotations
http://metasra.biostat.wisc.edu
http://metasra.biostat.wisc.edu/download.html
http://metasra.biostat.wisc.edu/download.html
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biopsy and cell line) we sorted all available studies

by number of samples, placed the first third of studies

into the training (studies=420, n=12,725), the second

third into the test (studies=422, n=3,144) and the

last third into the SRA validation set (studies=418,

n=1,124) (Supplementary Tables 2 and 3). A list of

the sample ids and corresponding labels is available

in the Supplementary Material.

Metadata Annotation.

After determining the best model for each phenotype

we re-trained the models for automated metadata

annotation. The same datasets as defined above were

used for the sex metadata annotation. Tissue: We

followed the same pipeline as described above, the

only difference being that no samples were discharged

because of their tissue label. Samples from a tissue

class other than the original 16 classes were pooled

together into a ’catch-all’ class, resulting in 17

classes. In total 44 SRA studies were selected for the

training set (n=3,370) and 203 studies for the test set

(n=2,813). Sample Source: Contrary to before, for

metadata annotation we used all available classes in

the SRA data source. All classes that are not tissue

(i.e. biopsy) were grouped into a single ’catch-all’

class while the same cutoff as before was applied. The

training set (n=16,463) is made up of 974 SRA studies

and the test set (n=3,707) of 492 studies.

Multilayer Perceptron - MLP

MLPs use fully connected neural network layers to

learn non-linear features from a raw input space [37]

and constitute the most basic form of ANNs. All

our ANN based models were developed and trained

on tf.keras (Tensorflow 2.1). The hyperparameters

for each prediction task were determined using

exhaustive iterative random search (keras tuner 1.0.1)

(Supplementary Table 4). In case of approximately

equal accuracy on the validation set, the least

complex model was chosen. A single hidden layer was

used in each case with 128, 128 and 32 nodes for

tissue, sample source, and sex prediction, respectively

(Supplementary Table 5, Supplementary Figure 4).

Each network was trained for 10 epochs with a

batch size of 64. Performance was quantified by

mean sample accuracy and mean class accuracy and

subsequently used to benchmark our DA approach.

Domain Adaptation Model - DA

Many DA models correct bias between two domains,

a source and a target domain. In biological research,

however, one is often confronted with a large number

of small datasets, each potentially with its unique

dataset bias. Therefore, we specifically designed our

DA model to be able to learn from very few data

by using a siamese network architecture [31]. The

siamese network learns bias from pairs or triplets of

training samples by exposing each sample in multiple

relationships to the model. We distinguished three

different types of input data for our model. The source

domain is a large single-bias dataset used to learn

the feature embedding for the classification task (in

our case: GTEx). The bias domain contains labeled

samples from multiple smaller datasets (in our case:

SRA) each with its own bias. The target domain refers

to unlabeled and biased datasets we want to classify

(unlabeled SRA or TCGA data).

Model Architecture

Our DA architecture is based on the siamese

network architecture. It consists of three modules: A

source mapper (SM) and bias mapper (BM) which

correspond to the siamese part of the model, as well as

a classification layer (CL). These modules give rise to

three different configurations, i.e. two training cycles

and a prediction configuration (see Supplementary

Figure 5 for a brief illustration). In the first training

cycle the source mapper (SM) and the classification

layer (CL) are combined to form an MLP (Figure

2A). The task of the SM is to learn a mapping from

the input space to an embedding space from which

the CL can predict phenotype classes. The SM-CL

module is trained with a batch size of 64 for 10 epochs.

Because the SM-CL MLP is trained on a large single-

bias dataset it will likely overfit and thus not readily

generalize to other datasets (Figure 2B). For a second

training cycle, the bias mapper is created with the

same architecture as the SM. The CL is removed

and the weights of the SM are frozen. Triplets of

data are forward propagated through the BM and SM

in parallel (Figure 2C). Each triplet is made up of

an anchor (a) sampled from the bias domain, and a

positive (p) and a negative sample (n) from the source

domain. The anchor and the positive sample have

equal class labels whereas the negative sample is from

a randomly selected different class. The triplets loss

function [38] was used to optimize the model during

training:

L = max(d(a, p)− d(a, n) +m, 0)

Where d(i, j) are the distances in embedding space

between the respective outputs of the BM and SM

on samples i and j. For improved training time and
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robustness, our model is trained on semi-hard triplets

[38]

d(a, p) < d(a, n) < d(a, p) +m

with a margin parameter m. The distances are

defined as Euclidean distances in embedding space:

d(a, p) = ‖σ(BM(a))− σ(SM(p)))‖

d(a, n) = ‖σ(BM(a))− σ(SM(n)))‖

σ is the sigmoid activation function for the

embedding vector. The SM-BM module was trained

for 10 epochs with a batch size of 64. Hyperparameters

were determined as described above (Supplementary

Table 5, Supplementary Figure 4). As this training

cycle proceeds, the BM learns to map its output onto

the SM embedding space. After training, the bias

mapper and the classification layer are combined to

a BM-CL MLP and can be used for prediction of the

target domain (Figure 2D). The source code as well

as an example are available at: github.com/imsb-uke/

rna_augment.

Linear Regression Model - LIN

We used the metadata prediction performance of the

LIN model described in Ellis et al. [20] as point of

reference. The LIN model was optimized on the same

data as all other models (see data section of methods).

For each experimental setup, the following steps were

conducted in R version 3.6.3 in order to build the

corresponding phenotype predictor and evaluate its

accuracy based on the test data:

1. calculating the coverage matrix for the training

samples based on the regions reported in

Ellis et al. [20] by employing the function

‘coverage matrix bwtool’ (R package recount.bwtool

version 0.99.31).

2. building the model by running ‘filter regions’ and

‘build predictor’ (R package phenopredict version

0.99.0) with the same parameters used in Ellis et

al. [20]

3. testing the model on the test samples with

‘extract data’, ‘predict pheno’, ‘test predictor’ (R

package phenopredict version 0.99.0)

Notably, our experiments differ from the original

work [20] solely by applying additional preprocessing

steps to the samples (see Methods), which may

be responsible for observed small differences in

performance. For implementation details and code

examples for the before-mentioned functions, see the

documentation (http://rdrr.io/github/ShanEllis/phenopredict/

).

Nomenclature of Experiments

Each experiment was named after the model, the

training and the test data used. The possible

models are LIN (linear model [20]), MLP (multi-

layer perceptron) and DA (novel domain adaptation

approach). The data sources are named G (GTEx), T

(TCGA) and S (SRA). If only the SRA training data

is used (i.e. if the model is evaluated on the SRA

test data) we write Ssmall. If the SRA train and test

sets are combined for training we write Slarge. For

instance, an experiment using an MLP, trained on a

mix of GTEx and SRA and evaluating on SRA data

would be named MLP G+Ssmall-S.

Impact of Data Diversity and Quantity on Model

Performance

To analyse the effect of training data diversity

on prediction accuracy the following experiments

were designed. First, MLP S-S models for sample

source prediction were trained with an increasing

number of unique SRA studies in the training data,

systematically increasing bias diversity. Only SRA

studies containing > 100 samples for either class were

considered. In order to control for training set size,

each SRA study was subsampled to 50 samples before

training. Six iterations of this training process were

conducted starting with one study (i.e. one bias) per

class (biopsy vs. cell line). At each step one additional

SRA study per class was subsampled ending with six

SRA biases and 350 samples in the training set per

class. As a control experiment we chose the largest

SRA study available for each class to create a training

set with a single bias per class. Starting with 50

samples per class in six iterations we subsampled

an additional 50 samples ending with 350 samples,

thereby assessing the effect on performance that can

be attributed to the dataset size. Subsampling and

random selection of SRA studies were repeated 10

times with different seeds and each configuration was

trained on 10 different seeds, yielding an estimate of

uncertainty.

Metrics

We report micro and macro accuracy which are

equivalent to mean sample accuracy (msa) and mean

class accuracy (mca) respectively. Sample accuracy is

a measure of absolute performance on the test data.

github.com/imsb-uke/rna_augment
github.com/imsb-uke/rna_augment
http://rdrr.io/github/ShanEllis/phenopredict/)
http://rdrr.io/github/ShanEllis/phenopredict/)
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It reports the fraction of correctly classified samples

over all classes:

msa =

∑N
i 1yi

(ŷi)

N

Where N is the number of samples, y the true

label and ŷ the predicted label, and 1 is the indicator

function. Given the large class imbalance in some of

our experiments an increase in accuracy in a small

class will not be captured by this metric. Average

class accuracy, on the other hand, reports the average

sample accuracy per class, weighing each class equally

and thereby capturing local improvements of the

models:

mca =

∑C
j=1

1
Mj

∑Mj

i=1 1yij
(ŷij)

C

Here, C is the number of classes, Mj is the number

of samples for class j, and yij and ŷij are the true and

predicted values, and 1 is the indicator function.

Statistical Tests

Accuracy distributions for sex and tissue prediction

were tested for statistically significant differences

using a t-test (two distributions, scipy.stats.ttest ind

v 1.3.1) or ANOVA (more than two distributions,

scipy.stats.f oneway) with a significance threshold of

0.01.

RESULTS

Experimental Setup

This study aims to find the best model for RNA-

seq metadata annotation based on gene expression.

Three different data sources were selected for which

phenotype data was available (Figure 1A). Each of the

three data sources comes with a different number of

data set biases. Briefly, GTEx is a large homogeneous

dataset containing healthy samples following a strict

centralized standard protocol. TCGA contains pooled

samples from different cancers, disease stages and

sequencing centers. Our SRA data is made up of

hundreds of individual studies following no centralized

standard, containing the largest number of biases

of all three data sources. Bias in a test dataset

that has not been learned by a model can severely

compromise performance. We hypothesized that

exposing classification models to a sufficient number

of dataset biases will enable them to learn a

generalized internal feature representation. Such a

model would be able to classify data with previously

unseen biases. To test and benchmark our models we

selected the classification tasks of (1) tissue of origin

of a given RNA-seq sample, (2) biopsy vs. cell-line

origin of a sample (i.e. sample source), and (3) sample

sex (Figure 1A).

Three different machine learning models were

compared (Figure 1B). First, a fully connected ANN

(MLP) was tested because of its capability to create

novel latent features (see methods for model details).

Second, we developed a domain adaptation (DA)

approach (Figure 2), a subfield of machine learning

dealing with dataset biases. Lastly, the LIN model

trained on GTEx data, proposed in Ellis et al.

[20], was used as the baseline for all tissue and sex

classification experiments.

Models were trained on either GTEx or a mix of

GTEx and SRA data and tested on TCGA and SRA

data. Uncertainties for MLP and DA models were

estimated from 10 training runs with different random

seeds (Figure 1B).

Domain Adaptation Outperforms Other Models on

Tissue Classification

We first tested the performance of the LIN, MLP,

and DA algorithms to predict the tissue of origin

on GTEx (n=5,480), TCGA (n=8,624), and SRA

(train n=1,721, test n=1,531) datasets. A subset of 16

tissue labels was chosen that is common to all three

data sources (see methods, Supplementary Figure 3,

Supplementary Table 3). First, we conducted a single-

bias experiment, i.e. MLP G-G (see Nomenclature of

Experiments in methods). The nearly perfect score

of mean sample accuracy (msa) 0.996 and mean class

accuracy (mca) 0.99 (data not shown) confirmed that

the MLP yielded highly accurate results when trained

and tested on a single-bias dataset (for details on

model training, validation, and testing see methods).

Prediction of SRA Tissue

Metadata prediction on SRA was the most challenging

and interesting task due to the potentially large

number of different biases in the data source. We

re-trained and tested LIN G-S on our datasets and

achieved a msa of 0.893 and a mca of 0.765 for the

16 tissues (Figure 3A). Of note is the significantly

higher accuracy achieved with LIN G-S compared to

the one reported by Ellis et al. [20] (0.519 msa).

MLP G-S (msa: 0.872, mca: 0.77) had a higher mca
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but a lower msa than the corresponding LIN model

(Figure 3A). In the next step we investigated the effect

of adding bias to the training dataset on prediction

performance. In particular, we first predicted SRA

tissue from Ssmall data. MLP Ssmall-S (msa: 0.894,

mca: 0.746) matched the base model’s msa score

but performed slightly worse using the mca metric.

Similarly, the LIN Ssmall-S model matched the msa

of LIN G-S but showed an increased performance for

mca (msa: 0.893, mca: 0.795) Notably, by only using

the small SRA training dataset, we lose the advantage

of the large sample size of GTEx. Based on this we

hypothesized that by combining SRA and GTEx in

the training data, we may be able to leverage both

sample size and diversity.

The LIN G+Ssmall-S model increased its msa

to 0.908 and mca to 0.785 which in turn is 1

percentage point (ppt) lower than the LIN Ssmall-

S model. The two best performing models were

MLP G+Ssmall-S and DA G+Ssmall-S, outperforming

LIN G-S on msa by 2.5 ppts and mca 5.5 ppts

(MLP G+Ssmall-S msa: 0.915, mca: 0.817 and DA

G+Ssmall-S msa: 0.922, mca: 0.821). No significant

difference in the mean performance was detected

between these two models (msa p-val>0.01, mca p-

val>0.01, t-test). Crucially, however, DA G+Ssmall-S

exhibited the lowest standard deviation (std=0.003

for msa and std=0.009 for mca) of all models

tested (Supplementary Table 6). For this reason DA

G+Ssmall-S was considered the best model for the

prediction of tissue on the highly heterogeneous SRA

test data, increasing the msa score by 1.5% compared

to LIN G+Ssmall-S and mca by 3.3% compared to

LIN Ssmall-S, the best performing linear models for

the respective metrics.

Prediction of TCGA Tissue

Next, model performance on TCGA data was assessed

(Figure 3B). The baseline model LIN G-T achieved

msa 0.718 and mca 0.638. Applying the MLP model

on the same data resulted in a drop of msa and

mca of 2.4 and 3.3 ppts, respectively (MLP G-T

msa: 0.684, mca: 0.605). For TCGA tissue prediction

we used Slarge for training, essentially doubling the

SRA training data (SRA train + SRA test set:

n=3,252). LIN Slarge-T improved accuracy by 6.6 ppts

for msa and 8.6 ppts for mca to 0.784 and 0.724

respectively. In comparison, MLP Slarge-T increased

model performance by 11.4 ppts to 0.832 (by 11.7

ppts to 0.755) for msa (mca) with respect to LIN G-

T. Combining GTEx and SRA training data reduced

LIN G+Slarge performance to msa 0.725 and mca

0.651. The best accuracy was achieved by our MLP

G+Slarge (msa: 0.842, mca: 0.773) and DA G+Slarge

(msa: 0.875, mca: 0.813) models. The DA model

had thus a 11.6% performance increase for msa and

12.3% increase for mca compared to LIN Slarge-T,

the best linear model. In addition to being the top

performer, DA G+Slarge-T also was the most robust

model for this task, having the lowest variation in its

results (std=0.004 for msa and std=0.006 for mca)

(Supplementary Table 6).

We repeated the prediction for TCGA with the

models trained for SRA tissue prediction (previous

section), i.e. on Ssmall, which allows us to assess the

influence of the amount of bias injection on model

performance. Whereas the addition of more SRA data

to the training data set had little influence on LIN

models (except for a slight increase of ∼0.2 ppts

for G-Slarge-T), both MLP and DA model accuracies

improved significantly (by between 5 and 9 ppts) upon

addition of additional SRA data (Supplementary

Table 6).

Notably, adding 5,480 GTEx training samples

to MLP Ssmall (MLP-Ssmall → MLP G+Ssmall)

increased msa from 0.748 to 0.764 and msa from

0.688 to 0.716 on the TCGA test set. On the

other hand, adding 1,531 SRA samples (MLP-

Ssmall → MLP Slarge) increased msa to 0.832 and

msa to 0.755, underlining our model’s ability to

incorporate multiple biases for better generalization

(Supplementary Table 6).

Multi-Bias Data Enhances Tissue Classification on

TCGA

For tissue classification on TCGA, mean class

accuracy increased by 16.8 ppts between MLP G-T

and MLP G+Slarge-T. This confirms our hypothesis

that the homogeneity of the GTEx data did not allow

the MLP G-T model to generalize to TCGA data,

while the addition of SRA training data in MLP

G+Slarge-T resulted in a model with significantly

improved generalization. To further investigate this

result we took a closer look at the per class accuracy

for the TCGA tissue prediction (Supplementary

Figure 6). MLP G-T was unable to predict samples

for three tissues, namely bone marrow (msa: 0.08),

ovary (msa: 0.02) and uterus (msa: 0.07), whereas all

our other models achieved accuracies between 0.7 and

1.0 on these tissues. Adding SRA data to the training

set enabled the model to achieve per tissue sample

accuracy of 1.00, 0.704 and 0.67 for bone marrow,

ovary and uterus, respectively. We used principal
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component analysis (PCA) to visualize the dataset

bias for these tissues. Interestingly, the GTEx-ovary

and TCGA-ovary data points show little overlap in

the PCA plot, while the SRA-ovary data overlaps

with GTEx- as well as TCGA-ovary data, forming

a ’bridge’ (Supplementary Figure 7A). Other tissues

such as liver (MLP G-T msa: 0.98), on the other hand,

show an overlap between the GTEx and TCGA data

which is reflected in the consistent accuracy across all

models (Supplementary Figures 6 and 7B).

Improved Sex Prediction with ANNs

For sex classification only genes on the X and Y

chromosome were used as input features (d=190). We

first tested the trivial case MLP G-G by splitting

GTEx into training and test sets, achieving sample

and class accuracy of 0.995 (data not shown).

Prediction of TCGA Sex

Sex phenotype prediction on TCGA data was the only

task where we were not able to perform significantly

better than the linear model. The baseline LIN G-T

as well as the other linear models LIN Slarge-T and

LIN G+Slarge-T achieved almost perfect accuracy on

the TCGA data (msa/mca 0.989 for LIN G-T and LIN

G+Slarge-T, msa 0.988 and mca 0.987 for LIN Slarge-

T). Our best model, based on the data annotation

provided by MetaSRA, was MLP G+Slarge-T with

msa 0.947 and mca 0.945 (Supplementary Figure 8).

Prediction of SRA Sex

All linear models for the prediction of sex for SRA

data achieved an accuracy (msa: 0.883 and mca: 0.876

for LIN G-S and LIN G+Ssmall-S, msa: 0.878 and

mca: 0.873 for LIN Ssmall-S) similar to what was

previously reported (msa: 0.863 [20]). The MLP G-

S model (msa: 0.879 and mca: 0.871) did, on average,

perform worse than all the linear models. While

adding SRA data to the training set did not improve

the LIN model, it increased the performance of MLP

and DA models. DA G+Ssmall-S (msa: 0.929 and

mca: 0.93), MLP Ssmall-S (msa: 0.93 and mca: 0.936)

and MLP G+Ssmall-S (msa: 0.939 and mca: 0.945)

differ statistically (p-val<8e-5 , ANOVA). A t-test

corroborated that MLP G+Ssmall-S is statistically the

best model (p-val=0.0066, t-test) with a performance

increase of 6.3% for msa and 7.9% for mca compared

to the best linear model LIN G-S. Results are shown

in (Figure 3C).

According to MetaSRA all our training and

testing data for sex prediction on SRA stem from

patient biopsies. However, at least two of the largest

misclassified SRA studies in the test set are clearly

cultured cell lines. For example, SRP056612 is a study

on the effect of the coronavirus on cultured kidney and

lung cells [39] and SRP045611 is a study involving

HEK cells, which lack the Y chromosome but are

annotated as male by MetaSRA [40]. These are two

examples of mislabeled SRA data. Clearly, mislabeled

data can compromise classifier accuracy, either by

providing the wrong ground truth for training or by

reporting the false label at the point of prediction.

Expression Based Prediction of Sample Source

SRA data stems from multiple different sources,

from which we selected the two largest, namely

either biopsy or (immortalized) cell lines, whereas

GTEx and TCGA data are exclusively from biopsies.

Starting from the hypothesis that fundamental

differences do show on an expression level, we set out

to train LIN and MLP models on SRA data to predict

the sample source of SRA, GTEx and TCGA. Of note,

while we were able to approximately reproduce the

original results for LIN Ssmall-G and LIN Ssmall-S we

were not able to do so for LIN Ssmall-T (msa: 0.998

reported in publication [20]). LIN Slarge-G (msa/mca

0.951) did slightly better than MLP Slarge-G (msa and

mca of 0.943). MLP Slarge-T achieved msa and mca

0.971, outperforming LIN Slarge-T with (msa and mca

of 0.882). MLP Ssmall-S achieved msa 0.95 and mca

0.941, outperforming LIN Ssmall-S with msa 0.89 and

mca of 0.884 (Figure 3D).

Training Data Diversity Outweighs Quantity

Our experiments on phenotype classification seem to

indicate that increased training data diversity might

enhance classification performance. To learn more

about the relationship between the amount of training

data and model performance MLP G-S was trained

on an increasingly large subset of the GTEx training

data for tissue classification. We observed a limited

effect on model performance with increased training

dataset size. The msa reaches its peak with one

third of the available training data, while the mca

saturates at about half of the available training data

(Supplementary Figure 9).

To test the effect of bias in the training data,

an MLP Ssmall-S for sample source classification was

trained on an increasing number of biases in the

training set. As a control experiment an MLP was

trained with the same amount of data but drawn

from a single-bias source. We observed a positive
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correlation between msa and the number of biases

in the training set (Figure 4A). Contrary to that,

increasing the number of training samples by the same

amount but from a single-bias source did not lead

to better model performance (Figure 4B), validating

our assumptions. Both experiments support our

assumption that ANN based models can integrate

different biases in the training set and translate them

into better model performance compared to other

methods.

Prediction and Availability of Novel Metadata

We have used our best models to predict high-

quality metadata for published SRA samples lacking

information on tissue, sex, or sample source.

Prediction of sex is straightforward because our

models were trained on all possible biological

categories. For tissue and sample source, however, our

models were trained on a subset of all potential classes

in the unlabeled data. If, for example, we try to label

a sample of a tissue type unknown by the model,

the model will force one of the learned classes onto

that sample. To deal with this in the best possible

way for sample source classification we modified the

classification task into one vs. all. Specifically, we

first trained a new MLP model to identify the sample

source biopsy vs. all other sample sources available

in the SRA data as defined by MetaSRA. This model

(i.e. MLP Ssmall-S) achieved msa 0.947 and mca 0.93

on a test set (data not shown) and MLP Slarge was

subsequently used to identify all of our as of yet

unannotated SRA samples of source type biopsy. At a

probability cutoff of 0.5 we identified 1,072 new SRA

samples as originating from a biopsy.

Second, we extended the tissue classification task

to 17 classes by adding a ‘catch-all’ class. To this

end, we extended the training data to all GTEx

(n=9,366) and SRA (n=6,183) data with tissue labels

and assigned the placeholder class for every sample

that did not belong to the original set of 16 tissues.

That way we ensure that the learned model will not

force known classes on every tissue type. With this

approach, the DA G+Ssmall model achieved msa 0.912

and mca 0.787 (data not shown). Training and test

datasets were subsequently combined to train DA

G+Slarge for annotation prediction of unlabeled SRA

samples. We predicted the tissue of origin for all SRA

samples of source type biopsy for which no entry on

MetaSRA was available (n=2,818).

Third, 8,495 SRA biopsy samples with missing

sex information were predicted using MLP G+Slarge.

Supplementary Figure 10 shows the true positive rate

for each phenotype and each class on the test set. We

provide this information such that users can make

their own decision on probability cutoffs applied to

each class. We provide the full list of all classified

SRA samples as well as the probability output of the

classifier in the Supplementary Material.

Finally, we used the newly annotated data to

improve our models (Figure 1C). To determine the

additional tissue training set we chose a probability

cutoff of 0.9 and removed all brain samples (n=1,057)

to avoid further increase in class imbalance, adding

a total of 530 new SRA samples to the training set

for tissue prediction (i.e. Snew). While no increase

in performance was observed for TCGA classification,

MLP Ssmall+Snew-S for tissue prediction increased in

performance compared to MLP Ssmall-S from 0.894

to 0.911 (msa) and from 0.746 to 0.798 (mca). DA

G+Slarge+Snew-S achieved the best accuracy of all

tissue classification models with msa 0.933 and mca

0.854.

To build a new SRA training dataset for sex

all newly annotated SRA samples were added

(Snew=8,495). MLP Ssmall+Snew-S for sex classification

improved only slightly upon the previous best model

MLP G+Ssmall-S with msa 0.945 and mca 0.948

(compared to msa 0.939 and mca 0.945). For sex

classification on TCGA, however, MLP Slarge+Snew-

T yielded sample and class accuracy 0.975, 4.1 ppts

higher than the MLP Slarge-T model trained on our

default SRA training set (Supplementary Figure 8).

We thus successfully identified novel training data and

used it in a positive feedback to enhance our models

validating the high-quality of the new annotations.

Discussion

We developed a novel deep-learning based domain

adaptation approach for automated bias invariant

metadata annotation. To the best of our knowledge

this is the first time domain adaptation has been

applied to this problem. We were able to outperform

the current best model [20] on tissue prediction by

3.3% for SRA and 12.3% for TCGA data on mean

class accuracy. We can confirm, as was previously

reported [17], that ANNs trained on single-bias

training data do not perform better than linear

models. Given multi-bias training data, however, we

showed that MLPs, and especially our DA algorithm,

have an advantage over standard machine learning

approaches (e.g. linear regression). Our current

models help researchers to verify the sex, tissue and
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sample type of a RNA-seq sample in the presence of

bias. This metadata information is currently rarely

given for datasets downloaded from the SRA but can

be of crucial importance.

The main strength of our method is its ability

to incorporate dataset bias from datasets with only

a few samples by applying a siamese network-

like architecture. The model learns to ignore bias

by repeated exposure to (few) samples in (many)

different contexts, i.e. as triplets. In addition, it does

not rely on feature selection but uses normalized gene

count tables and lets the network learn which features

carry important information.

Different types of experiments showed the

importance of training models on a multi-bias dataset.

First, we showed for every phenotype classification

that models which had SRA samples included in the

training data performed better than models trained

only on GTEx data. For tissue classification we

further showed that the effect of adding SRA samples

to the training data outweighs adding 3.2x as much

GTEx data (MLP Ssmall →MLP Slarge vs. MLP

Ssmall →MLP G-Ssmall). Second, for SRA tissue

classification we showed that there is a limit of

accuracy that can be achieved irrespective of the

size of the training set. Our experiment showed that

peak accuracy is already reached by using 50% of the

available data. Lastly, for sample source classification,

we directly compared the relationship between the

number of biases in the training data, the number

of samples and the model performance. We found

a positive correlation between the diversity of the

training data and the accuracy achieved by that

model.

Lastly, we generated novel metadata for SRA

samples using our best performing models, adding

over 10,000 new metadata entries for 8,495 SRA

samples. We established a positive feedback loop

by re-training the existing models for phenotype

prediction by adding the newly annotated data to

the training set. Expanding the SRA training data

in this way worked especially well for TCGA sex

classification where an additional 4.1 ppts in accuracy

was achieved. The newly generated metadata is now

publicly available and can be used for future research.

We see this as a first and important step in the general

direction of an effort to make publicly available data

more accessible and reusable in an automated way.

We observed some limitations to our DA approach.

Our experiments showed that the DA model does not

perform as well as the MLP for classification tasks

with a low number of classes (e.g. sex). At least for the

TCGA tissue classification it seems that a minimum

of about 8 classes is needed for the DA model

to be able to unfold its full potential consistently.

Our experiments indicate that the difference between

DA and MLP performance will keep increasing,

in favor of the DA model, the more classes we

add (Supplementary Figure 11). Adding more tissue

classes to our model is an important next step.

Another limitation is posed by the need for labeled

data to train the bias mapper.

Whereas currently the scope of our predictive

models has been limited by the availability of data

(e.g. intersecting tissue types between datasets,

limited size of datasets), the approach is ready

to incorporate more data, biases, classes, and

more phenotypes, and there is reason to believe

that this will confer increased performance of ANN

based models, in particular DA models. At the

same time, automated annotation ensures that the

vast amount of data, currently lying idle in online

repositories and institutional data centers, can indeed

be leveraged. We believe that this synergy is capable

of producing a large and comprehensive body of

annotated biological data that will boost knowledge

discovery for biomedical research.

Availability of supporting source code and
requirements

Project name: Bias invariant RNA-seq metadata

annotation

Project home page: https://github.com/imsb-uke/rna augment

Operating system(s): Platform independent

Programming language: Python

Other requirements: TensorFlow 2.1

License: MIT

Acknowledgments

We would like to thank the members of the Institute

for Medical Systems Biology for helpful discussions

and comments. In particular we would like to thank

Sergio Oller for help with IT problems and support.

In addition, we would like the ZMNH IT for their

continuous support. We would like to acknowledge

TCGA Research Network (https://www.cancer.gov/

tcga) for data provision.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga


12 Wartmann et al.

Funding

This work was supported by the DFG grants CRU 306

P-C, 296 P8, and CRC 1286 Z2 for SH, HW, and SB,

respectively.

Conflict of Interest

The authors declare no conflict of interest.

References

1. R. Hrdlickova, M. Toloue, and B. Tian. Rna-

seq methods for transcriptome analysis. Wiley

Interdiscip Rev: RNA, 8(1):e1364, 2017.

2. S. Goodwin, J.D. McPherson, and W.R.

McCombie. Coming of age: ten years of next-

generation sequencing technologies. Nat. Rev.

Genet., 17(6):33, 2016.

3. Z. Wang, M. Gerstein, and M. Snyder. Rna-seq: a

revolutionary tool for transcriptomics. Nat. Rev.

Genet., 10(1):57–63, 2009.

4. V. Costa, M. Aprile, R. Esposito, and

A. Ciccodicola. Rna-seq and human complex

diseases: recent accomplishments and future

perspectives. Eur. J. Hum. Genet., 21(2):134–

142, 2013.

5. P.A.C. ’t Hoen, M.R. Friedländer, J. Almlöf,
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Fig. 1. Study Overview. (A) All data available on recount2 was downloaded and split into three data sources: (i) GTEx, (ii)

TCGA and (iii) SRA. Single-cell and small RNA samples as well as technical replicates were removed from the SRA data. Protein

coding genes were selected from the gene count tables and TPM normalized. Metadata for tissue of origin (e.g. heart), source (e.g.

biopsy) and sex phenotype was collected, if available. A subset of 17 tissues (common to GTEx, TCGA and SRA) was selected

and filtered for class size, resulting in 16 tissue classes. For sample source the two largest classes in SRA were selected. Samples

were subsequently annotated and training and testing data sets were created. GTEx was only used for model training unless stated

otherwise. TCGA was only used for model testing. SRA was split such that samples from one study are exclusively in the train

or test set. (B) We compare three models: LIN (linear model), MLP (multi-layer perceptron) and DA (novel domain adaptation

algorithm). Experiments are different combinations of models and data sources. Here, an exhaustive list of experiments for tissue

and sex classification tested on SRA data is depicted. Each configuration (dashed box) is made up of a model and training data.

The previously published LIN model served as a benchmark for our MLP and DA model. Each model configuration was trained

10 times with different seeds to give an estimation of uncertainty. The best model (orange star) was chosen by comparing average

performance across all seeds. (C) After determination of the best model, all available data was used for model training. Previously

unlabeled SRA data (yellow square) was automatically annotated with the appropriate metadata. Newly annotated metadata

can be used to re-train existing models to further improve performance. A list of all new metadata can be downloaded with the

Supplementary Material.
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Fig. 2. Overview Domain Adaptation Model. Illustration of our DA model architecture and training. Shapes of (hypothetical)

data points represent classes, colors are datasets with unique biases. Source Mapper (SM), Bias Mapper (BM) and classifier layer

(CL) are ANN modules. (A) First training cycle: The SM is trained on a single bias dataset, the source domain (SD). In this

step, the SM learns a feature embedding. The CL learns how to partition this embedding space into classifiable regions and draws

decision boundaries (black lines). (B) For biased test data (colored sample data points), same classes may occupy distinct regions

in input space. In this case, the source mapper may not be able to map the samples to the correct region of embedding space,

compromising classification performance of the CL. (C) In order to learn the mapping of different biases to the embedding learned

in (A), a bias mapper (BM) is created by copying the SM, and trained weights of the SM are fixed. In this second training cycle,

triplets of samples are passed through the SM-BM configuration, consisting of an anchor from the bias domain and two samples

from the source domain, one of them with a matching label. The triplet loss function is defined to minimize distance of like labels

in embedding space and to maximize distance of opposite labels. This process is repeated until the SM has learned to map all

known biases into the previously learned embedding space. (D) The BM is now able to map data points from previously unseen

datasets into the embedding space where the CL can classify them.
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Fig. 3. Phenotype Prediction Results for A,B) prediction of tissue of origin on SRA and TCGA (16 classes) C) prediction of

sex on SRA (2 classes) and D) sample source (2 classes) on SRA data. Indices ’small’ and ’large’ refer to the different size of SRA

training data used due to splits of the data set in SRA prediction. Box plots represent model uncertainty of ANN based models,

estimated from training with different random seeds (n=10). Mean sample accuracy and mean class accuracy were calculated for

each seed. For panel A-C) LIN G-X was chosen as the baseline model. Results for these panels are given in change in percentage

points compared to the baseline (red line). Experiments are sorted by increasing mean class accuracy. LIN=linear regression,

MLP=multilayer perceptron, DA=domain adaptation, G=GTEx, T=TCGA, S=SRA.
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Fig. 4. Increasing Bias Vs. Increasing Sample Size in Training Data. A) A MLP Ssmall for sample source prediction on

SRA data was trained by randomly sampling an increasing number of SRA studies per class. Each study was subsampled to 50

samples. Studies were drawn from all SRA studies with n > 100 for either sample source tissue or cell line. B) To differentiate the

effect of increased bias vs. increased sample size, the same model was trained by randomly subsampling the largest available SRA

study per class. At each step an additional 50 samples were added to the training set per class. Models were run with 10 different

seeds and the mean sample accuracy was computed. Box plots are produced by 10 random sampling iterations. We observe a

positive correlation between training data diversity and accuracy.

Fig. S1. Visualizing Data Set Bias. The three data sources used in this study differ in their homogeneity. Here we drew 1,000

random samples per data source labeled as male (green) or female (blue) and plotted the sum of all gene counts on the Y vs the

X chromosome. For a highly standardized data source with a solid ground truth we would expect a clear separation of clusters, as

we see for GTEx. TCGA shows some overlap in the data due to dataset bias. SRA is the most heterogeneous data source due to

multiple data set biases and potentially a less accurate ground truth, as it is a largely uncurated source.
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Fig. S2. T-SNE on Fraction of Total Gene Count Per Gene Type. The fraction of the total log TPM normalized counts

per gene type was calculated for all types that can be associated with mRNA or small RNA. T-SNE was applied on the resulting

vectors of fraction per gene type. Samples with their maximum fraction in a gene type belonging to a small RNA category were

labeled orange, else blue. The scatter plot shows samples labeled as small RNA-seq all cluster together suggesting a valid approach.
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Fig. S3. Tissue Label Overlap Between GTEx, TCGA and SRA. GTEx v6 provides samples for 31 tissues and TCGA

for 26. MetaSRA provided labels for 26 of the 31 GTEx tissues. This figure depicts the 40 tissues which form the union between

the three data sources, a black square indicating that a tissue is present in the respective dataset. 17 Tissues are shared between

GTEx, TCGA and SRA, 16 of which were used for tissue prediction.
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Fig. S4. Graphical Representation of Architectures for ANN Based Models. A) MLP models for tissue, sex and sample

source, B) are the (1) SM-CL MLP, (2) SM-BM Siamese Network and (3) BM-CL prediction models for tissue and C) sex. Each

rectangle represents a layer in the neural network and is colored according to the type of layer that has been used. d=input

dimension, n=number of nodes, p=drop out probability, SM=source mapper, BM=bias mapper, CL=classification layer. B2 and

C2 show the SM to have frozen weights.



Bias invariant RNA-seq metadata annotation 21

Fig. S5. Overview of DA Model. Samples are indicated according to their classes (circles, squares, triangles) and their bias

(blue: source domain, other colors: bias domain, target domain). The model is ready for prediction after two training steps: A)

A source mapper is trained on single bias data together with a classification layer. B) A bias mapper is created as a duplicate of

the source mapper, the weights of the source mapper are fixed. Triplets are passed through the source mapper and bias mapper

configuration to learn a bias mapping. C) The bias mapper, equipped with a classification layer, can be used to predict data from

previously unseen datasets.

Fig. S6. Per Class Accuracy for TCGA Tissue Classification. Mean sample accuracy for each tissue and all ANN based

models is shown. The error bar shows the standard deviation across 10 random seeds. The plot demonstrates the varied tissue

classification performance of different tissues. For instance, it seems to be difficult to identify adrenal gland or pancreas with

any of the models. In particular, the bad classification performance of MLP G-T for bone marrow, ovary and uterus is especially

noticeable, along with the observation that performance can be salvaged by addition of (biased) SRA data to the training data

set. This highlights the strength of ANN based models in capturing bias from training data.
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Fig. S7. Bias Visualization. Principal Component Analysis on gene expression of available GTEx (blue), TCGA (orange) and

SRA (green) samples for (A) ovary and (B) liver tissue. For ovary tissue samples GTEx and TCGA data do not overlap and SRA

data is needed for proper model generalization.

Fig. S8. TCGA SEX Results. Results are reported as change in percent points compared with the baseline model LIN G-T.

Sample (blue) and class (green) accuracy are shown. LIN=linear model, MLP=multilayer perceptron, DA=domain adaptation,

G=GTEx, S=SRA and T=TCGA. ANN based models yielded consistently worse results than the baseline model, until newly

annotated data were incorporated into the training set.
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Fig. S9. Dependence of Prediction Performance on Increasing Training Data Set Sizes For MLP G-S. MLP models

were trained on subsets of the GTEx data for SRA tissue classification on 10 seeds and averaged. At each step the subset was

increased by 250 samples. Box Plots from 20 iterations for the msa and mca are shown in blue and green, respectively. Mean

sample accuracy reaches its peak with only 25% of the training data while 50% of the data is sufficient for the mean class accuracy

to saturate.
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Fig. S10. True Positive Rate for Test Data Predicted With Annotation Models. (A) Sample source, (B) sex and (C)

tissue classification.
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Fig. S11. Relationship Between Number of Classes And DA Performance in DA G+S-T. The 16 tissues were sorted

by sample size in GTEx, at each step one tissue was added to the classification problem, starting with the largest two. MLP and

DA were trained as described above for 10 seeds each and tested on TCGA data. The mean sample accuracy for each seed (top

panel) or mean class accuracy (bottom panel) are shown. Each dot shows the difference in accuracy (DA-MLP) at each step for

each seed. Seaborn’s regplot was used to fit a regression line. While, on average, MLP performs better for lower number of classes,

the performance gain by the DA model with respect to MLP increases with the number of classes.
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Table S1. Mapping from GTEx tissue names to MetaSRA tissue names.

GTEx MetaSRA

ovary female gonad

skin anatomical skin

thyroid thyroid gland

prostate prostate gland

bladder urinary bladder

cervix uteri uterine cervix
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Table S2. Summary of the datasets used for each phenotype after pre-processing.

Dataset # Samples # Classes # Input genes
Gini cut off

Low High

Tissue

GTEx 5,480

16

6,974 0.5 1

TCGA 8,624

SRA train 1,721

SRA test 1,531

SRA train annotation 3,370
17

SRA test annotation 2,813

Sex

GTEx 9,662

2 190 0.4 0.7
TCGA 11,284

SRA train 2,317

SRA test 923

Sample Source

GTEx 9,662
1

8,679 0.3 0.8

TCGA 11,284

SRA train 12,725

2

SRA train 3,144

SRA val 1,124

SRA train annotation 16,463

SRA test annotation 3,707
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Table S3. Number of samples per class for phenotype classification experiments.

GTEx TCGA SRA train SRA test

Tissue

Adrenal gland 159 266 14 5

Bone marrow 102 126 77 90

Brain 1,409 707 508 770

Breast 218 1246 123 30

Esophagus 790 198 35 5

Kidney 36 1030 94 88

Liver 136 424 111 134

Lung 374 1156 228 72

Ovary 108 430 23 12

Pancreas 197 183 17 5

Prostate 119 558 123 49

Skin 974 473 238 198

Stomach 204 453 25 11

Testis 203 156 14 18

Thyroid 361 572 51 32

Uterus 90 646 40 12

Sex

Male 6,036 5,395 1,246 575

Female 3,326 5,889 1,071 348

Sample source

Cell line 9,662 11,284 7,108 1,950

Biopsy - - 5,617 1,194
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Table S4. Hyperparameters considered during model tuning and their initial range.

Hyperparameter Range Sampling mode

# Layers [0,3] linear

# Nodes per layer [32,512] linear

Batch size [16,32,64] step

Learning rate [1e-4, 1e-2] log

Optimizer [Adam, SGD] binary

Drop out [0.1,0.2,0.3] step

Gini cut off manually manually
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Table S5. Summary of the hyperparameters used for each model.

Model # Nodes Dropout rate Learning rate Margin

MLP Tissue 128 0.3 0.0002 -

MLP Sex 32 0.2 0.0024 -

MLP Sample Source 128 0.3 0.0002 -

DA SM-CL Tissue 512 / 16 0.3 0.0001 -

DA SM-BM Tissue 512 / 512 - 0.0005 5

DA SM-CL Sex 64 / 2 0.3 0.0001 -

DA SM-BM Sex 64 / 64 - 0.0005 3

For every model 1 hidden layer was used, batch size was 64, trained epochs were

10 and the optimizer used Adam.
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Table S6. Sample and class accuracy given are the mean over

n=10 seeds

msa mca msa std. mca std.

Tissue

SRA

LIN G-S 0.893 0.765 NA NA

LIN Ssmall-S 0.893 0.795 NA NA

LIN G+Ssmall-S 0.908 0.785 NA NA

MLP G-S 0.872 0.77 0.007 0.018

MLP Ssmall-S 0.894 0.746 0.005 0.017

MLP G+Ssmall-S 0.915 0.817 0.008 0.02

DA G+Ssmall-S 0.922 0.821 0.003 0.009

MLP Ssmall+Snew-S 0.911 0.798 0.007 0.022

DA G+Ssmall+Snew-S 0.933 0.854 0.002 0.009

TCGA

LIN G-T 0.718 0.638 NA NA

LIN Slarge-T 0.784 0.724 NA NA

LIN G+Slarge-T 0.725 0.651 NA NA

MLP G-T 0.684 0.605 0.015 0.017

MLP Slarge-T 0.832 0.755 0.02 0.03

MLP G+Slarge-T 0.842 0.773 0.015 0.017

DA G+Slarge-T 0.875 0.813 0.004 0.006

LIN Ssmall-T 0.768 0.708 NA NA

LIN G+Ssmall-T 0.729 0.658 NA NA

MLP Ssmall-T 0.748 0.688 0.016 0.027

MLP G+Ssmall-T 0.764 0.716 0.033 0.028

DA G+Ssmall-T 0.81 0.763 0.014 0.024

MLP Slarge+Snew-T 0.83 0.758 0.017 0.02

Sex

SRA

LIN G-S 0.883 0.876 NA NA

LIN Ssmall-S 0.878 0.873 NA NA

LIN G+Ssmall-S 0.883 0.876 NA NA

MLP G-S 0.879 0.871 0.002 0.04

MLP Ssmall-S 0.93 0.936 0.008 0.009

MLP G+Ssmall-S 0.939 0.945 0.003 0.003

DA G+Ssmall-S 0.929 0.93 0.025 0.036

MLP Ssmall+Snew-S 0.945 0.948 0.003 0.004

TCGA

LIN G-T 0.989 0.989 NA NA

LIN Slarge-T 0.988 0.987 NA NA

LIN G+Slarge-T 0.989 0.989 NA NA

MLP G-T 0.869 0.863 0.011 0.011

MLP Slarge-T 0.936 0.934 0.01 0.01

MLP G+Slarge-T 0.947 0.945 0.011 0.011

DA G+Slarge-T 0.919 0.916 0.004 0.004

MLP Slarge+Snew-T 0.975 0.975 0.004 0.004

Sample source

LIN Slarge-G 0.951 0.951 NA NA

LIN Slarge-T 0.882 0.882 NA NA

LIN Ssmall-S 0.89 0.884 NA NA

MLP Slarge-G 0.943 0.943 0.001 0.001

MLP Slarge-T 0.971 0.971 0.028 0.028

MLP Ssmall-S 0.95 0.941 0.003 0.005

msa=mean sample accuracy, mca=mean class accuracy,

G=GTEx, T=TCGA, S=SRA, NA=not available
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