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Supplemental Materials 

 

SUPPLEMENTAL METHODS 

Lineage assays. 5,000 c-KIT+ ECs sorted from E9.5 or E13.5 mice were plated per well in a 12 

well plate. Sorted ECs were cocultured on a confluent monolayer of OP9 cells with alpha MEM 

media containing 10% FBS, antibiotics, 10ng/mL rm SCF, rm IL3, rm Flt3L, rm VEGF and rm IL7 

to determine B cell, myeloid and erythroid potential. Sorted ECs were cocultured on a confluent 

monolayer of OP9 stromal cells expressing the Notch ligand delta-like ligand 1 (OP9-DLL1) with 

alpha MEM media containing 10% FBS, Penicillin-Streptomycin (1X), 10ng/mL rm SCF, rm IL3, 

rm Flt3L, rm VEGF and rm IL7 to determine T cell potential. T cell cultures were analyzed 9-11 

days after plating and B cell cultures were analyzed 10-14 days after plating via flow cytometry. 

T cells were identified as CD45+ CD25+ CD90+ cells and B cells as CD45+B220+ cells. For 

hematopoietic progenitor (HP) assays, sorted ECs from E9.5 or E13.5 mice were plated in limiting 

dilutions in 96-well plates in appropriate cell numbers to reach limiting range as determined 

empirically in previous limiting dilution assays. Cultures were scored using a light microscope for 

hematopoietic growth. Wells that fell within the limiting range (less than 30% of total wells for that 

dilution had hematopoietic growth) were transferred to methylcellulose. Cultures were incubated 

at 37°C, 5% CO2. Colonies were scored 7-10 days later.  

 

Endothelial cell HP assay. Freshly sorted cells were plated in methylcellulose (Stem Cell 

Technologies) in duplicate and incubated at 37°C, 5% CO2. Colonies were scored 7-10 days later.  

 

Postnatal HEC assay on an instructive vascular niche monolayer. One-month-old postnatal 

+2Runx1 and Ctrl littermates were fed 2mg of tamoxifen via oral gavage, euthanized 24 hours 

later, and livers were harvested. ECs were sorted from the livers and plated in multiple dilutions 

on a vascular niche monolayer as previously described (Sandler et al. 2014). In brief, the vascular 



niche monolayer consists of ECs transduced with the adenoviral E4ORF1 gene which allows the 

cells to be cultured in the absence of serum. The cells were cultured in hematopoietic media 

containing StemSpan SFEM, 10% KnockOut serum replacement, 5ng/mL FGF-2 (PeproTech), 

10ng/ml EGF (PeproTech), 20ng/mL SCF (PeproTech), 20ng/mL Flt3L (PeproTech), 20ng/mL 

TPO (PeproTech), 20ng/mL IGF-1 (PeproTech), 10ng/mL IGF-2 (R&D), 10ng/mL IL3 

(PeproTech), and 10ng/mL IL-6 (PeproTech) and observed for 20 days for the presence of 

hematopoietic cells. 

 

RNA-Seq. Cells were sorted into Trizol-LS (Thermo Fisher Scientific) and total RNA was purified 

using RNeasy micro kit (Qiagen). RNA samples were quantified using Qubit 2.0 Fluorometer (Life 

Technologies) and RNA integrity determined with Agilent TapeStation. RNA library preparations, 

sequencing reactions, and initial analysis were conducted at GENEWIZ, LLC. SMART-Seq v4 

Ultra Low Input Kit for Sequencing (Takara) was used for full-length cDNA synthesis and 

amplification, and Illumina Nextera XT library was used for sequencing library preparation. Briefly, 

cDNA was fragmented, and an adaptor was added using Transposase, followed by limited-cycle 

PCR to enrich and add an index to the cDNA fragments. The final library was assessed with Qubit 

2.0 Fluorometer and Agilent TapeStation. Libraries were sequenced on Illumina HiSeq2500 using 

a 2x150 Paired End (PE) configuration. Each sample had two biological replicates. One of the 

replicates of E13.5 Ctrl ECs deviated significantly from all other embryonic and fetal RNA-seq 

samples and was discarded. Only one replicate was used for E13.5 Ctrl ECs.  

  

ATAC-seq. ATAC-seq libraries were prepared as described (Buenrostro et al. 2013). In brief, 

50,000 ECs were collected and washed with cold PBS. Cell pellets were resuspended in 50 µl of 

cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 0.1% (v/v) Igepal CA-

630) and immediately centrifuged at 1,600g, 4 °C for 10 min. Nuclei pellets were resuspended in 

50 µl of transposition reaction mix (1× Tagment DNA Buffer, 2.5 µl of Tagment DNA Enzyme 1) 



and incubated for 30 min at 37 °C. Subsequent steps of the protocol were performed as previously 

described (Buenrostro et al. 2013). Libraries were purified using a Qiagen MinElute Gel 

Purification kit and the concentrations were measured using both Qubit and KAPA qPCR. Agilent 

Bioanalyzer 2100 was used to determine the quality of libraries. Libraries were sequenced on the 

Illumina NextSeq 500, with 75-bp paired-end reads. Each sample had two biological replicates. 

 

H3K4me1 ChIP-Seq. Purified cells were fixed and crosslinked in 1% formaldehyde in 1× Fixing 

Buffer for 5 min at room temperature according to the vendor’s protocol (Covaris). Cells were then 

stored at -800C. Crosslinked cells were thawed on ice (100K cells) and resuspended in 1× 

Shearing Buffer and sonicated with Covaris E220 for 720s using the following settings: 5% duty 

factor, 105W Peak Incident Power, and 200 cycles per burst. 10% of sheared chromatin was used 

as the input and the remaining chromatin was divided into two equal aliquots for 

immunoprecipitation (50,000 cells per IP). IPs were performed using ChIP-IT high sensitivity kit 

(Active Motif). IP and input samples were treated with RNase A followed by proteinase K. Cross-

linking was reversed by incubation overnight at 650C and DNA was purified using a MinElute PCR 

purification kit (Qiagen). All IP DNA and 1-2 ng of input DNA were used for library preparation 

using the ThruPLEX DNA-Seq kit and Smarter DNA single index kit (Takara). 13 and 9 cycles 

were used for IP DNA and input DNA, respectively at step 5. Following library amplification, the 

libraries were purified using bead purification. The concentrations were measured using both 

Qubit and KAPA qPCR. Agilent Bioanalyzer 2100 was used to check the quality of libraries. 

Libraries were sequenced on Illumina HiSeq 2500 sequencer in single-end mode with read length 

of 75bp.  

 

RNA-seq data processing. Sequencing reads were demultiplexed using Bcl2Fastq v2.20 then 

trimmed and filtered for quality using Trim Galore v0.6.4 (Martin 2011) with the following settings: 

fastqc, paired, and trim1. Reads were then aligned to the mouse genome (mm10) using STAR 



2.7.3a (Dobin et al. 2013) and the mm10 gene annotation file from UCSC. Only uniquely mapped 

reads with fewer than 2 mismatches were used for downstream analyses. Samtools v1.1 

(Danecek et al. 2021) was used to convert to BAM files, and Sambamba v0.6.6  (Tarasov et al. 

2015) was used to filter out duplicates, multi-mappers, and unmapped reads. The featureCounts 

function of the Subread v2.0.0 package (Liao et al. 2014) was used to extract gene-level and 

transcript level read counts. Fragments per kilobase of transcript per million (FPKM) counts were 

determined using normalized read counts (TMM and EdgeR) and gene transcript lengths. 

Differential expression was performed using EdgeR v3.22.5 (Robinson et al. 2009; McCarthy et 

al. 2012) (FDR < 0.05 and fold change > |1.5|). Bigwig files for visualization were created using 

Deeptools v3.3.0 (Ramírez et al. 2016) from merged BAM files. The following parameters were 

used: normalized to reads per genomic content (RPGC), effective genome size: 2,308,125,349 

bp, ignore for normalization: ChrX, min fragment length: 20, bin size: 10. Integrated Genome 

Viewer (IGV) v2.8.9 (Robinson et al. 2011; Thorvaldsdóttir et al. 2013) and pheatmap v1.0.12 in 

R were used for visualization.  

 

ATAC-seq data processing. Sequencing reads were demultiplexed using Bcl2Fastq v2.20 then 

trimmed and filtered for quality using Trim Galore v0.6.4 (Martin 2011) with the following settings: 

fastqc, paired, and trim1. Reads were then aligned to the mouse genome (mm10) using bowtie 

2.3.5.1 (Langmead et al. 2019; Langmead and Salzberg 2012). Only uniquely mapped reads with 

fewer than 2 mismatches were used for downstream analyses. Samtools v.1.1 (Danecek et al. 

2021) was used to convert SAM files to BAM files, and Sambamba v0.6.6 (Tarasov et al. 2015) 

was used to filter out duplicates, multi-mappers, reads mapped to ChrM or blacklist regions, and 

unmapped reads. MACS2 2.1.4 (Zhang et al. 2008) was used for peak calling using the following 

parameters: BAMPE, q: 0.05. Differential peaks were determined using DiffBind v2.15.1 and 

EdgeR (FDR < 0.05) (Stark, R and Brown 2016; Ross-Innes et al. 2012). Merged replicates were 

used to create bigwig files for visualization using Deeptools v3.3.0 (Ramírez et al. 2016) and the 



following parameters: normalized to reads per genomic content (RPGC), effective genome size: 

2,308,125,349 bp, ignore for normalization: ChrX, min fragment length: 20, bin size: 10. IGV was 

used for visualization. Deeptools was also used to plot regions of differential peaks. GREAT 4.0.4 

(Hiller et al. 2013; McLean et al. 2010) was used for linking peak regions to genes and subsequent 

gene ontology annotation using the following parameters: species assembly: mm10; association 

rule: basal+extension: 5000 bp upstream, 1000 bp downstream, 1,000,000 bp max extension, 

curated regulatory domains included. Homer v4.11 (Heinz et al. 2010) was used for genomic 

annotation of peak regions. Motif enrichment of differential accessible peaks was done using 

MEME Analysis of Motif Enrichment (AME) v5.5.1 (McLeay and Bailey 2010) using shared peaks 

between samples as the background region.  

 

ATAC-seq footprinting analysis. ATAC-seq footprinting analysis was performed using the 

Regulatory Genomics Toolbox (RGT) and HMM-based IdeNtification of Transcription factor 

footprints (HINT) software (Li et al. 2019). In brief, footprints were called from regions of chromatin 

accessibility (peaks called by MACS2 2.4.1 on merged replicates) for each sample. Called 

footprints were then matched to TF motifs using the JASPAR 2020 vertebrate motif database. 

SCL (GSE13511) and FLI1 (GSE20898) motifs were added from Homer database (Heinz et al. 

2010). Motif footprints were then filtered to remove any transcription factors that were expressed 

at < 1.5 FPKM. Differential activity of transcription factors, as well as plots of each transcription 

factor footprint, were done using HINT-differential. p-value and read counts were calculated using 

RGT HINT-differential for each transcription factor. Enriched transcription factor footprints at 

regions of chromatin with increased accessibility and corresponding p-values were determined 

using BiFET v.10.0 software (Youn et al. 2019). RUNX1 footprints were extracted for more in-

depth analysis; Homer v4.11 (Heinz et al. 2010) was used for genomic annotation, bedtools 

v2.29.2 (Quinlan and Hall 2010) was used for differential peak annotation, genomic location 

annotation, and footprint overlap. RUNX1 motif scores were determined by RGT motif analysis 



(Gusmao et al. 2016). Combination of motifs near RUNX1 footprints was done using PC-TraFF 

(Meckbach et al. 2015) using RUNX1 footprint locations as the input and the following parameters: 

upstream: 1000bp, downstream 1000bp, min distance between motifs: 5bp, max distance 

between motifs: 200bp.  

 

ChIP-seq Data Processing. Sequencing reads were demultiplexed using Bcl2Fastq v2.20 then 

trimmed and filtered for quality using Trim Galore (Martin 2011) with the following settings: fastqc, 

paired, and trim1. Reads were then aligned to the mouse genome (mm10) using bowtie 2.3.5.1 

(Langmead et al. 2019; Langmead and Salzberg 2012). Only uniquely mapped reads with fewer 

than 2 mismatches were used for downstream analyses. Samtools v.1.1 (Danecek et al. 2021) 

was used to convert SAM files to BAM files, and Sambamba v0.6.6 (Tarasov et al. 2015) was 

used to filter out duplicates, multi-mappers, reads mapped to ChrM or blacklist regions, and 

unmapped reads. MACS2 2.1.4 (Zhang et al. 2008) was used for peak calling using the following 

parameters: broad, q: 0.05. Differential peaks were determined using DiffBind v2.15.1 (Ross-

Innes et al. 2012) and DESeq2 (FDR < 0.1) (Love et al. 2014). Merged replicates were used to 

create bigwig files for visualization using Deeptools v3.3.0 (Ramírez et al. 2016) and the following 

parameters: normalized to reads per genomic content (RPGC), effective genome size: 

2,308,125,349 bp, ignore for normalization: ChrX, min fragment length: 20, bin size: 10, smooth 

length: 60, extend reads: 150. IGV was used for visualization. Deeptools was also used to plot 

regions of differential peaks and RUNX1 footprint regions. GREAT 4.0.4 (Hiller et al. 2013; 

McLean et al. 2010) was used for linking peak regions to genes and subsequent gene ontology 

annotation using the following parameters: species assembly: mm10; association rule: 

basal+extension: 5000 bp upstream, 1000 bp downstream, 1,000,000 bp max extension, curated 

regulatory domains included.  

 



STORM. Sorted ECs (CD41-CD45-Ter119-CD31+CD144+) were plated on poly-d lysine coated 

LabTek-II chambered 8 well plates at a density of 50K cells/well. Cells were fixed using ethanol-

methanol (1:1) fixation for 6 min at -200C. Cells were then permeabilized with 0.2% v/v Triton-X-

100 in PBS for 10 min at room temperature with rocking. Cells were blocked with 10% (wt/vol) 

BSA in PBS for 1 hour at room temperature. Cells were stained overnight at 4o C with H2b primary 

antibody (1:25) in blocking buffer. Cells were then washed and stained with conjugated secondary 

(1:1000) antibody for 40 min. Secondary antibodies were labeled with activator-reporter dye pairs 

(Alexa Fluor 405-Alexa Fluor 647) in-house, as previously described (Bates et al. 2007). Briefly, 

the dyes were purchased as NHS ester derivatives: Alexa Fluor 405 Carboxylic Acid Succinimidyl 

Ester (Invitrogen) and Alexa Fluor 647 Carboxylic Acid succinimidyl Ester (Invitrogen). Antibody 

labeling reactions were performed by incubating for 40 min at room temperature in a mixture 

containing the secondary antibody, NaHCO3, and the appropriate pair of activator/reporter dyes 

diluted in DMSO. Purification of labeled antibodies was performed using NAP5 Columns (GE 

HealthCare). The dye to antibody ratio was quantified using Nanodrop and only antibodies with a 

composition of 3-4 Alexa Fluor 405 and 0.9-1.2 Alexa Fluor 647 per antibody were used for 

imaging.  

Cells were imaged on an Nanoimager S from Oxford Nanoimaging Limited (ONI) in 

imaging buffer: cysteamine MEA, glox Solution:0.5 mgml-1 glucose oxidase, 40 mgml-1 catalase, 

and 10% Glucose in PBS (Bates et al. 2007). Laser light at 647 nm was used for exciting Alexa 

Fluor 647 and subsequently switching it off into the dark state, and laser light at 405 nm was used 

for activating it via an activator dye (Alexa Fluor 405)-facilitated manner. Raw data were analyzed 

to obtain fluorophore x,y positions using the Nanoimager analysis software. Post-processing of 

the STORM images was carried out as follows: raw localization data were exported from ONI 

software, then processed in MATLAB to convert to a bin file, data were then manually cropped 

using FIJI (Schindelin et al. 2012). Insight3 (provided by Bo Huang, University of California, San 

Francisco) was used for creating density color coded images. FIJI was used to create signal 



intensity plots across the nucleus. A custom written MATLAB script was used for quantifying the 

percentage of peripheral localization.  

 

Whole-mount immunofluorescence and confocal microscopy. Embryos were prepared as 

described previously (Yokomizo et al. 2012). In brief, whole embryos and fetuses were removed 

from pregnant dams and fixed in 2% paraformaldehyde then dehydrated in methanol. E13.5 

fetuses were dissected (head, body wall, and limb buds were removed) prior to fixation. 

Embryos/fetuses were rehydrated for immunostaining and the following primary antibodies were 

used: rat anti-mouse CD31 (1:500), rabbit anti-human/mouse RUNX (1:250), rabbit anti-

mouse/human phospho-Smad2 (Ser465/467)/Smad3 (Ser423/425) (1:250). Secondary 

antibodies were goat anti-rabbit Alexa Fluor 647 (1:500), goat-anti rat Alexa Fluor 555 (1:1000) 

and goat anti-rabbit Alexa Fluor 488 (1:1000). Embryos were dehydrated with methanol then 

cleared with one part benzyl alcohol and two parts benzyl benzoate. Images were acquired on a 

Zeiss LSM 710 inverted microscope with ZEN 2011 software. The Zeiss LSM 710 is equipped 

with 488, 543 and 633 nm wavelengths.  

 

Quantification of pSMAD2/3+ ECs. Images were processed with FIJI software (Schindelin et al. 

2012). FIJI Cell Counter application was used to quantify cells. For pSMAD2/3+ ECs, a minimum 

of 1000 ECs were counted in the endothelial wall then were marked as pSMAD2/3+ or    

pSMAD2/3-. For pSMAD2/3+ RUNX1+ ECs, a minimum of 350 RUNX1+ ECs were counted in the 

endothelial wall then were marked as pSMAD2/3+ or pSMAD2/3-. 
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Supplemental Figure S1. Characterization and isolation of embryonic and fetal ECs. A) 

Bar plot showing percentage (mean ± SD) of RUNX1+ ECs (CD41-CD45-Ter119-CD144+CD31+) 

in individual organs of E13.5 fetuses. Each dot represents a single organ from a single fetus 

collected from four independent litters/experiments. AGM, aorta-gonad-mesonephros B) 

Representative contour and scatter plots for the isolation of c-KIT+ ECs (CD41- CD45- Ter119- 

CD31+CD144+) from E9.5 embryos (top) and E13.5 fetuses (bottom). 
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Supplemental Figure S2. RUNX1 expression in ECs yields multilineage hematopoietic 

progenitors (HPs). A) Schematic illustrating the analysis of embryonic and fetal c-KIT+ ECs 

(CD41-CD45-Ter119-CD31+CD144+) for their ability to generate colony forming units-culture 

(CFU-Cs), B cells, erythroid cells, myeloid cells, and T cells. A limiting number of ECs 

(determined based on HEC frequency in Figure 1E) were plated in each well of a 96-well plate 

for subsequent CFU-C assays and 5,000 ECs were plated in each well of a 12 well plate 

containing OP9 or OP9-DLL1 cells for erythroid, myeloid, B and T cell assays. B) Percentage 

(mean ± SD) of wells containing OP9 cells seeded with single ECs that contained HPs capable 

of forming colonies in methylcellulose cultures. n = number of wells that were assayed for CFU-

C activity. C) Types of CFU-Cs generated from E9.5 +1Runx1 and E13.5 +2Runx1 ECs. Data 

are displayed as a proportion of total CFU-Cs (± SD) in each experiment. (MK) megakaryocyte; 

(GEMM) granulocyte macrophage–erythroid–megakaryocyte; (BFU-E) blast-forming unit-

erythroid; (GM) granulocyte macrophage. Data were collected from four and six independent 

experiments for embryonic and fetal ECs, respectively. D) Bar plots (mean ± SD) showing the 

percentage of phenotypic erythroid (Ter119+), myeloid (Mac1+Gr1+), T (CD45+ CD90+ CD25+) 

and B (CD45+B220+) cells derived from E9.5 +1Runx1 and E13.5 +2Runx1 ECs. Each point 

represents a single well derived from 5000 sorted c-KIT+ ECs collected from a minimum of three 

independent experiments. The reduced T-cell formation from E13.5 +2Runx1 relative to E9.5 

+1Runx1 ECs may be due to the lower levels of Notch signaling in E13.5 ECs, as reflected by 

reduced expression of Notch target genes (Hey2, Notch3, Gata3) that are important for T-cell 

specification (Bellavia et al. 2003; Rowlinson and Gering 2010; Hozumi et al. 2008) in E13.5 

ECs.  

 

 

  



 

 

Supplemental Figure S3. RUNX1 induced few transcriptional changes at twenty-four 

hours post induction. A-C) MA plots following RUNX1 induction showing differentially 

expressed genes (DEGs) in the upper left of the graphs (relative to Ctrl at each timepoint) for A) 

E9.5 +1Runx1, B) E13.5 +1Runx1, and C) E13.5 +2Runx1; colored dots and # of genes 

represent significant DEGs. Selected genes are labeled. D-E) Bar plot (mean ± SD) showing 

percentage of D) CD61+ ECs (CD41-CD45-Ter119-CD144+CD31+) and E) CD61+RUNX1+ ECs. 

Each point represents pooled embryos (E9.5) or a single fetus (E13.5). Data are from three 

E9.5 and four E13.5 litters/independent experiments. Unpaired two-tailed Student’s t-test was 

applied to determine significance for both E9.5 and E13.5 samples. 
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Supplemental Figure S4. Pearson correlation of ATAC-seq replicate samples. Scatter plots 

of replicates for E9.5 (top), E13.5 (middle), and Adult Liver (bottom) samples in Ctrl and +Runx1 

conditions. For each condition, ATAC-seq was performed for two replicates. Pearson correlation 

values and read scores were calculated using deeptools. The natural log plus one (-log1p) 

values of the average score for every genomic region (normalized to RPGC, bin size = 10) are 

plotted for each replicate, and Pearson correlation coefficient values are shown on the upper left 

of each plot.  
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Supplemental Figure S5. RUNX1 induction results in changes in chromatin accessibility. 

A-C) GO Biological Processes terms for regions of chromatin with decreased accessibility 

(relative to Ctrl, FDR<0.05) for A) E9.5 +1Runx1, B) E13.5 +1Runx1, and C) E13.5 +2Runx1 

ECs. Top five terms are shown, peak regions were linked to genes using GREAT. Numbers in 

bars represent number of genes and peaks/regions for each GO term. D) Genome browser view 

of the Itgb3 gene body (top) and zoomed in view of a specific region that gains chromatin 

accessibility and increased RNA-seq reads (bottom). ATAC-seq tracks are shown on top and 

RNA-seq tracks on the bottom. Each sample is shown on the same scale (0-64 for ATAC-seq 

and 0-12 for RNA-seq) with normalized (to RPGC) tracks. 
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Supplemental Figure S6. RUNX1 induction results in changes in chromatin accessibility. 

A-C) Heatmaps of regions with increased (Opened Peaks, top) or decreased (Closed Peaks, 

bottom) chromatin accessibility with respect to Ctrl for A) E13.5 +1Runx1, B) E13.5 +2Runx1, 

and C) E9.5 +1Runx1. Opened and closed peaks were determined using EdgeR (FDR < 0.05) 

and the number of opened or closed regions is represented as numbers in parentheses on the 

y-axis. Numbers under the heatmap represent the fraction of open or closed peaks in each 

sample. Heatmaps were made using deeptools and scale is normalized read count (normalized 

to RPGC). D) Heatmap of regions that gained chromatin accessibility following RUNX1 

induction in E9.5 +1Runx1, relative to E9.5 Ctrl ECs, highlighted with a pink box in C). Regions 

were subsetted into peaks opened only in E9.5 +1Runx1 ECs (top, green box) or peaks opened 

in both E9.5 +1Runx1 and E13.5 +2Runx1 ECs (bottom). E) GO Terms for regions only opened 

in E9.5 +1Runx1 ECs, highlighted by green box in D). Top 10 terms are shown, and the 

numbers of genes and regions (in brackets) corresponding to each term are overlaid on the 

bars. Regions were linked to genes using GREAT. F) Scatter plots showing enriched TF 

footprints at regions only opened in E9.5 +1Runx1 ECs (highlighted in the green box in D), 

relative to regions opened in both E9.5 +1Runx1 and E13.5 +2Runx1 ECs. The number of 

footprints for each TF at regions opened only in E9.5 +1Runx1 ECs is displayed on the y-axis. 

Colored circles indicate p<0.05; p-value calculated using biFET. 
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Supplemental Figure S7. Most TFs enriched at regions of chromatin with increased 

accessibility do not appear to be significantly altering local chromatin accessibility. A-B) 

Footprint plots following RUNX1 induction for TFs enriched at regions of chromatin with 

increased accessibility A) GATA2, ETV4, GABPA, FLI1, SCL, and ELF1 in E9.5 ECs and B) 

GATA2, ETV4, GABPA, FLI1, SCL, and GFI1B in E13.5 ECs. Plots show average normalized 

read counts calculated using HINT-differential around all footprints, n = # of nonredundant 

footprints, p-value calculated using HINT-differential. The p-value in dark blue corresponds to 

E13.5 +2Runx1 ECs and light blue corresponds to E13 +1Runx1 ECs, relative to E13.5 Ctrl 

ECs.  
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Supplemental Figure S8. RUNX1 alone is unable to specify postnatal ECs as hemogenic. 

A) Scatter plot of ATAC-seq peak signals for a consensus peak set in all samples following 

RUNX1 induction in 1-month postnatal Liver +2Runx1 ECs. Coloring and peak number are 

based on differential peaks (FDR < 0.05). B) MA plots following RUNX1 induction showing 

differentially expressed genes (DEGs) (relative to control at each timepoint) for Liver +2Runx1 

ECs; colored dots and number of genes represent significantly upregulated genes based on fold 

change > |1.5| as determined by EdgeR. Selected genes are labeled. C) GO Biological 

Processes terms for regions of chromatin with increased accessibility (relative to Ctrl) for 1-

month postnatal Liver +2Runx1 ECs. Top ten terms shown, peak regions were linked to genes 

using GREAT. Numbers in bars represent number of genes and [peaks/regions] for each GO 

term. D) Scatter plots showing enriched TF footprints at regions of chromatin with increased 

accessibility in 1-month postnatal Liver +2Runx1 relative to Ctrl ECs. The number of footprints 

for each TF is displayed on the y-axis. p-values were calculated using biFET, colored points 

indicate p<0.05. Venn diagrams represent the number of peaks closed (left), unchanged 

(middle), and opened (right) following RUNX1 induction. E) Average peak profile plots of 

normalized (RPGC) ATAC-seq signal for E9.5 +1Runx1 nonredundant AP-1 (FOS::JUNB) and 

SMAD2/3 footprints for 1 month postnatal Liver +2Runx1, 1 month postnatal Liver Ctrl, E13.5 

+2Runx1, E13.5 +1Runx1, E13.5 Ctrl, E9.5 +1Runx1 and E9.5 Ctrl ECs, n=number of 

footprints.  
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Supplemental Figure S9. The percentage of pSMAD2/3+ ECs is equivalent at E9.5 and 

E13.5. A-B) Representative confocal cross-sections of A) heart ventricle and B) dorsal aorta 

(DA). CD31 is shown in magenta and pSMAD2/3 in white. Scale bars = 100µm. C) 

Quantification (mean ± SD) of pSMAD2/3+ ECs in the DA (left) and heart (right). D) 

Representative confocal cross-section of DA (left and middle images) and heart (right images) 

of E9.5 +1Runx1 embryos and E13.5 +2Runx1 fetuses. RUNX1 is shown in blue, and 

pSMAD2/3 in white. Scale bars = 100µm. E) Quantification (mean ± SD) of pSMAD2/3+ 

RUNX1+ECs. For C) & E) each dot represents a single E9.5 embryo collected from two 

independent litters or a single E13.5 fetus collected from two independent litters and four total 

independent experiments.  

  



SUPPLEMENTAL TABLES 

Supplemental Table S1.  Frequency of hematopoietic progenitors (HPs) and hemogenic 

endothelial cells (HECs) in sorted endothelial cell populations. 

Stage Genotype HP frequency HEC frequency 

E9.5 
Ctrl 1:21,803 1:996 

+1Runx1 1:43,600 1:58 

E13.5 
Ctrl 1:4988 1:9114 

+1Runx1 1:5700 1:1517 
+2Runx1 1:4500 1:185 

  



Supplemental Table S2. RUNX1 “resistant” binding sites and corresponding genes and 

GO terms for E13.5 fetal ECs that are present in E9.5 embryonic ECs.  

 

Supplemental Table S3. Pairwise tests for differences in HEC frequencies following 

RUNX1 induction and TGFβ3 treatment   

 

Supplemental Table S4. Antibodies used in this study.  
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