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Response to Reviewers: Rebuttal of ‘Bias invariant RNA-seq metadata annotation’

The reviewers raised a couple of very valid points of critique, especially with respect to
potential overfitting of the ANN models. We addressed all concerns and believe that
these changes significantly improved the scientific standard of the revised manuscript.
In the end, we would like to thank the reviewers for their excellent suggestions,
comments, and time.
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In the PDF version, uploaded with the manuscript as "answers to reviewers" and
tagged as "Supplementary Material", reviewer questions are in black font, our answers
in blue font and text changes to the manuscript in black font in italics.

Reviewer reports:

Reviewer #1: In this manuscript, the authors address the task of phenotype prediction
from gene expression data, with a focus on gene expression profiles measured via
RNA-seq and the phenotypes of tissue, sample source (tissue biopsy or cell line
culture), and sex.  The primary motivation for the task is the improvement of metadata
labeling RNA-seq samples, particularly in public databases such as the Sequence
Read Archive (SRA), for which the metadata are often incomplete and unstandardized.
Recently, a linear regression based approach was shown to be effective for this task
(Ellis et al. 2018).  This work explores the use of non-linear artificial neural networks
(ANNs) as well as a "domain adaptation" (DA) training approach, which aims to reduce
issues resulting from dataset-specific biases (also referred to as "batch effects").  The
results of a series of thorough experiments involving phenotype prediction on SRA and
TCGA samples indicate that the ANNs as well as the DA training approach improve
upon the performance of the prior linear regression model. The authors then use their
methods to provide phenotype labels for SRA samples missing this information.

I fully agree that improvements to the metadata for databases such as the SRA are
important, both for more accurate retrieval of relevant datasets as well as for large-
scale statistical meta-analyses or machine learning with data in these databases.  I
also agree that methods addressing dataset-specific biases, or batch effects, are
critical in this context.  Thus, the DA approach introduced in this manuscript is of great
interest.

Overall, I found the manuscript to be well written and the experiments quite thorough.
However, I have a few concerns regarding the evaluations that I believe need to be
addressed in order for the accuracy improvements to be convincing.

Major comments:

1. A priori, I would expect prediction of sex from gene expression data would be a
relatively trivial task using the counts of reads mapping to the X and Y chromosomes.
Figure S1 confirms this expectation, at least for the GTEx and TCGA datasets: the
male and female samples are easily, and linearly, separable.  Thus, I was surprised
that there were accuracy gains with the ANNs for this task.  Looking at the right (SRA)
panel in Figure S1, a major concern here is that the ground-truth sex labels on the SRA
samples, which were used for the test set, are likely incorrect for a non-negligible
number of samples.  Because of this issue, it is possible that the ANNs are actually
learning to predict such samples *incorrectly* in truth (but correctly with respect to the
test labels).  For example, perhaps the MetaSRA is systematically assigning an
incorrect sex label to certain cell lines and the ANNs are then learning features of those
cell lines that allow them to predict the sex correctly with respect to the MetaSRA label,
but incorrectly in truth.  A thorough investigation into the apparent performance gains
for sex prediction would help to clear up this issue.

This is actually a great comment and yes, the assumption that the model might overfit if
the training data would contain a considerable amount of false annotations is quite
conceivable. We therefore first performed an exploratory analysis of potential
misannotations in the SRA dataset by investigating the range of chrY total sum counts
per data source (see figure below).

Fig. S4. Misclassification in MetaSRA. Histogram of the total sum of normalized counts
mapped to the chrY for GTEx, TCGA and SRA. Male and female clearly overlap in
SRA, indicating mislabeling by MetaSRA.

The figure, which was added to the revised manuscript, shows histograms of all
samples of GTEx, TCGA and SRA, respectively. Plotted are the sum counts on the
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chrY. The plot supports the notion that there are many FEMALE labeled samples that
have a high chrY expression in the SRA data (and vica-versa). A threshold for chrY
total count sum was chosen to clearly identify true labels. Because some GTEx and
TCGA samples have a non-zero chrY sum count, we picked a threshold to define
FEMALE at sum count chrY <= 2. Given this threshold we identified 366 of 3240 SRA
samples labeled FEMALE to be above that threshold (i.e. they are  probably MALE).
Next we observed that 271 of these 366 samples were in the training set (FEMALE
n=1,017, MALE n=1,246). If the model overfit on this wrongly labeled data, the trained
model would predict the wrongly labeled training data wrong (i.e. with the training label
FEMALE, and not with the likely correct label MALE). In other words, the potentially
mis-annotated true male samples (falsely annotated as female) amount to 21.7% of all
male samples (for females 25.3%). The DA model assigned 220 of these 271 training
samples as FEMALE. We take this as evidence that the model overfit on the training
data. In our answer to comment 2 by the reviewer we show that the ANN starts
overfitting if >20% of the training data of a single class is incorrectly annotated, as is
the case here. A similar observation was made for the samples annotated as MALE by
MetaSRA that are above the chosen threshold.

To avoid overfitting of the model on wrong labels, we cleaned the SRA training and test
set and removed all ambiguous samples according to the sum count chrY threshold
stated above. This significantly changed the results for SEX phenotype prediction. For
example, the DA model now predicts at 0.99 accuracy compared to 0.93 with the
unfiltered training data. The difference in classification accuracy between the different
models (LIN, MLP and DA) is now in the range of 1%. We still observed a small
performance increase for the ANN models and decided to keep the phenotype in the
study but gave it less weight by moving it into the supplementary figures. The SEX
phenotype was removed from the main results figure 3 and merged with
supplementary figure 8.
In the method subsection Phenotype Classification Experiments, we changed the
paragraph about the sex phenotype from ‘Sex: In total, 159 SRA studies contained
samples annotated with male and or female by MetaSRA. These studies were
combined into the training set (studies=78, n=2,317), and test set (studies=81, n=923)
(Supplementary Tables 2 and 3). For model validation, GTEx was randomly split into
training and test sets with an 80:20 ratio for both sex and tissue classification.’ to ‘Sex:
We noticed SRA samples identified as female by MetaSRA to have a significant
amount of reads mapped to chrY (Supplementary Figure 4). All samples labeled as
female with a total normalized count >= 2 and all samples labeled male with a total
normalized count <2 were removed. In total, 149 SRA studies contained samples
annotated with male and or female by MetaSRA. These studies were combined into
the training set (studies=73, n=2,017), and test set (studies=76, n=791)
(Supplementary Tables 2 and 3). For model validation, GTEx was randomly split into
training and test sets with an 80:20 ratio for both sex and tissue classification.’
Supplementary Table 2,3 and 6 were adjusted according to the new data set sizes and
experiment results.
As suggested by the reviewer, we then sought to correct potential mis-annotations of
the MetaSRA data by predicting their labels using the model trained on the high-
confidence annotations. We used the MLP G+S model to predict the true corrected
label for the removed SEX samples. For 82% of the 132 filtered samples, the MLP
model predicted the opposite of the presumably wrong MetaSRA labels. However, our
MLP model was able to confirm the MetaSRA label for 24 samples. These samples
had a mean chrY count sum of 2.4 (i.e. close to the cutoff value). We were able to
manually confirm some samples. For example, SRR1164833, SRR1164787 and
SRR1164842 are samples from a prostate cancer study labeled as MALE by
MetaSRA. Our MLP model correctly classified these samples despite the fact that their
chrY total sum count was between 0.4 and 1.4. On the other hand, SRR16076 54 / 56 /
61 / 62 / 64 /  65/  70 / 71 are annotated as FEMALE by MetaSRA and the MLP but
had a chrY total sum count of 2-5.3. Because the MLP is able to correctly classify
these borderline cases, we are convinced that no overfitting on the training data is
taking place.
These findings were added to the results section ‘ANN Models Can Correct Mislabeling
in MetaSRA’, which summarizes the new results obtained answering the reviewers
question 1-3 (paragraph shown as answer to question 2).

2. Related to comment #1, the same issue is also a concern for the prediction of tissue
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in the SRA, and potentially also for sample source.  That is, if there are systematic
annotation errors by the MetaSRA with respect to tissue of origin, the ANNs could
actually be learning and propagating these systematic errors.  Because the linear
regression model is more limited, it is less able to learn such errors and is, in fact, more
robust to them.  In summary, the authors should provide some evidence that the
presented performance gains are not largely due to learning such systematic label
errors in the MetaSRA.  Note that the MetaSRA is the result of an automated pipeline,
not manual curation, so a certain fraction of errors are to be expected.

Again, a great comment and suggestion by the reviewer. We fully agree with the
reviewer that a certain fraction of errors is to be expected in the MetaSRA annotation.
An overfitting experiment was designed, to investigate the possibility that the ANN
models overfit on wrongly annotated data. In a nutshell, the ANN models predict
correctly when the level of mis-annotations in the training set does not exceed ~20%,
above ~20% mis-annotations result in progressively increasing model overfitting. We
added the following text to the methods section: ‘
Test for Overfitting
MetaSRA provides labels for SRA data generated in an automated way. We have
identified mislabeled samples for the sex phenotype (see Methods). The following
experiment was designed to test the ANN based model's susceptibility to overfitting on
mislabeled training data. An MLP model was trained on GTEx data on four tissue
classes (i.e., brain, esophagus, lung and skin). A range of fractions of the brain
samples were randomly assigned to skin tissue (i.e., 0.01,0.025,0.05,0.1,0.20,0.5 and
.8). The model was then trained on GTEx samples of the four classes, including the
mislabeled brain samples. We tested the models overfitting capabilities by letting it
predict the label of the mislabelled brain samples. If the model overfits, these samples
should be predicted to be from skin tissue. The same experiment was conducted for
the sex phenotype by mislabeling male samples as female.’. We also added a novel
Fig. S10 to the manuscript, showing stable prediction performance of the ANNs with
training data mis-labels of up to ~20%: ’

Fig. S10. Test of Overfitting. An MLP model was trained on GTEx data. An increasing
fraction of one class was assigned a wrong class label (e.g., brain to skin). The model
was trained on the partially mislabeled data and the mislabeled data was predicted by
the model after training. We quantify the model's susceptibility to overfitting by letting it
correct the mislabeled training data. The MLP model was able to correct all mislabeled
data up to a mislabeling fraction of 20%. We conclude that the ANN models are very
robust in dealing with mislabeled data.

The following text was added to the results section: ‘
ANN Models Can Correct Mislabeling in MetaSRA
Given the difficulties with metadata standards in SRA data, mislabeling in MetaSRA is
to be expected. To understand if and when ANN models would overfit on mislabelled
MetaSRA data, we trained an MLP on partially mislabeled samples (see Methods).
Supplementary Figure 10 shows that the MLP model correctly predicts brain samples,
even if they were presented as skin samples during model training. A decrease of this
accuracy was observed if more than 20\% of all brain samples were mislabeled as
skin. A similar observation was made for the sex phenotype (Supplementary Figure
10). We concluded that our models are robust if less than 20\% mislabelled data is
present during training. More importantly, these models can be used to correct
mislabeled MetaSRA data.
In the specific case of sex classification, the MLP G+S was used to predict the true
corrected label for the SEX samples that were removed from training due to low sex-
chromosome counts (see Methods). For 82% of the 132 filtered samples, the MLP
model predicted the opposite of the presumably wrong MetaSRA labels. However, our
MLP model was able to confirm the MetaSRA label for 24 samples. These samples
had a mean chrY count sum of 2.4 (i.e. close to the cutoff value). Manual confirmation
revealed a high model accuracy. For example, SRR1164833, SRR1164787 and
SRR1164842 are samples from a prostate cancer study labeled as MALE by
MetaSRA. Our MLP model correctly classified these samples despite the fact that their
chrY total sum count was between 0.4 and 1.4. On the other hand, SRR16076 54 / 56 /
61 / 62 / 64 /  65/  70 / 71 are annotated as FEMALE by MetaSRA and the MLP but
had a chrY total sum count of 2-5.3. We see the correct classification of these
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borderline cases as further evidence that no overfitting is taking place.
A list of all SRA samples for which the MetaSRA labels and the predicted labels
mismatched is available in the Supplementary Material.’. We thank the reviewer for this
great comment and hope that the revised manuscript builds a strong case for the
stability of the approach taken.

3. Also continuing the line of thought from comments #1 and #2, an additional major
application of phenotype prediction is *correction* of mislabeled samples, but this is not
discussed in this manuscript.  I don't think the authors necessarily need to demonstrate
this application (and in fact they do briefly in the "Prediction of SRA Sex" section of the
results), but a deeper analysis of this might go hand in hand with addressing
comments #1 and #2.

Another valuable suggestion, which we have addressed in the answers to comments
#1 and #2 (and the revised document). We really think that the first three main
comments of the reviewer and our investigation into them strengthened the overall
quality of the manuscript considerably.

4. An important contribution of this work is the set of newly-predicted phenotype labels.
I cannot find mention of where this set can be accessed.  Perhaps it can be archived at
a site such as Zenodo, if it is not already.

We apologize if we did not make the newly-predicted phenotype labels available to the
reviewer in the initial submission. We have now uploaded all supplementary data to
gigadb.org, as requested by the editor. In addition, the data can now also be
downloaded from the git page https://github.com/imsb-
uke/rna_augment/tree/master/supplementary%20material

Minor comments:

5. In the introduction, the authors describe some prior DA approaches and then state
that "All these methods have been implemented and applied by us for RNA-seq
phenotype prediction and found not to be scalable to a situation with hundreds of
different and scarce target domains, encountered, for instance, in the SRA." This would
seem to be a result rather than a statement of prior facts, and should be moved to the
results section (ideally with experiments), unless this was shown in a prior publication.

We completely agree that our work on other architectures that did not provide good
results are results rather than background information. We fear, however, that
expanding on these ‘negative’ results too much would further complicate and lengthen
a manuscript that is already quite long and non-trivial. In agreement with the reviewer,
we therefore added an extended text to the novel methods section ‘Other Models’: ‘
Other Models
While developing our DA model we did a thorough literature research and implemented
and tested multiple architectures and strategies. Here we give a brief overview of the
models we found not suitable for the problem of bias invariant RNA-seq metadata
annotation. The first strategy that has been tested was interpolation between source
and target domain by training feature extractors on an increasing ratio of target to
source domain data. The second strategy was adversarial training by applying two loss
functions. The first loss function forces the model to learn weights for the class
prediction task, while the second forces the model to learn to ignore differences
between the source and target domain. We also implemented Tzeng's [ref?] adaptation
of this idea, proposing a model using a separate source and target encoder, using
them as 'real' and generator input for a generative adversarial network that is capable
of ignoring bias. These models ultimately failed due to the hundreds of dataset biases
in the SRA data and their relatively small sample size (data not shown). For the case of
scarce target data an approach was previously proposed using Siamese networks. The
trained model achieved an msa of 0.83 and mca of 0.79 for tissue classification on
SRA data. The mca achieved is comparable to the results of the MLP model, however,
the msa score is 6% lower than even the LIN model. The more challenging task of
learning to map the bias embedding into the pre-learned class embedding, as
presented in this paper, finally resulted in the desired outcome.’. In addition, the
beginning of the methods section ‘Model Architecture’ was changed from ‘Our DA
architecture is based on the Siamese network architecture.’ to ‘Our DA architecture is

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



based on the Siamese network architecture. A Siamese network usually shares the
weights between two equal networks, here however, we do not use weight sharing.
Weight-sharing and other types of architecture did not prove to be applicable to this
problem (see Methods section Other Models).’ to reference the novel section. Again,
we thank the reviewer for this excellent comment, which increased the quality of our
manuscript.

6. At the beginning of the methods section, I found the phrase "which we define as the
number of unique dataset biases present within one data source" confusing.  Only later
did I come to understand that this was simply referring to the number of studies.  I think
this could be made clearer earlier in the text.  Also, that phrase references Fig S1,
which shows the sex labels on the samples from each source, and doesn't really show
the heterogeneity of the source.  It is unclear why that figure is referenced here.

We thank the reviewer for pointing out this misleading reference. To correct this
mistake, we have modified the beginning of the first paragraph of subsection “Data
Acquisition”. ‘To train and test models we gathered data from three different sources,
each with a different level of homogeneity, which we define as the number of unique
dataset biases present within one data source (Supplementary Figure 1).’ to  ‘To train
and test models we gathered data from three different sources (i.e. GTEx, TCGA and
SRA), each with a different level of heterogeneity (Supplementary Figure 1). We
measure data source heterogeneity by the number of unique dataset (or studies) in the
source. Each dataset (or study) is believed to have a unique bias.’
We also agree that the current supplementary figure does not visualize the data
heterogeneity in the data sources sufficiently. We thus decided to replace it with the
following figure:

Fig. S1. Visualizing Data Set Bias. GTEx is a single-study data source, while SRA is a
multi-study data source. A) T-SNE plot of gene expression values of GTEx and B) SRA
samples, belonging to five different tissues. The GTEx data is more coherently
clustered compared to the SRA data. The individual studies in the SRA data appear to
form less homogeneous clusters, indicating a larger within-variance in the data source.

We believe that these changes better reflect the data and claims of our study and
thank the reviewer for the suggestions.

7. Sample source definition: I understand that the MetaSRA sample type classifications
were used, but it is not clear to me how they were mapped to "biopsy" and "lab grown
cell line" categories.  It sounds like "tissue" was mapped to "biopsy" but I'm not sure
about the rest.  One MetaSRA category is "primary cells", which can be cells sorted
from a disassociated (biopsied) tissue sample.  Are those also considered "biopsy?"

We agree with the reviewer that there is potential for confusion between the phenotype
tissue and the category TISSUE of phenotype sample source. Therefore, we renamed
the MetaSRA category TISSUE to biopsy. Throughout the text (e.g. in the caption of
Figure 1) we try to emphasize this by writing “tissue (e.g. lung, heart)”. To make this
even more clear, we added the following three sentences to the method section
Phenotype Classification Experiments. Below we marked in red the added information:’
Phenotype Classification Experiments.
Tissue: To ensure that … For model validation GTEx was randomly split into training
and test sets with an 80:20 ratio for both sex and tissue classification. Sample Source:
A confidence cutoff of >= 0.7 was applied (provided by MetaSRA), reducing the total
amount of annotated samples for SRA from 23,651 to 17,343. MetaSRA provided six
different types of sample source. The two largest classes, TISSUE and CELL LINE
were selected. In this study we renamed the MetaSRA label TISSUE to biopsy to not
be confused with the phenotype tissue (e.g., heart, lung, skin). For each of the two
selected categories we sorted all available studies by number of samples, placed the
first third of studies into the training (studies=420, n=12,725), the second third into the
test (studies=422, n=3,144) and the last third into the SRA validation set (studies=418,
n=1,124) (Supplementary Tables 2 and 3). A list of the sample ids and corresponding
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labels is available in the Supplementary Material.’.
The reviewer also mentioned the MetaSRA term PRIMARY CELLS. It is true that the
MetaSRA defines PRIMARY CELLS as a subtype of TISSUE in their hierarchical
classification (supplementary figure 6, Bernstein et al. 2017). However, we believe that
samples obtained from biopsies are split into altered and unaltered cells. The full name
of the PRIMARY CELLS label is PRIMARY SPECIALIZED CELLS which would
indicate some kind of alteration to the sample. PRIMARY CELLS and the other 3
categories that are not TISSUE or CELL LINE were thus mapped to “others” (the
“catch-all”) class during the annotation phase. We now specify this in the result section
“Prediction and Availability of Novel Metadata” with the following sentence:
‘Specifically, we first trained a new MLP model to identify the sample source biopsy vs.
all other sample sources available in the SRA data as defined by MetaSRA.’. We hope
that these changes help readers understand the terminology used in this manuscript.

8. What was used for "gene length" to normalize to TPM?

We extracted the ‘gene length’ from Gencode v25, GRCh38, 07.2016. We have
integrated this information in the revised document section Dimensionality Reduction
and Normalization ‘First standard log2 Transcript per Million (TPM) normalization was
applied to normalize for gene length (Gencode v25, GRCh38, 07.2016) and library
size.’.

9. "Metadata annotation" section: I did not understand the phrase "no samples were
discharged because of their tissue label."  Are samples being removed from the
training or test sets with some criteria?

This sentence is indeed hard to understand. In brief, we downloaded ~50,000 SRA
samples from recount2 and selected the samples with a tissue label belonging to the
16 classes. For the annotation we take all samples. The samples not belonging to one
of the 16 tissues goes into a specially “catch-all” class.
In the revised document we have removed ‘no samples were discharged because of
their tissue label.’ from the paragraph as we believe the next sentence ‘Samples from a
tissue class other than the original 16 classes were pooled together into a 'catch-all'
class, resulting in 17 classes.’ makes the point perfectly clear. We hope that this
change adequately addresses the reviewer’s justified critique.

10. DA model architecture: the text says that the model "is trained on semi-hard
triplets" and then gives a definition of this based on Euclidean distances in the
embedding spaces. This confuses me because bias embedding mapper (BM) is what
is being trained here, so this appears circular.  How do you get the distances without
already having the BM?

We are sorry for not clarifying this better in the first manuscript. The BM is pretrained
on the source domain, as it is a direct copy of the trained SM. We have changed ‘For a
second training cycle, the bias mapper is created with the same architecture as the
SM. The CL is removed and the weights of the SM are frozen. Triplets of data are
forward propagated through the BM and SM in parallel (Figure 2C).’ to ‘For the second
training cycle, the SM and the CL are separated and their weights frozen. Frozen
weights are not updated during the second training cycle. The bias mapper is created
by copying the architecture and weights of the trained source mapper. SM and BM are
trained on triplets drawn from the source and the bias domain. Samples from the
source domain are passed through the SM, samples from the bias domain through the
BM at the same time (Figure 2C).’ in the revised document. In addition, we changed
‘Where d(i,j)  are  the  distances  in  embedding  space between  the  respective
outputs  of  the BM  and  SM on samples i and j.’ to ‘Where d(i,j) are the distances
between the constricted embedding space of the SM and the bias mapping into that
space of the BM on samples i and j.’.
We also added the new section ‘Other Models’ to the methods, introducing the msa
and mca achieved with a Siamese network where weights are shared between the SM
and BM. (see response to minor comment 5).

11. Figure 3D: y-axis appears to be mislabeled

We thank the reviewer for pointing out this mistake. In the revised document, we have
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corrected the y-axis labeling of what is now Figure 3C.

Reviewer #2: Summary:
The authors present a Domain adaptation model that uses a Siamese network
architecture to lead missing metadata from bulk RNAseq data and compare the
performance to a previously published linear regression model (LIN) and a multilayer
perceptron (MLP). As data sources, the authors used GTEx, SRA, TCGA. The DA
model outperforms the LIN and MLP, when many classes to learn (e.g. in case of
tissues), but not in the case of sex and sample source. While the authors present their
work in a concise and clear way, I think that they can improve their manuscript in
several points.

Major:

I did not see a cross-validation of any of the used models. Instead, the authors varied
the random seeds for model initialization. While I appreciate the split by study in the
case of the SRA data, I think that the authors should add a cross-validation approach
on the model training to increase robustness, even if that means that the training
dataset has varying size.

Overfitting is a pivotal concern in any Machine Learning task, and we believe the
reviewer addresses a very critical point. Domain adaptation methods such as Siamese
Neural Networks have been developed to overcome the problem of overfitting, by
learning latent space representations that reliably map two (or more) biases to the
same manifold.
To understand if and when our ANN models start to overfit, we chose to simulate mis-
labelled data in the training sets of the models and subsequently observed ‘overfitting’
of the model based on ‘wrong’ predictions (predicting the mis-annotated class of the
data).
In a nutshell, the ANN models predict correctly when the level of mis-annotations in the
training set does not exceed ~20%, above ~20% mis-annotations result in
progressively increasing model overfitting. We added the following text to the methods
section: ‘
Test for Overfitting
MetaSRA provides labels for SRA data generated in an automated way. We have
identified mislabeled samples for the sex phenotype (see Methods). The following
experiment was designed to test the ANN based model's susceptibility to overfitting on
mislabeled training data. An MLP model was trained on GTEx data on four tissue
classes (i.e., brain, esophagus, lung and skin). A range of fractions of the brain
samples were randomly assigned to skin tissue (i.e., 0.01,0.025,0.05,0.1,0.20,0.5 and
.8). The model was then trained on GTEx samples of the four classes, including the
mislabeled brain samples. We tested the models overfitting capabilities by letting it
predict the label of the mislabelled brain samples. If the model overfits, these samples
should be predicted to be from skin tissue. The same experiment was conducted for
the sex phenotype by mislabeling male samples as female.’. We also added a novel
Fig. S10 to the manuscript, showing stable prediction performance of the ANNs with
training data mis-labels of up to ~20%: ’

Fig. S10. Test of Overfitting. An MLP model was trained on GTEx data. An increasing
fraction of one class was assigned a wrong class label (e.g., brain to skin). The model
was trained on the partially mislabeled data and the mislabeled data was predicted by
the model after training. We quantify the model's susceptibility to overfitting by letting it
correct the mislabeled training data. The MLP model was able to correct all mislabeled
data up to a mislabeling fraction of 20%. We conclude that the ANN models are very
robust in dealing with mislabeled data.

The following text was added to the results section: ‘
ANN Models Can Correct Mislabeling in MetaSRA
Given the difficulties with metadata standards in the SRA state above, mislabeling in
MetaSRA is to be expected. We designed an overfit test for the ANN models where we
trained an MLP on partially mislabeled samples (see Methods). Supplementary Figure
10 shows that the MLP model correctly predicts brain samples, even if they were
presented as skin samples during model training. A decrease of this accuracy was
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observed if more than 20% of all brain samples were mislabeled as skin. A similar
observation was made for the sex phenotype (Supplementary Figure 10). We
concluded that our models can be used to correct mislabeled MetaSRA data.
In the specific case of sex classification, the MLP G+S was used to predict the true
corrected label for the removed SEX samples. For 82% of the 132 filtered samples, the
MLP model predicted the opposite of the presumably wrong MetaSRA labels.
However, our MLP model was able to confirm the MetaSRA label for 24 samples.
These samples had a mean chrY count sum of 2.4 (i.e. close to the cutoff value).
Manual confirmation revealed a high model accuracy. For example, SRR1164833,
SRR1164787 and SRR1164842 are samples from a prostate cancer study labeled as
MALE by MetaSRA. Our MLP model correctly classified these samples despite the fact
that their chrY total sum count was between 0.4 and 1.4. On the other hand,
SRR16076 54 / 56 / 61 / 62 / 64 /  65/  70 / 71 are annotated as FEMALE by MetaSRA
and the MLP but had a chrY total sum count of 2-5.3. We see the correct classification
of these borderline cases as further evidence that no overfitting is taking place.
A list of all SRA samples for which the MetaSRA labels and the predicted labels
mismatched is available in the Supplementary Material.’. We thank the reviewer for this
great comment and hope that the revised manuscript builds a strong case for the
stability of the approach taken. While we have not used a cross-validation approach to
assess and minimize model overfitting, we hope that our results are compelling enough
to convince the reviewer of the robustness of our approach. One of the reasons we
chose not to go via cross-validation is the training set size differences that would make
cross-validation results hard to compare (as the author also correctly stated). On
another note, it might be interesting for the reviewer to also read our response to
reviewer 1’s first main concern (overfitting of sex annotations), which further proves the
validity of the reviewer’s excellent comment.

Page 8: The introduction of the "percentage point" (ppt) as metric is superfluous. I
suggest to use percent (%) instead, if the authors really want to state relative changes.
Further, I have the impression that ppt and % are used synonymously, so the authors
should use the unit consistently.

We apologize for this unnecessary confusion. The ppt was dropped, and the result
section was changed accordingly.

Figure 3: Plotting the relative change to the baseline model overrates the actual
improvement of the DA approach and is not statistically sound. I suggest to state
absolute changes in accuracy (or mca/msa) instead.

We thank the reviewer for pointing out this problem. In the revised manuscript, we have
changed figure 3 to show absolute accuracy. To highlight changes, we took the liberty
to rescale the X-axis from ~0.6 to 1. In case the reviewer deems it necessary to show
the full spectrum from 0 to 1 we would be more than willing to adjust the X-axis.

Statistical analysis page 8: When using a t-test, the authors assume that the msa/mca
scores would be normally distributed around some unknown mean value. By looking at
the boxplots, I think that the assumption is not necessarily true and I suggest to use a
non-parametric test (e.g. Wilcoxon rank sum test) instead of the t-test.

This is an excellent observation, and we have replaced the t-test in the Prediction of
SRA Tissue section with a non-parametric Mann-Whitney test and changed the text of
the revised manuscript accordingly.

The method subsection Statistical Tests was changed from ‘Accuracy distributions for
sex and tissue prediction were tested for statistically significant differences using a t-
test (two distributions, scipy.stats.ttest\_ind v 1.3.1) or ANOVA (more than two
distributions, scipy.stats.f\_oneway) with a significance threshold of 0.01.’  to ‘Accuracy
distributions were tested for significance using the non-parametric Mann-Whitney-U-
Test (scipy.stats.mannwhitneyu v 1.3.1).’

Identifying novel training data (page 10): I would be very careful in including predicted
labels as ground truth data (which is known as data imputation task). In these cases,
retraining a classifier on both ground truth and predictions will lead to overfitting and
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spurious results, when the predicted labels dominate the ground truth labels.

The reviewer states that re-training on predicted data could result in overfitting, which
is per se a valid concern. We would like to highlight, however, that ‘E/M-like’
approaches that train iteratively on ‘harder’ samples have shown to give superior
classification and regression performances in several contexts. We agree that we
haven’t shown beyond reasonable doubt that in this case the re-training is not
overfitting, which is why we have decided to remove this last paragraph. We thank the
reviewer for raising this very good point of critique.

Minor:

Page 4: Gene selection based on Gini index: was there an overlap of the genes used
for tissue and sample source classification? I would assume so from the setup with the
range of Gini indices.

This is an interesting question, which we followed up upon. A list of all used genes per
phenotype is now available for download at giga.db. The file input_features.xlsx
contains the list of genes used for each phenotype and the intersection between the
phenotypes. The sex and sample source phenotype share 166 input features, sex and
tissue phenotype 155, and sample source and tissue share 2976 input features.

Figures and Subfigures are not fully in the order of first appearance (esp. subfigures 1
B-C compared to figure 2).

Unfortunately, we cannot find the noted inconsistent labeling of Figure 1 (B) compared
to Figure 2.

Figure 1A: Datasets could be visualized as bar charts to give the reader an idea about
the dataset sizes. Exact numbers can be stated in the supplement or figure legend

While we agree with the reviewer on almost every other point raised, we beg to differ
here. We think that the number of samples per data source is of secondary importance
in this study, it is rather the number of biases in the training data that is of utmost
relevance. In case the reviewer and the editor insist on the suggested change,
however, we will comply.

Figure 1: The figure design is clean, however, the green TCGA box is not colorblind
friendly and difficult to distinguish from the purple GTEx box. Consider a lighter color.

We thank the reviewer for this valid comment, we have changed the TCGA box to
yellow in the revised manuscript.

Figure 3:
I struggle to understand the plot, especially the numbers at the top of each boxplot
(please clarify in the figure legend, that this is msa and mca).
What was the baseline model in Figure 3D? Why do you present this as main figure,
when the relative changes are within 1% (and therefore within the range of the noise
level)?

We have significantly revised the figure and legend, in accordance with the reviewer’s
excellent suggestions and valid points of critique.

Supplementary Figure 7A:
The PCA analysis of the ovary data is interesting. The differences of TCGA-ovary and
GTEx-ovary data is reflected in PC1 and I was wondering whether the authors could
give a more detailed explanation on the reasons for this systematic bias, e.g. by
analysing the loadings of PC1.

We agree with the reviewer, that the observed shifts in the GTEx and TCGA domain
are of great interest and it could be informative to scrutinize the loadings of the
respective PC1. Unfortunately, we did not find any biological pathway or category that
might be enriched in PC1 when performing a PANTHER pathway enrichment analysis
on the top 1% and top 5%  genes (ranked according to absolute loading). Also, just
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looking at the genes themselves did not yield any insights to us, which might be due to
the fact that we do not possess enough biological understanding of the matter.
Therefore, we were not able to come up with any biological explanation of the shift
between TCGA-ovary and GTEx-ovary data in PC1.
We would like to stress, however, that our manuscript is already quite large and
complex and we fear that a closer inspection of genes and pathways responsible for
cluster differences might be outside the scope of this study. We will include this
information into a revised version if the reviewer or editor deems it relevant.

Page 9: Clarify. "For example, SRP056612 is a study on the effect of the coronavirus
on cultured kidney and
lung cells [39] and SRP045611 is a study involving HEK cells, which lack the Y
chromosome but are annotated as male by MetaSRA [40]."
As far as I understood the cited reference, it corresponds to the MERS coronavirus.

We thank the author for noting this and we corrected this in the revised manuscript.

Second, HEK cells are (most likely) of female origin, therefore, clearly state the nature
of the mislabeling (I consider this as human error in the MetaSRA).

We completely agree with the reviewer that the annotation error is in the MetaSRA
data. The nature of the error is either, as the reviewer suggested, a human error during
submission, or a mapping error of the MetaSRA pipeline. Since we don’t know which of
the two is the problem we opted to not state the nature of the error in more detail.

By the way, line numbers would have been nice to comment on certain passages.

We absolutely agree with the reviewer, line numbers can greatly facilitate the review
process. We tried to adhere to the GIGA Science submission guidelines, which
unfortunately do not mention line numbers.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely

Yes
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identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

No

If not, please give reasons for any
omissions below.

 as follow-up to "Availability of data and
materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

All data used is publicly available, however, the specific datasets we created and used
for training and testing are not (yet). It is our understanding that, if this manuscript will
be send for review, we are given the opportunity to upload them to GigaDB.
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Abstract

Background: Recent technological advances have resulted in an unprecedented increase in publicly
available biomedical data, yet the reuse of the data is often precluded by experimental bias and a lack
of annotation depth and consistency. Missing annotations makes it impossible for researchers to find
datasets specific to their needs. Findings: Here we investigate RNA-seq metadata prediction based
on gene expression values. We present a deep-learning based domain adaptation algorithm for the
automatic annotation of RNA-seq metadata. We show how our algorithm outperforms existing linear
regression based approaches as well as traditional neural network methods for the prediction of tissue,
sample source, and patient sex information across several large data repositories. By using a model
architecture similar to Siamese networks the algorithm is able to learn biases from datasets with few
samples. Conclusion: Using our novel domain adaptation approach we achieved metadata annotation
accuracies up to 15.7% better than a previously published method. Using the best model we provide a list
of more than 10,000 novel tissue and sex label annotations for 8,495 unique SRA samples. Our approach
has the potential to revive idle datasets by automated annotation making them more searchable. The
source code as well as an example are available at: github.com/imsb-uke/rna_augment

Key words: RNA-seq metadata, data reusability, automated annotation, machine learning, domain
adaptation, bias invariance

Introduction

Next generation RNA-sequencing (RNA-seq) has been

a pillar of biomedical research for many years [1,

2]. It allows researchers to simultaneously quantify

and compare the expression of tens of thousands

of genomic transcripts. A continuous drop in cost

makes RNA-seq a widely available method of choice to

uncover the molecular basis of biological development

and diseases [3, 4]. As a result of this, recent years
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have seen a strong growth in publicly accessible RNA-

seq data. The actual reuse and integration of this

data, however, has been largely limited by the lack

of consistent metadata annotation and individual

dataset bias [5, 6]. The lack of metadata annotation

for RNA-seq samples, such as tissue of origin,

disease or sex phenotype, prohibits experimenters

from finding data that is relevant to their research.

Moreover, dataset biases [7] due to differences in

protocols and technologies [8] or of a biological nature

hinder integration and comparative analysis.

To allow for efficient data reuse, publicly available

data has to be harmonized and well annotated with

standardized metadata and subsequently be made

accessible (and searchable) [9]; This practice is

followed by the Genotype-Tissue Expression Project

(GTEx) [10], and The Cancer Genome Atlas

(TCGA). Nevertheless, the primary database for

next-generation sequencing projects, the Sequence

Read Archive (SRA) [11], stores raw sequencing

information that lacks rigorous standards of curation,

which limits the reusability of its data.

Efforts to predict missing or sparse metadata

in public RNA-seq resources have shown promising

results. For instance, recently published studies used

text mining approaches to retrieve missing annotation

from associated abstracts or free text annotations in

the data sources [12, 13, 14]. Others have used RNA-

seq expression values for phenotype prediction. For

example, machine learning (ML) has successfully been

applied to disease and cell type classification [15, 16]

or survival outcomes on TCGA data [17]. Others

have taken advantage of prior domain knowledge such

as gene regulatory networks for enhanced feature

selection [18, 19]. Recently a linear regression model

fitted to GTEx data has been presented for the

prediction of tissue, sex and other phenotypes of

SRA and TCGA samples [20]. These efforts provide

evidence that missing RNA-seq metadata can be

successfully predicted based on genomic expression

values using ML approaches.

Artificial neural networks (ANNs) in their various

forms and functions consistently outperform classical

ML approaches in a large variety of biological

tasks, including classification, data generation

and segmentation [21, 22, 23, 24]. Given large

training datasets, these algorithms can learn complex

representations of data by automatically weighting

and combining features non-linearly. This has led

us to hypothesize that ANN based models could

increase the performance in metadata prediction

beyond that of classical ML approaches such as

linear regression. Of special interest in this context is

domain adaptation (DA) [25], a subfield of ML which

aims to specifically alleviate problems conferred by

dataset bias [26]. The aim of DA is to build and train

ANNs on a source domain in such a way that the

model performs well on a biased target domain.

Here we present a DA approach capable of

leveraging a number of dataset biases, boosting

generalizability of phenotype prediction. We developed

the model using three data sources (GTEx, TCGA

and SRA) of different size and with a different degree

of bias. To validate our approach we compare it to a

previously suggested linear model (LIN) [20] as well as

a standard supervised multi-layer perceptron (MLP)

for prediction of tissue of origin, sex and sample

source. Importantly, we find that our DA network

significantly outperforms the strongly supervised LIN

model by up to 12.3% in prediction accuracy. We

subsequently apply trained models to generate and

make available new metadata for 8,495 unique SRA

samples.

Methods

Data Acquisition

To train and test models we gathered data from three

different sources (i.e. GTEx, TCGA and SRA), each

with a different level of heterogeneity (Supplementary

Figure 1). We measure data source heterogeneity

by the number of unique dataset (or studies) in

the source. Each dataset (or study) is believed to

have a unique bias. Biases stem from the unique

circumstances, protocols and reagents used as well as

biological factors of the study [7, 8]. Here we define a

dataset as all the RNA-seq samples from one study

based on the assumption that they were obtained

and processed under equal conditions. To avoid

additional biases by the use of different bioinformatic

alignment pipelines [27] all data was downloaded from

recount2 (release 13.09.19, https://jhubiostatistics.

shinyapps.io/recount/). Recount2 aggregates raw

RNA-seq data from different sources and re-runs the

data through the Rail-RNA alignment pipeline [28].

The RSE V2 files of all available RNA-seq projects

(n=2,036) from recount2 were downloaded using the

https://jhubiostatistics.shinyapps.io/recount/
https://jhubiostatistics.shinyapps.io/recount/
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recount R package (v 1.11.13). The downloaded

data was separated into three different data sources

according to their origin. Figure 1A gives a general

overview of the data obtained, the pre-processing

steps and data set preparation.

GTEx

The Genotype-Tissue Expression Project v6 (https:

//www.gtexportal.org/) comprises 9,662 samples from

554 healthy donors across 31 tissues. GTEx

strives to build a highly homogeneous dataset with

strict guidelines on donor selection, biopsy and

sequencing methodology (more information at: https:

//www.gtexportal.org/home/documentationPage). We

considered the GTEx data source to have a single

dataset bias.

SRA

From the Sequencing Read Archive, a total of 2,034

studies containing a total of 49,657 samples were

downloaded from recount2. Every SRA study was

potentially processed at a different site by a different

technician following different standards. In addition,

the underlying biological condition of the samples

is often unclear. We assume each study to have

a unique dataset bias which makes the SRA a

highly heterogeneous data source. In addition, data

annotation is not standardized, resulting in sparse

metadata with low fidelity.

TCGA

RNA-seq data for The Cancer Genome Atlas (https:

//www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga) was downloaded consisting

of 11,284 samples spanning 26 tissues. While

there are 740 samples of healthy donors across 20

tissues, more than 90% of the samples are tumor

biopsies from different tissues and different stages

of tumor progression. TCGA accepts sequence data

from different locations using different sequencing

technologies. Despite the high level of standardization

and reliability of metadata information, heterogeneity

is also inherent to the TCGA dataset due to the

biological context (cancers, stages) albeit not as

pronounced as in the SRA.

Preprocessing of SRA Data Source

In this study we focus on bulk mRNA-seq data,

as it is by far the most frequent RNA type in

either of the three data sources used. The following

approaches were used to remove data from single-

cell and small RNA-seq studies from further analysis:

First, we identified small RNA-seq data on the basis

of the total fraction of small RNA counts and protein

coding RNAs. Specifically, we considered a subset

of the Gencode gene types (i.e. protein coding and

processed pseudogene vs. rRNA, miRNA, misc RNA,

snRNA and lincRNA). Every sample that had its

maximum total count fraction not allocated to

either protein coding or processed pseudogene was

removed from further analysis (Supplementary Figure

2). Second, we removed single-cell RNA-seq studies

by scanning titles and abstracts for variations of

the words ’single cell’ and manually validated and

excluded the identified samples. In addition to

this semi-automatic validation step we manually

validated the 50 largest projects within the SRA data

source and removed samples that did not qualify as

bulk RNA-seq data. Most importantly, we noticed

numerous technical replicates in the remaining SRA

data. Using technical replicates to train and test

a classification model inflates the reported metrics.

Therefore, only samples with a unique experiment

accession (SRX) were retained. From the 49,657 SRA

samples downloaded initially, 29,685 samples and

1,833 unique studies passed our preprocessing steps.

Metadata

We considered three different phenotypes for expression

based prediction. Explicitly, we predicted the tissue of

origin of a biopsy (e.g. heart, lung, kidney, ovary), the

patients’ sex, and sample source (denoting whether

the sample was from a patient biopsy or a lab grown

cell line) (Figure 1A).

GTEx and TCGA

Tissue and sex annotation for GTEx were extracted

from the official sample annotation table as provided

by GTEx (GTEx Data V6 Annotations SampleAttributesDS.txt,

from https://storage.googleapis.com/gtex_analysis_

v6/annotations). An annotation file for TCGA was

provided by recount2. For tissue and sex annotation

we took columns gdc cases.project.primary site and

gdc cases.demographic.gender respectively. Sample

source was assumed to be of type biopsy for all GTEx

(n=9,662) and TCGA (n=11,284) samples.

SRA

For the SRA samples we relied on normalized

metadata provided by MetaSRA [14]. Available

SRA identifiers were downloaded through the GUI

https://www.gtexportal.org/
https://www.gtexportal.org/
https://www.gtexportal.org/home/documentationPage
https://www.gtexportal.org/home/documentationPage
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://storage.googleapis.com/gtex_analysis_v6/annotations
https://storage.googleapis.com/gtex_analysis_v6/annotations
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on http://metasra.biostat.wisc.edu by searching for

all 31 GTEx tissues (site accessed on 11.09.2019).

Supplementary Table 1 lists assumed mappings from

GTEx tissue names to MetaSRA tissue names where

no direct mapping was available. Of the 31 tissues

available for GTEx we were able to identify samples

for 26 in MetaSRA, resulting in 6,183 annotated

SRA samples. Sample identifiers for sex were accessed

through the same GUI by searching for male organism

and female organism + Homo sapiens cell line

which resulted in 3,240 annotated SRA samples.

Sample source was determined using the sqlite file

provided by MetaSRA (metasra.v1-5.sqlite, http:

//metasra.biostat.wisc.edu/download.html, column

sample type) resulting in 28,043 annotated samples

across six sample source categories.

Tissue Label Harmonization

GTEx, TCGA and SRA have 17 common tissue types

(Supplementary Figure 3). Bladder was removed due

to its small sample size (GTEx n=11). We kept

samples of comparable size in SRA (adrenal gland

n=14, testis n=14, pancreas n=17 in the SRA training

data), as the SRA training data is mainly used for

bias injection, such that size was not considered an

exclusion criterion. This resulted in 5,480, 8,624, and

3,252 tissue annotated samples across 16 tissues for

GTEx, TCGA and SRA, respectively (Supplementary

Tables 2 and 3).

Dimensionality Reduction and Normalization

The downloaded gene count table provided counts

for 58,037 genes (Gencode v25, GRCh38, 07.2016).

First standard log2 Transcript per Million (TPM)

normalization was applied to normalize for gene

length (Gencode v25, GRCh38, 07.2016) and library

size. We next reduced the number of input features

(genes), aiming to keep features that contain

information and removing potentially uninformative

features. First, all non-protein coding genes were

removed, reducing the gene set by 65.5% to

19,950 genes. For sex classification, only protein

coding genes on the X and Y chromosome (n=913)

were selected. For retaining only genes that show

significant dispersion across tissues, we computed

the Gini coefficient [15, 29, 30] for all remaining

genes across all GTEx samples. Housekeeping genes,

for example, are known to be expressed similarly

across tissues and would score a low Gini coefficient

(i.e. high dispersion). Low and high cutoffs were

applied during hyperparameter optimization. For

tissue classification, genes with Gini coefficients

g between 0.5 and 1 were retained, resulting in

a features space of dimension d=6,974. For sex

classification, genes with 0.4 < g < 0.7 were used

(d=190). Sample source classification included genes

with 0.3 < g < 0.8 (d=8,679) (Supplementary Table

2, list of input features in Supplementary Material).

Dataset Preparation

Phenotype Classification Experiments.

Tissue: To ensure that dataset biases are not shared

between train and test sets, SRA data was always split

on the study level. For tissue of origin prediction, the

two largest SRA studies per class were put in the

training set. This ensured maximal bias variability

in the remaining test data, ensuring a realistic test

score. Of the 178 SRA studies containing tissue

annotated samples, 30 studies were selected for the

training set (n=1,721) and 148 studies for the test set

(n=1,531) (Supplementary Tables 2 and 3). Sex: We

noticed SRA samples identified as female by MetaSRA

to have a significant amount of reads mapped to

chrY (Supplementary Figure 4). All samples labeled

as female with a total normalized count > 2 and

all samples labeled male with a total normalized

count < 2 were removed. In total, 149 SRA studies

contained samples annotated with male and or female

by MetaSRA. These studies were combined into the

training set (studies=73, n=2,017), and test set

(studies=76, n=791) (Supplementary Tables 2 and

3). For model validation, GTEx was randomly split

into training and test sets with an 80:20 ratio for

both sex and tissue classification. Sample Source:

A confidence cutoff of > 0.7 was applied (provided by

MetaSRA), reducing the total amount of annotated

samples for SRA from 23,651 to 17,343. MetaSRA

provided six different types of sample source. The

two largest classes, TISSUE and CELL LINE, were

selected. In this study we renamed the MetaSRA

label TISSUE to biopsy to not be confused with the

phenotype tissue (e.g., heart, lung, skin). For each

of the two selected categories we sorted all available

studies by number of samples, placed the first third

of studies into the training (studies=420, n=12,725),

the second third into the test (studies=422, n=3,144)

and the last third into the SRA validation set

(studies=418, n=1,124) (Supplementary Tables 2 and

3). A list of the sample ids and corresponding labels

is available in the Supplementary Material.

http://metasra.biostat.wisc.edu
http://metasra.biostat.wisc.edu/download.html
http://metasra.biostat.wisc.edu/download.html
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Metadata Annotation.

After determining the best model for each phenotype,

we re-trained the models for automated metadata

annotation. The same datasets as defined above

were used for the sex metadata annotation. Tissue:

We followed the same pipeline as described above.

Samples from a tissue class other than the original

16 classes were pooled together into a ’catch-all’

class, resulting in 17 classes. In total 44 SRA studies

were selected for the training set (n=3,370) and 203

studies for the test set (n=2,813). Sample Source:

Contrary to before, for metadata annotation we used

all available classes in the SRA data source. All classes

that are not of type biopsy were grouped into a single

’catch-all’ class while the same cutoff as before was

applied. The training set (n=16,463) is made up of

974 SRA studies and the test set (n=3,707) of 492

studies.

Multilayer Perceptron - MLP

MLPs use fully connected neural network layers to

learn non-linear features from a raw input space [31]

and constitute the most basic form of ANNs. All

our ANN based models were developed and trained

on tf.keras (Tensorflow 2.1). The hyperparameters

for each prediction task were determined using

exhaustive iterative random search (keras tuner 1.0.1)

(Supplementary Table 4). In case of approximately

equal accuracy on the validation set, the least

complex model was chosen. A single hidden layer was

used in each case with 128, 128 and 32 nodes for

tissue, sample source, and sex prediction, respectively

(Supplementary Table 5, Supplementary Figure 5).

Each network was trained for 10 epochs with a

batch size of 64. Performance was quantified by

mean sample accuracy and mean class accuracy and

subsequently used to benchmark our DA approach.

Domain Adaptation Model - DA

Many DA models correct bias between two domains,

a source and a target domain. In biological research,

however, one is often confronted with many small

datasets, each potentially with its unique dataset bias.

Therefore, we specifically designed our DA model to

be able to learn from very few data by using a Siamese

network architecture [32]. The Siamese network learns

bias from pairs or triplets of training samples by

exposing each sample in multiple relationships to

the model. We distinguished three different types of

input data for our model. The source domain is a

large single-bias dataset used to learn the feature

embedding for the classification task (in our case:

GTEx). The bias domain contains labeled samples

from multiple smaller datasets (in our case: SRA)

each with its own bias. The target domain refers to

unlabeled and biased datasets we want to classify

(unlabeled SRA or TCGA data).

Model Architecture

Our DA architecture is based on the Siamese network

architecture. A Siamese network usually shares the

weights between two equal networks. Here, however,

we do not use weight sharing. Weight sharing and

other types of architecture did not prove to be

applicable to this problem (see Methods section

Other Models). It consists of three modules: A

source mapper (SM) and bias mapper (BM) which

correspond to the Siamese part of the model, as well as

a classification layer (CL). These modules give rise to

three different configurations, i.e. two training cycles

and a prediction configuration (see Supplementary

Figure 6 for a brief illustration). In the first training

cycle, the source mapper (SM) and the classification

layer (CL) are combined to form an MLP (Figure

2A). The task of the SM is to learn a mapping from

the input space to an embedding space from which

the CL can predict phenotype classes. The SM-CL

module is trained with a batch size of 64 for 10

epochs. Because the SM-CL MLP is trained on a large

single-bias dataset, it will likely overfit and thus not

readily generalize to other datasets (Figure 2B). For

the second training cycle, the SM and the CL are

separated and their weights frozen. Frozen weights are

not updated during the second training cycle. The

bias mapper is created by copying the architecture

and weights of the trained source mapper. SM and

BM are trained on triplets drawn from the source and

the bias domain (Figure 2C). Samples from the source

domain are passed through the SM, samples from the

bias domain through the BM at the same time. Each

triplet is made up of an anchor (a) sampled from

the bias domain, and a positive (p) and a negative

sample (n) from the source domain. The anchor and

the positive sample have equal class labels, whereas

the negative sample is from a randomly selected

different class. The triplet loss function [33] was used

to optimize the model during training:

L = max(d(a, p)− d(a, n) +m, 0)

Where d(i, j) are the distances between the constricted

embedding space of the SM and the bias mapping into

that space of the BM on samples i and j. For improved
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training time and robustness, our model is trained on

semi-hard triplets [33]

d(a, p) < d(a, n) < d(a, p) +m

with a margin parameter m. The distances are

defined as Euclidean distances in embedding space:

d(a, p) = ‖σ(BM(a))− σ(SM(p)))‖

d(a, n) = ‖σ(BM(a))− σ(SM(n)))‖

σ is the sigmoid activation function for the

embedding vector. The SM-BM module was trained

for 10 epochs with a batch size of 64. Hyperparameters

were determined as described above (Supplementary

Table 5, Supplementary Figure 5). As this training

cycle proceeds, the BM learns to map its output onto

the SM embedding space. After training, the bias

mapper and the classification layer are combined to

a BM-CL MLP and can be used for prediction of the

target domain (Figure 2D). The source code as well

as an example are available at: github.com/imsb-uke/

rna_augment.

Linear Regression Model - LIN

We used the metadata prediction performance of the

LIN model described in Ellis et al. [20] as a point of

reference. The LIN model was optimized on the same

data as all other models (see data section of methods).

For each experimental setup, the following steps were

conducted in R version 3.6.3 in order to build the

corresponding phenotype predictor and evaluate its

accuracy based on the test data:

1. calculating the coverage matrix for the training

samples based on the regions reported in

Ellis et al. [20] by employing the function

‘coverage matrix bwtool’ (R package recount.bwtool

version 0.99.31).

2. building the model by running ‘filter regions’ and

‘build predictor’ (R package phenopredict version

0.99.0) with the same parameters used in Ellis et

al. [20]

3. testing the model on the test samples with

‘extract data’, ‘predict pheno’, ‘test predictor’ (R

package phenopredict version 0.99.0)

Notably, our experiments differ from the original

work [20] solely by applying additional preprocessing

steps to the samples (see Methods), which may

be responsible for observed small differences in

performance. For implementation details and code

examples for the before-mentioned functions, see the

documentation (http://rdrr.io/github/ShanEllis/phenopredict/

).

Nomenclature of Experiments

Each experiment was named after the model, the

training and the test data used. The possible

models are LIN (linear model [20]), MLP (multi-

layer perceptron) and DA (novel domain adaptation

approach). The data sources are named G (GTEx), T

(TCGA) and S (SRA). If only the SRA training data

is used (i.e. if the model is evaluated on the SRA

test data) we write Ssmall. If the SRA train and test

sets are combined for training we write Slarge. For

instance, an experiment using an MLP, trained on a

mix of GTEx and SRA and evaluating on SRA data

would be named MLP G+Ssmall-S.

Impact of Data Diversity and Quantity on Model

Performance

To analyze the effect of training data diversity

on prediction accuracy, the following experiments

were designed. First, MLP S-S models for sample

source prediction were trained with an increasing

number of unique SRA studies in the training data,

systematically increasing bias diversity. Only SRA

studies containing > 100 samples for either class were

considered. In order to control for training set size,

each SRA study was subsampled to 50 samples before

training. Six iterations of this training process were

conducted starting with one study (i.e. one bias) per

class (biopsy vs. cell line). At each step one additional

SRA study per class was subsampled ending with six

SRA biases and 350 samples in the training set per

class. As a control experiment we chose the largest

SRA study available for each class to create a training

set with a single bias per class. Starting with 50

samples per class in six iterations we subsampled

an additional 50 samples ending with 350 samples,

thereby assessing the effect on performance that can

be attributed to the dataset size. Subsampling and

random selection of SRA studies were repeated 10

times with different seeds and each configuration was

trained on 10 different seeds, yielding an estimate of

uncertainty.

Test for Overfitting

MetaSRA provides labels for SRA data generated

in an automated way. We have identified mislabeled

samples for the sex phenotype (see Methods).

github.com/imsb-uke/rna_augment
github.com/imsb-uke/rna_augment
http://rdrr.io/github/ShanEllis/phenopredict/)
http://rdrr.io/github/ShanEllis/phenopredict/)
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The following experiment was designed to test the

ANN based model’s susceptibility to overfitting on

mislabeled training data. An MLP model was trained

on GTEx data on four tissue classes (i.e., brain,

esophagus, lung and skin). A range of fractions of

the brain samples were randomly assigned to skin

tissue (i.e., 0.01,0.025,0.05,0.1,0.20,0.5 and .8). The

model was then trained on GTEx samples of the four

classes, including the mislabeled brain samples. We

tested the model’s overfitting capabilities by letting it

predict the label of the mislabelled brain samples. If

the model overfits, these samples should be predicted

to be from skin tissue. The same experiment was

conducted for the sex phenotype by mislabeling male

samples as female.

Metrics

We report micro and macro accuracy which are

equivalent to mean sample accuracy (msa) and mean

class accuracy (mca) respectively. Sample accuracy is

a measure of absolute performance on the test data.

It reports the fraction of correctly classified samples

over all classes:

msa =

∑N
i 1yi

(ŷi)

N

Where N is the number of samples, y the true

label and ŷ the predicted label, and 1 is the indicator

function. Given the large class imbalance in some of

our experiments, an increase in accuracy in a small

class will not be captured by this metric. Average

class accuracy, on the other hand, reports the average

sample accuracy per class, weighing each class equally

and thereby capturing local improvements of the

models:

mca =

∑C
j=1

1
Mj

∑Mj

i=1 1yij
(ŷij)

C

Here, C is the number of classes, Mj is the number

of samples for class j, and yij and ŷij are the true and

predicted values, and 1 is the indicator function.

Statistical Tests

Accuracy distributions were tested for significance

using the non-parametric Mann-Whitney-U-Test

(scipy.stats.mannwhitneyu v 1.3.1).

Other Models

While developing our DA model we did a thorough

literature research and implemented and tested

multiple architectures and strategies. Here we give a

brief overview of the models we found not suitable

for the problem of bias invariant RNA-seq metadata

annotation. The first strategy that has been tested

was interpolation between source and target domain

by training feature extractors on an increasing ratio

of target to source domain data [34]. The second

strategy was adversarial training by applying two loss

functions. The first loss function forces the model to

learn weights for the class prediction task, while the

second forces the model to learn to ignore differences

between the source and target domain [35]. We also

implemented Tzeng et al.’s adaptation of this idea

[36], proposing a model using a separate source and

target encoder, using them as ’real’ and generator

input for a generative adversarial network [37] that

is capable of ignoring bias. These models ultimately

failed due to the hundreds of dataset biases in the

SRA data and their relatively small sample size

(data not shown). For the case of scarce target data

an approach was previously proposed using Siamese

networks [32, 38]. The trained model achieved an msa

of 0.83 and mca of 0.79 for tissue classification on SRA

data. The mca achieved is comparable to the results

of the MLP model, however, the msa score is 6% lower

than even the LIN model. The more challenging task

of learning to map the bias embedding into the pre-

learned class embedding, as presented in this paper,

finally resulted in the desired outcome.

RESULTS

Experimental Setup

This study aims to find the best model for RNA-

seq metadata annotation based on gene expression.

Three different data sources were selected for which

phenotype data was available (Figure 1A). Each of the

three data sources comes with a different number of

data set biases. Briefly, GTEx is a large homogeneous

dataset containing healthy samples following a strict

centralized standard protocol. TCGA contains pooled

samples from different cancers, disease stages and

sequencing centers. Our SRA data is made up of

hundreds of individual studies following no centralized

standard, containing the largest number of biases

of all three data sources. Bias in a test dataset

that has not been learned by a model can severely

compromise performance. We hypothesized that



8 Wartmann et al.

exposing classification models to a sufficient number

of dataset biases will enable them to learn a

generalized internal feature representation. Such a

model would be able to classify data with previously

unseen biases. To test and benchmark our models we

selected the classification tasks of (1) tissue of origin

of a given RNA-seq sample, (2) biopsy vs. cell-line

origin of a sample (i.e. sample source), and (3) sample

sex (Figure 1A).

Three different machine learning models were

compared (Figure 1B). First, a fully connected ANN

(MLP) was tested because of its capability to create

novel latent features (see methods for model details).

Second, we developed a domain adaptation (DA)

approach (Figure 2), a subfield of machine learning

dealing with dataset biases. Lastly, the LIN model

trained on GTEx data, proposed in Ellis et al.

[20], was used as the baseline for all tissue and sex

classification experiments.

Models were trained on either GTEx or a mix of

GTEx and SRA data and tested on TCGA and SRA

data. Uncertainties for MLP and DA models were

estimated from 10 training runs with different random

seeds (Figure 1B).

Domain Adaptation Outperforms Other Models on

Tissue Classification

We first tested the performance of the LIN, MLP,

and DA algorithms to predict the tissue of origin

on GTEx (n=5,480), TCGA (n=8,624), and SRA

(train n=1,721, test n=1,531) datasets. A subset of 16

tissue labels was chosen that is common to all three

data sources (see methods, Supplementary Figure 3,

Supplementary Table 3). First, we conducted a single-

bias experiment, i.e. MLP G-G (see Nomenclature of

Experiments in methods). The nearly perfect score

of mean sample accuracy (msa) 0.996 and mean class

accuracy (mca) 0.99 (data not shown) confirmed that

the MLP yielded highly accurate results when trained

and tested on a single-bias dataset (for details on

model training, validation, and testing see methods).

Prediction of SRA Tissue

Metadata prediction on SRA was the most challenging

and interesting task due to the potentially large

number of different biases in the data source. We

re-trained and tested LIN G-S on our datasets and

achieved a msa of 0.893 and a mca of 0.765 for the

16 tissues (Figure 3A). Of note is the significantly

higher accuracy achieved with LIN G-S compared to

the one reported by Ellis et al. [20] (0.519 msa).

MLP G-S (msa: 0.872, mca: 0.77) had a higher mca

but a lower msa than the corresponding LIN model

(Figure 3A). In the next step we investigated the effect

of adding bias to the training dataset on prediction

performance. In particular, we first predicted SRA

tissue from Ssmall data. MLP Ssmall-S (msa: 0.894,

mca: 0.746) matched the base model’s msa score

but performed slightly worse using the mca metric.

Similarly, the LIN Ssmall-S model matched the msa

of LIN G-S but showed an increased performance for

mca (msa: 0.893, mca: 0.795) Notably, by only using

the small SRA training dataset, we lose the advantage

of the large sample size of GTEx. Based on this we

hypothesized that by combining SRA and GTEx in

the training data, we may be able to leverage both

sample size and diversity.

The LIN G+Ssmall-S model increased its msa

to 0.908 and mca to 0.785 which in turn is 1%

lower than the LIN Ssmall-S model. The two best

performing models were MLP G+Ssmall-S and DA

G+Ssmall-S, outperforming LIN G-S on msa by 2.5%

and mca 5.5% (MLP G+Ssmall-S msa: 0.915, mca:

0.817 and DA G+Ssmall-S msa: 0.922, mca: 0.821).

No significant difference in the mean performance

was detected between these two models (msa p-

val>0.02, mca p-val>0.4, Mann-Whitney). Crucially,

however, DA G+Ssmall-S exhibited the lowest

standard deviation (std=0.003 for msa and std=0.009

for mca) of all models tested (Supplementary Table

6). For this reason DA G+Ssmall-S was considered

the best model for the prediction of tissue on

the highly heterogeneous SRA test data. The best

model increased the msa score by 3.6% compared

to LIN G+Ssmall-S and mca by 5.6% compared to

the baseline LIN Ssmall-S, the best performing linear

models for the respective metrics.

Prediction of TCGA Tissue

Next, model performance on TCGA data was assessed

(Figure 3B). The baseline model LIN G-T achieved

msa 0.718 and mca 0.638. Applying the MLP model

on the same data resulted in a drop of msa and

mca of 2.4 and 3.3%, respectively (MLP G-T msa:

0.684, mca: 0.605). For TCGA tissue prediction

we used Slarge for training, essentially doubling the

SRA training data (SRA train + SRA test set:

n=3,252). LIN Slarge-T improved accuracy by 6.6%

for msa and 8.6% for mca to 0.784 and 0.724

respectively. In comparison, MLP Slarge-T increased

model performance by 11.4% to 0.832 (by 11.7%

to 0.755) for msa (mca) with respect to LIN G-T.

Combining GTEx and SRA training data reduced
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LIN G+Slarge performance to msa 0.725 and mca

0.651. The best accuracy was achieved by our MLP

G+Slarge (msa: 0.842, mca: 0.773) and DA G+Slarge

(msa: 0.875, mca: 0.813) models. The DA model had

thus a 15.7% and 9.1% performance increase for msa

compared to LIN G-T and LIN Slarge-T, respectively.

In addition to being the top performer, DA G+Slarge-

T also was the most robust model for this task, having

the lowest variation in its results (std=0.004 for msa

and std=0.006 for mca) (Supplementary Table 6).

We repeated the prediction for TCGA with the

models trained for SRA tissue prediction (previous

section), i.e. on Ssmall, which allows us to assess the

influence of the amount of bias injection on model

performance. Whereas the addition of more SRA

data to the training data set had little influence on

LIN models (except for a slight increase of ∼0.2%

for G-Slarge-T), both MLP and DA model accuracies

improved significantly (by between 5 and 9%) upon

addition of additional SRA data (Supplementary

Table 6).

Notably, adding 5,480 GTEx training samples

to MLP Ssmall (MLP-Ssmall → MLP G+Ssmall)

increased msa from 0.748 to 0.764 and msa from

0.688 to 0.716 on the TCGA test set. On the

other hand, adding 1,531 SRA samples (MLP-

Ssmall → MLP Slarge) increased msa to 0.832 and

msa to 0.755, underlining our model’s ability to

incorporate multiple biases for better generalization

(Supplementary Table 6).

Expression Based Prediction of Sample Source

SRA data stems from multiple different sources,

from which we selected the two largest, namely

either biopsy or (immortalized) cell lines, whereas

GTEx and TCGA data are exclusively from biopsies.

Starting from the hypothesis that fundamental

differences do show on an expression level, we set out

to train LIN and MLP models on SRA data to predict

the sample source of SRA, GTEx and TCGA. Of note,

while we were able to approximately reproduce the

original results for LIN Ssmall-G and LIN Ssmall-S we

were not able to do so for LIN Ssmall-T (msa: 0.998

reported in publication [20]). LIN Slarge-G (msa/mca

0.951) did slightly better than MLP Slarge-G (msa and

mca of 0.943). MLP Slarge-T achieved msa and mca

0.971, outperforming LIN Slarge-T with (msa and mca

of 0.882). MLP Ssmall-S achieved msa 0.95 and mca

0.941, outperforming LIN Ssmall-S with msa 0.89 and

mca of 0.884 (Figure 3C).

Multi-Bias Data Enhances Tissue Classification on

TCGA

For tissue classification on TCGA, mean class

accuracy increased by 16.8% between MLP G-T and

MLP G+Slarge-T. This confirms our hypothesis that

the homogeneity of the GTEx data did not allow the

MLP G-T model to generalize to TCGA data, while

the addition of SRA training data in MLP G+Slarge-

T resulted in a model with significantly improved

generalization. To further investigate this result, we

took a closer look at the per class accuracy for the

TCGA tissue prediction (Figure 3D, Supplementary

Figure 7). MLP G-T was unable to predict samples

for three tissues, namely bone marrow (msa: 0.08),

ovary (msa: 0.02) and uterus (msa: 0.07), whereas all

our other models achieved accuracies between 0.7 and

1.0 on these tissues. Adding SRA data to the training

set enabled the model to achieve per tissue sample

accuracy of 1.00, 0.704 and 0.67 for bone marrow,

ovary and uterus, respectively. We used principal

component analysis (PCA) to visualize the dataset

bias for ovary tissue (Figure 3E). Interestingly, the

GTEx-ovary and TCGA-ovary data points show little

overlap in the PCA plot, while the SRA-ovary data

overlaps with GTEx- as well as TCGA-ovary data,

forming a ’bridge’.

Linear Model Sufficient For Sex Classification

For sex classification, only genes on the X and Y

chromosome were used as input features (d=190). We

first tested the trivial case MLP G-G by splitting

GTEx into training and test sets, achieving sample

and class accuracy of 0.995 (data not shown).

Prediction of TCGA Sex

Sex phenotype prediction on TCGA data was the

only task where the linear model outperformed the

ANN models. The baseline LIN G-T as well as the

other linear models LIN Slarge-T and LIN G+Slarge-

T achieved almost perfect accuracy on the TCGA

data (msa/mca 0.989 for LIN G-T and LIN G+Slarge-

T, msa 0.988 and mca 0.987 for LIN Slarge-T). Our

best model, based on the data annotation provided

by MetaSRA, was MLP G+Slarge-T with msa 0.964

and mca 0.962 (Supplementary Figure 8).

Prediction of SRA Sex

All linear models for the prediction of sex for SRA

data achieved an accuracy (msa: 0.98 and mca: 0.98

for LIN G-S and LIN G+Ssmall-S, msa: 0.979 and mca:

0.979 for LIN Ssmall-S). This result is significantly
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better than what was previously reported (msa: 0.863

[20]). The MLP G-S model (msa: 0.971 and mca:

0.979) did, on average, perform worse than all the

linear models. While adding SRA data to the training

set did not improve the LIN model, it increased the

performance of MLP and DA models. DA G+Ssmall-S

(msa: 0.99 and mca: 0.987), MLP Ssmall-S (msa: 0.994

and mca: 0.994) and MLP G+Ssmall-S (msa: 0.993

and mca: 0.992). Results are shown in Supplementary

Figure 8.

According to MetaSRA all our training and

testing data for sex prediction on SRA stem from

patient biopsies. However, at least two of the largest

misclassified SRA studies in the test set are clearly

cultured cell lines. For example, SRP056612 is a study

on the effect of the MERS coronavirus on cultured

kidney and lung cells [39] and SRP045611 is a study

involving HEK cells, which lack the Y chromosome

but are annotated as male by MetaSRA [40]. These

are two examples of errors in the MetaSRA. Clearly,

mislabeled data can compromise classifier accuracy,

either by providing the wrong ground truth for

training or by reporting the false label at the point

of prediction. As described in the methods section,

obviously mislabeled samples have been removed.

Training Data Diversity Outweighs Quantity

Our experiments on phenotype classification seem to

indicate that increased training data diversity might

enhance classification performance. To learn more

about the relationship between the amount of training

data and model performance, MLP G-S was trained

on an increasingly large subset of the GTEx training

data for tissue classification. We observed a limited

effect on model performance with increased training

dataset size. The msa reaches its peak with one

third of the available training data, while the mca

saturates at about half of the available training data

(Supplementary Figure 9).

To test the effect of bias in the training data,

an MLP Ssmall-S for sample source classification was

trained on an increasing number of biases in the

training set. As a control experiment an MLP was

trained with the same amount of data but drawn

from a single-bias source. We observed a positive

correlation between msa and the number of biases

in the training set (Figure 4A). Contrary to that,

increasing the number of training samples by the same

amount but from a single-bias source did not lead

to better model performance (Figure 4B), validating

our assumptions. Both experiments support our

assumption that ANN based models can integrate

different biases in the training set and translate them

into better model performance compared to other

methods.

ANN Models Can Correct Mislabeling in MetaSRA

Given the difficulties with metadata standards in SRA

data, mislabeling in MetaSRA is to be expected.

To understand if and when ANN models would

overfit on mislabelled MetaSRA data, we trained an

MLP on partially mislabeled samples (see Methods).

Supplementary Figure 10 shows that the MLP model

correctly predicts brain samples, even if they were

presented as skin samples during model training. A

decrease of this accuracy was observed if more than

20% of all brain samples were mislabeled as skin. A

similar observation was made for the sex phenotype

(Supplementary Figure 10). We concluded that our

models are robust if less than 20% mislabelled data

is present during training. More importantly, these

models can be used to correct mislabeled MetaSRA

data.

In the specific case of sex classification, the MLP

G+S was used to predict the true corrected label for

the SEX samples that were removed from training due

to low sex-chromosome counts (see Methods). For 82%

of the 132 filtered samples, the MLP model predicted

the opposite of the presumably wrong MetaSRA

labels. However, our MLP model was able to confirm

the MetaSRA label for 24 samples. These samples had

a mean chrY count sum of 2.4 (i.e. close to the cutoff

value). Manual confirmation revealed a high model

accuracy. For example, SRR1164833, SRR1164787

and SRR1164842 are samples from a prostate cancer

study labeled as MALE by MetaSRA. Our MLP

model correctly classified these samples despite the

fact that their chrY total sum count was between 0.4

and 1.4. On the other hand, SRR16076 54 / 56 / 61 /

62 / 64 / 65 / 70 / 71 are annotated as FEMALE

by MetaSRA and the MLP but had a chrY total

sum count of 2-5.3. We see the correct classification

of these borderline cases as further evidence that no

overfitting is taking place.

A list of all SRA samples for which the MetaSRA

labels and the predicted labels mismatched is

available in the Supplementary Material.

Prediction and Availability of Novel Metadata

We have used our best models to predict high-

quality metadata for published SRA samples lacking

information on tissue, sex, or sample source.
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Prediction of sex is straightforward because our

models were trained on all possible biological

categories. For tissue and sample source, however, our

models were trained on a subset of all potential classes

in the unlabeled data. If, for example, we try to label

a sample of a tissue type unknown by the model,

the model will force one of the learned classes onto

that sample. To deal with this in the best possible

way for sample source classification, we modified

the classification task into one vs. all. Specifically,

we first trained a new MLP model to identify the

sample source biopsy vs. all other sample sources

available in the SRA data as defined by MetaSRA.

This model (i.e. MLP Ssmall-S) achieved msa 0.947

and mca 0.93 on a test set (data not shown) and MLP

Slarge was subsequently used to identify all of our yet

unannotated SRA samples of source type biopsy. At a

probability cutoff of 0.5 we identified 1,072 new SRA

samples as originating from a biopsy.

Second, we extended the tissue classification task

to 17 classes by adding a ‘catch-all’ class. To this

end, we extended the training data to all GTEx

(n=9,366) and SRA (n=6,183) data with tissue labels

and assigned the placeholder class for every sample

that did not belong to the original set of 16 tissues.

That way we ensure that the learned model will not

force known classes on every tissue type. With this

approach, the DA G+Ssmall model achieved msa 0.912

and mca 0.787 (data not shown). Training and test

datasets were subsequently combined to train DA

G+Slarge for annotation prediction of unlabeled SRA

samples. We predicted the tissue of origin for all SRA

samples of source type biopsy for which no entry on

MetaSRA was available (n=2,818).

Third, 8,495 SRA biopsy samples with missing

sex information were predicted using MLP G+Slarge.

Supplementary Figure 11 shows the true positive rate

for each phenotype and each class on the test set. We

provide this information such that users can make

their own decision on probability cutoffs applied to

each class. We provide the full list of all classified

SRA samples as well as the probability output of the

classifier in the Supplementary Material.

Discussion

We developed a novel deep-learning based domain

adaptation approach for automated bias invariant

metadata annotation. To the best of our knowledge

this is the first time domain adaptation has been

applied to this problem. We were able to outperform

the current best model [20] on tissue prediction

by 2.9% for SRA and 15.7% for TCGA data on

mean sample accuracy. We can confirm, as was

previously reported [17], that ANNs trained on single-

bias training data do not perform better than linear

models. Given multi-bias training data, however, we

showed that MLPs, and especially our DA algorithm,

have an advantage over standard machine learning

approaches (e.g. linear regression). Our current

models help researchers to verify the sex, tissue and

sample type of RNA-seq samples in the presence of

bias. This metadata information is currently rarely

given for datasets downloaded from the SRA but can

be of crucial importance.

The main strength of our method is its ability

to incorporate dataset bias from datasets with only

a few samples by applying a Siamese network-like

architecture. The model learns to ignore bias by

repeated exposure to (a few) samples in (many)

different contexts, i.e. as triplets. In addition, it does

not rely on feature selection but uses normalized gene

count tables and lets the network learn which features

carry important information.

Different types of experiments showed the

importance of training models on a multi-bias dataset.

First, we showed for every phenotype classification

that models which had SRA samples included in the

training data performed better than models trained

only on GTEx data. For tissue classification, we

further showed that the effect of adding SRA samples

to the training data outweighs adding 3.2x as much

GTEx data (MLP Ssmall →MLP Slarge vs. MLP

Ssmall →MLP G-Ssmall). Second, for SRA tissue

classification we showed that there is a limit of

accuracy that can be achieved irrespective of the

size of the training set. Our experiment showed that

peak accuracy is already reached by using 50% of the

available data. Lastly, for sample source classification,

we directly compared the relationship between the

number of biases in the training data, the number

of samples and the model performance. We found

a positive correlation between the diversity of the

training data and the accuracy achieved by that

model.

We showed that our models are robust to

overfitting, if up to 20% of the training samples per

class are mislabeled. Our models are able to predict

the correct class of a sample, even if the sample

was mislabeled during model training. This property

of our models was exploited for the correction of

wrongly annotated metadata in the MetaSRA and

made publicly available.
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Lastly, we generated novel metadata for SRA

samples using our best performing models, adding

over 10,000 new metadata entries for 8,495 SRA

samples. The newly generated metadata is now

publicly available and can be used for future research.

We see this as a first and important step in the general

direction of an effort to make publicly available data

more accessible and reusable in an automated way.

We observed some limitations to our DA approach.

Our experiments showed that the DA model does not

perform as well as the MLP for classification tasks

with a low number of classes (e.g. sex). At least for the

TCGA tissue classification, it seems that a minimum

of about 8 classes is needed for the DA model

to be able to unfold its full potential consistently.

Our experiments indicate that the difference between

DA and MLP performance will keep increasing,

in favor of the DA model, the more classes we

add (Supplementary Figure 12). Adding more tissue

classes to our model is an important next step.

Another limitation is posed by the need for labeled

data to train the bias mapper.

Whereas currently the scope of our predictive

models has been limited by the availability of data

(e.g. intersecting tissue types between datasets,

limited size of datasets), the approach is ready

to incorporate more data, biases, classes, and

more phenotypes, and there is reason to believe

that this will confer increased performance of ANN

based models, in particular DA models. At the

same time, automated annotation ensures that the

vast amount of data, currently lying idle in online

repositories and institutional data centers, can indeed

be leveraged. We believe that this synergy is capable

of producing a large and comprehensive body of

annotated biological data that will boost knowledge

discovery for biomedical research.

Availability of supporting source code and
requirements

Project name: Bias invariant RNA-seq metadata

annotation

Project home page: https://github.com/imsb-uke/rna augment

Operating system(s): Platform independent

Programming language: Python

Other requirements: TensorFlow 2.1

License: MIT
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Fig. 1. Study Overview. (A) All data available on recount2 was downloaded and split into three data sources: (i) GTEx, (ii)

TCGA and (iii) SRA. Single-cell and small RNA samples as well as technical replicates were removed from the SRA data. Protein

coding genes were selected from the gene count tables and TPM normalized. Metadata for tissue of origin (e.g. heart), source (e.g.

biopsy) and sex phenotype was collected, if available. A subset of 17 tissues (common to GTEx, TCGA and SRA) was selected

and filtered for class size, resulting in 16 tissue classes. For sample source the two largest classes in SRA were selected. Samples

were subsequently annotated and training and testing data sets were created. GTEx was only used for model training unless stated

otherwise. TCGA was only used for model testing. SRA was split such that samples from one study are exclusively in the train

or test set. (B) We compare three models: LIN (linear model), MLP (multi-layer perceptron) and DA (novel domain adaptation

algorithm). Experiments are different combinations of models and data sources. Here, an exhaustive list of experiments for tissue

and sex classification tested on SRA data is depicted. Each configuration (dashed box) is made up of a model and training data.

The previously published LIN model served as a benchmark for our MLP and DA model. Each model configuration was trained

10 times with different seeds to give an estimation of uncertainty. The best model (orange star) was chosen by comparing average

performance across all seeds. After determination of the best model, all available data was used for model training. Previously

unlabeled SRA data was automatically annotated with the appropriate metadata. A list of all new metadata can be downloaded

with the Supplementary Material.
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Fig. 2. Overview Domain Adaptation Model. Illustration of our DA model architecture and training. Shapes of (hypothetical)

data points represent classes, colors are datasets with unique biases. Source Mapper (SM), Bias Mapper (BM) and classifier layer

(CL) are ANN modules. (A) First training cycle: The SM is trained on a single bias dataset, the source domain (SD). In this

step, the SM learns a feature embedding. The CL learns how to partition this embedding space into classifiable regions and draws

decision boundaries (black lines). B) For biased test data (colored sample data points), the same classes may occupy distinct

regions in input space. In this case, the source mapper may not be able to map the samples to the correct region of embedding

space, compromising classification performance of the CL. C) In order to learn the mapping of different biases to the embedding

learned in A, a bias mapper (BM) is created by copying the SM, and trained weights of the SM are fixed. In this second training

cycle, triplets of samples are passed through the SM-BM configuration, consisting of an anchor from the bias domain and two

samples from the source domain, one of them with a matching label. The triplet loss function is defined to minimize distance of

like labels in embedding space and to maximize distance of opposite labels. This process is repeated until the SM has learned to

map all known biases into the previously learned embedding space. (D) The BM is now able to map data points from previously

unseen datasets into the embedding space where the CL can classify them.
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Fig. 3. Phenotype Prediction Results for A, B) prediction of tissue of origin on SRA and TCGA (16 classes) and C) prediction

of sample source on SRA (2 classes). Indices ’small’ and ’large’ refer to the different size of SRA training data used due to splits

of the data set in SRA prediction. Box plots represent model uncertainty of ANN based models, estimated from training with

different random seeds (n=10). Mean sample accuracy and mean class accuracy were calculated for each seed. For panel A-C) LIN

G-X is the baseline proposed in [20]. D) Accuracy of each ANN model predicting ovary tissue on the TCGA data source and E) a

PCA plot of the gene expression values for the ovary tissue samples. A domain shift (i.e. bias) is clearly visible between GTEx and

TCGA, leading to the poor performance of MLP G-T on ovary. SRA data in the training set helps to establish a good accuracy.

LIN=linear regression, MLP=multilayer perceptron, DA=domain adaptation, G=GTEx, T=TCGA, S=SRA.
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Fig. 4. Increasing Bias Vs. Increasing Sample Size in Training Data. A) A MLP Ssmall for sample source prediction on

SRA data was trained by randomly sampling an increasing number of SRA studies per class. Each study was subsampled to 50

samples. Studies were drawn from all SRA studies with n > 100 for either sample source tissue or cell line. B) To differentiate the

effect of increased bias vs. increased sample size, the same model was trained by randomly subsampling the largest available SRA

study per class. At each step an additional 50 samples were added to the training set per class. Models were run with 10 different

seeds and the mean sample accuracy was computed. Box plots are produced by 10 random sampling iterations. We observe a

positive correlation between training data diversity and accuracy.

Fig. S1. Visualizing Data Set Bias. GTEx is a single-study data source, while SRA is a multi-study data source. A) T-SNE

plot of gene expression values of GTEx and B) SRA samples, belonging to five different tissues. The GTEx data is more coherently

clustered compared to the SRA data. The individual studies in the SRA data appear to form less homogeneous clusters, indicating

a larger within-variance in the data source.
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Fig. S2. T-SNE on Fraction of Total Gene Count Per Gene Type. The fraction of the total log TPM normalized counts per

gene type was calculated for all types that can be associated with mRNA or small RNA. T-SNE was applied on the resulting vectors

of fraction per gene type. Samples with their maximum fraction in a gene type belonging to a small RNA category were labeled

orange, else blue. The scatter plot shows samples labeled as small RNA-seq all cluster together, suggesting a valid approach.
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Fig. S3. Tissue Label Overlap Between GTEx, TCGA and SRA. GTEx v6 provides samples for 31 tissues and TCGA

for 26. MetaSRA provided labels for 26 of the 31 GTEx tissues. This figure depicts the 40 tissues which form the union between

the three data sources, a black square indicating that a tissue is present in the respective dataset. 17 Tissues are shared between

GTEx, TCGA and SRA, 16 of which were used for tissue prediction.

Fig. S4. Misclassification in MetaSRA. Histogram of the total sum of normalized counts mapped to the chrY for GTEx,

TCGA and SRA. Male and female clearly overlap in SRA, indicating mislabeling by MetaSRA.
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Fig. S5. Graphical Representation of Architectures for ANN Based Models. A) MLP models for tissue, sex and sample

source, B) are the (1) SM-CL MLP, (2) SM-BM Siamese Network and (3) BM-CL prediction models for tissue and C) sex. Each

rectangle represents a layer in the neural network and is colored according to the type of layer that has been used. d=input

dimension, n=number of nodes, p=drop out probability, SM=source mapper, BM=bias mapper, CL=classification layer. B2 and

C2 show the SM to have frozen weights.
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Fig. S6. Overview of DA Model. Samples are indicated according to their classes (circles, squares, triangles) and their bias

(blue: source domain, other colors: bias domain, target domain). The model is ready for prediction after two training steps: A)

A source mapper is trained on single bias data together with a classification layer. B) A bias mapper is created as a duplicate of

the source mapper, the weights of the source mapper are fixed. Triplets are passed through the source mapper and bias mapper

configuration to learn a bias mapping. C) The bias mapper, equipped with a classification layer, can be used to predict data from

previously unseen datasets.

Fig. S7. Per Class Accuracy for TCGA Tissue Classification. Mean sample accuracy for each tissue and all ANN based

models is shown. The error bar shows the standard deviation across 10 random seeds. The plot demonstrates the varied tissue

classification performance of different tissues. For instance, it seems to be difficult to identify adrenal gland or pancreas with

any of the models. In particular, the bad classification performance of MLP G-T for bone marrow, ovary and uterus is especially

noticeable, along with the observation that performance can be salvaged by addition of (biased) SRA data to the training data

set. This highlights the strength of ANN based models in capturing bias from training data.
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Fig. S8. Sex Phenotype Results. A) SRA and B) TCGA test data. LIN=linear model, MLP=multilayer perceptron, DA=domain

adaptation, G=GTEx, S=SRA and T=TCGA. ANN based models yielded consistently worse results than the baseline model, until

newly annotated data were incorporated into the training set.

Fig. S9. Dependence of Prediction Performance on Increasing Training Data Set Sizes For MLP G-S. MLP models

were trained on subsets of the GTEx data for SRA tissue classification on 10 seeds and averaged. At each step the subset was

increased by 250 samples. Box Plots from 20 iterations for the msa and mca are shown in blue and green, respectively. Mean sample

accuracy reaches its peak with only 25% of the training data, while 50% of the data is sufficient for the mean class accuracy to

saturate.



24 Wartmann et al.

Fig. S10. Test of Overfitting An MLP model was trained on GTEx data. An increasing fraction of one class was assigned

a wrong class label (e.g., brain to skin). The model was trained on the partially mislabeled data and the mislabeled data was

predicted by the model after training. We quantify the model’s susceptibility to overfitting by letting it correct the mislabeled

training data. The MLP model was able to correct all mislabeled data up to a mislabeling fraction of 20%. We conclude that the

ANN models are very robust in dealing with mislabeled data.
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Fig. S11. True Positive Rate for Test Data Predicted With Annotation Models. (A) Sample source, (B) sex and (C)

tissue classification.
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Fig. S12. Relationship Between Number of Classes And DA Performance in DA G+S-T. The 16 tissues were sorted

by sample size in GTEx, at each step one tissue was added to the classification problem, starting with the largest two. MLP and

DA were trained as described above for 10 seeds each and tested on TCGA data. The mean sample accuracy for each seed (top

panel) or mean class accuracy (bottom panel) are shown. Each dot shows the difference in accuracy (DA-MLP) at each step for

each seed. Seaborn’s regplot was used to fit a regression line. While, on average, MLP performs better for lower number of classes,

the performance gain by the DA model with respect to MLP increases with the number of classes.
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Table S1. Mapping from GTEx tissue names to MetaSRA tissue names.

GTEx MetaSRA

ovary female gonad

skin anatomical skin

thyroid thyroid gland

prostate prostate gland

bladder urinary bladder

cervix uteri uterine cervix
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Table S2. Summary of the datasets used for each phenotype after pre-processing.

Dataset # Samples # Classes # Input genes
Gini cut off

Low High

Tissue

GTEx 5,480

16

6,974 0.5 1

TCGA 8,624

SRA train 1,721

SRA test 1,531

Sex

GTEx 9,662

2 190 0.4 0.7
TCGA 11,284

SRA train 2,017

SRA test 791

Sample Source

GTEx 9,662
1

8,679 0.3 0.8

TCGA 11,284

SRA train 12,725

2

SRA train 3,144

SRA val 1,124

SRA train annotation 16,463

SRA test annotation 3,707
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Table S3. Number of samples per class for phenotype classification experiments.

GTEx TCGA SRA train SRA test

Tissue

Adrenal gland 159 266 14 5

Bone marrow 102 126 77 90

Brain 1,409 707 508 770

Breast 218 1246 123 30

Esophagus 790 198 35 5

Kidney 36 1030 94 88

Liver 136 424 111 134

Lung 374 1156 228 72

Ovary 108 430 23 12

Pancreas 197 183 17 5

Prostate 119 558 123 49

Skin 974 473 238 198

Stomach 204 453 25 11

Testis 203 156 14 18

Thyroid 361 572 51 32

Uterus 90 646 40 12

Sex

Male 6,036 5,395 1,217 538

Female 3,326 5,889 800 253

Sample source

Cell line 9,662 11,284 7,108 1,950

Biopsy - - 5,617 1,194
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Table S4. Hyperparameters considered during model tuning and their initial range.

Hyperparameter Range Sampling mode

# Layers [0,3] linear

# Nodes per layer [32,512] linear

Batch size [16,32,64] step

Learning rate [1e-4, 1e-2] log

Optimizer [Adam, SGD] binary

Drop out [0.1,0.2,0.3] step

Gini cut off manually manually
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Table S5. Summary of the hyperparameters used for each model.

Model # Nodes Dropout rate Learning rate Margin

MLP Tissue 128 0.3 0.0002 -

MLP Sex 32 0.2 0.0024 -

MLP Sample Source 128 0.3 0.0002 -

DA SM-CL Tissue 512 / 16 0.3 0.0001 -

DA SM-BM Tissue 512 / 512 - 0.0005 5

DA SM-CL Sex 64 / 2 0.3 0.0001 -

DA SM-BM Sex 64 / 64 - 0.0005 3

For every model 1 hidden layer was used, batch size was 64, trained epochs were

10 and the optimizer used Adam.



32 Wartmann et al.

Table S6. Sample and class accuracy given are the mean

over n=10 seeds

msa mca msa std. mca std.

Tissue

SRA

LIN G-S 0.893 0.765 NA NA

LIN Ssmall-S 0.893 0.795 NA NA

LIN G+Ssmall-S 0.908 0.785 NA NA

MLP G-S 0.872 0.77 0.007 0.018

MLP Ssmall-S 0.894 0.746 0.005 0.017

MLP G+Ssmall-S 0.915 0.817 0.008 0.02

DA G+Ssmall-S 0.922 0.821 0.003 0.009

TCGA

LIN G-T 0.718 0.638 NA NA

LIN Slarge-T 0.784 0.724 NA NA

LIN G+Slarge-T 0.725 0.651 NA NA

MLP G-T 0.684 0.605 0.015 0.017

MLP Slarge-T 0.832 0.755 0.02 0.03

MLP G+Slarge-T 0.842 0.773 0.015 0.017

DA G+Slarge-T 0.875 0.813 0.004 0.006

LIN Ssmall-T 0.768 0.708 NA NA

LIN G+Ssmall-T 0.729 0.658 NA NA

MLP Ssmall-T 0.748 0.688 0.016 0.027

MLP G+Ssmall-T 0.764 0.716 0.033 0.028

DA G+Ssmall-T 0.81 0.763 0.014 0.024

Sex

SRA

LIN G-S 0.98 0.98 NA NA

LIN Ssmall-S 0.979 0.979 NA NA

LIN G+Ssmall-S 0.98 0.98 NA NA

MLP G-S 0.971 0.979 0.002 0.04

MLP Ssmall-S 0.994 0.994 0.008 0.009

MLP G+Ssmall-S 0.993 0.992 0.003 0.003

DA G+Ssmall-S 0.99 0.987 0.025 0.036

TCGA

LIN G-T 0.989 0.989 NA NA

LIN Slarge-T 0.988 0.987 NA NA

LIN G+Slarge-T 0.989 0.989 NA NA

MLP G-T 0.869 0.863 0.011 0.011

MLP Slarge-T 0.963 0.962 0.01 0.01

MLP G+Slarge-T 0.964 0.962 0.011 0.011

DA G+Slarge-T 0.944 0.942 0.004 0.004

Sample source

LIN Slarge-G 0.951 0.951 NA NA

LIN Slarge-T 0.882 0.882 NA NA

LIN Ssmall-S 0.89 0.884 NA NA

MLP Slarge-G 0.943 0.943 0.001 0.001

MLP Slarge-T 0.971 0.971 0.028 0.028

MLP Ssmall-S 0.95 0.941 0.003 0.005

msa=mean sample accuracy, mca=mean class accuracy,

G=GTEx, T=TCGA, S=SRA, NA=not available
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