

Supplementary Material

1 Synthetic pathways tested for the synthesis of the hydroxytyrosol-donepezil hybrid

Supplementary Figure 1. Reaction conditions: (i) I₂, K₂CO₃, *t*-BuOH, rt, N₂, 4 days; (ii) Sc(OTf)₃, MW, 160 °C, 40 min; or MgO, 70 °C, N₂, o.n.; (iii) DIC, DMAP, CH₂Cl₂ dry / DMF dry (1:1), 0 °C to rt, o.n., N₂; (iv) Amberlist, MeOH, reflux.

2 LC-HRMS identification of HT2 acetylation products

Supplementary Figure 2. Detection of the acetylated and di-acetylated form of **HT2** in the reaction crude. [**HT2-monoacetylated** + **H**]⁺: 443.1811 (theoretical [M+H]⁺ m/z 443.1813); [**HT2-diacetylated** + **H**]⁺: 485.1917 (theoretical [M+H]⁺ m/z 485.1918).

3 Evaluation of pro-oxidant effect for donepezil hybrids

Supplementary Figure 3. Donepezil hybrids have no pro-oxidant effects. Human neuroblastoma (SH-SY5Y) cell line was treated with donepezil hybrids for 24 h at the concentrations shown in the figure. No concentration showed accumulation of ROS. H_2O_2 was used as positive control. Three independent experiments were carried out, with values expressed as the mean \pm standard deviation (sd). ** denotes p < 0.01 vs. control. Analysis of Variance (ANOVA) was followed by a Tukey–Kramer comparison test.

4 SH-SY5Y Cell viability after treatment with H₂O₂

Supplementary Figure 4. Measurement of cell viability following treatment with H₂O₂. Cell viability following treatment with H₂O₂ 100 μ M was determined for several times (0-200'). The values of three independent experiments are expressed as the means ± standard deviations. * denotes p < 0.05 vs. control. Analysis of Variance (ANOVA) was followed by the Tukey–Kramer comparison test.

5 CUPRAC test

The CUPRAC test was performed as reported by Ozyürek et al. (Ozyürek et al., 2008) on the new compounds in the unacetylated form.

Antioxidant	Linear equation and correlation coefficient	ε (L mol-1 cm-1)	TEAC
Trolox	A= 0,0133, c - 0,0414, r = 0.9979	0,0133	1
HT	A= 0,0375, c - 0,0201, r =0,9991	0,0375	2,82
HT1	A= 0,0447, c - 0,0336, r = 0,9943	0,0447	3,36
HT2	A= 0,0369, c+ 0,0178, r = 0,998	0,0369	2,77
HT3	A= 0,0239, c - 0,0192, r = 0,9945	0,0239	1,80
HT4	A= 0,0132, c - 0,0164, r = 0.9948	0,0132	0,99

Supplementary Table 1. Concentration linearity range for all the unprotected hybrids.

6 Characterization of compounds

3,4-dihydroxyphenethyl 1-benzylpiperidine-4-carboxylate (HT1): White power, Yield 65%, R_{f} = (DCM:MeOH:TEA – 84:13:2) 0.6. HRMS: $[M+H]^+$ m/z 356.1852 (theoretical $[M+H]^+$ m/z 356.1856). ¹H NMR δ (ppm) (500 MHz, d6-DMSO): 8.64-8.71 (m br, 2H, OH), 7.21-7.33 (m, 5H), 6.63 (d, *J*=8 Hz, 1H), 6.59 (d, 1H, *J*=2 Hz, 1H), 6.45 (dd, *J*=8 Hz and 2 Hz, 1H), 4.13 (t, *J*=7.0 Hz, 2H), 3.43 (s, 2H), 2.66-2.72 (m, 4H), 2.22-2.36 (m, 1H), 1.96-2.01 (t, *J*=11.2 Hz, 2H), 1.72-1.76 (m, 2H), 1.49-1.57(m, 2H). ¹³C NMR (500 MHz, d6-DMSO): δ 174.16, 144.96, 143.60, 128.46, 128.48, 128.02, 126.73, 119.36, 116.11, 115.34, 64.51, 62.13, 52.03, 45.63, 33.70, 27.81.

4,5-dihydroxy-2-nitrophenethyl 1-benzylpiperidine-4-carboxylate (HT2): Orange powde r, Yield=85%, R_f= (CHCl₃:AcOEt:TEA-60:38:2) 0.56. HRMS: [M+H]⁺ m/z 440,2058 (theoretical [M+H]⁺ m/z 440.2068). ¹H NMR δ (ppm) (300MHz, d₆-DMSO): 7.47 (s, 1H), 7.21-7.33 (m, 6H), 4.23 (t, *J*=6.3 Hz, 2H), 3.42 (s, 2H,), 3.08 (t, *J*=6.3 Hz, 2H), 2.69 (br d, *J*=10.7 Hz, 2H), 2.18-2.25 (m, 1H), 1.96 (br t, *J*=9.3 Hz, 2H), 1.70-1.73 (m, 2H), 1.46-1.53 (m, 2H); ¹³C NMR (500 MHz, d₆-DMSO). 174.16, 152.53, 144.35, 138.71, 138.34, 128.74, 128.12, 126.83, 126.75, 118.54, 111.85, 63.29, 62.22, 52.15, 32.15, 30.40, 29.22, 27.85.

4-hydroxy-3-methoxyphenethyl 1-benzylpiperidine-4-carboxylate (**HT3**): White power, Yield=45%, R_{f} = (CH₂Cl₂:MeOH:TEA – 90:8:2) 0.70. HRMS: [M+H]⁺ m/z 370.2007 (theoretical [M+H]⁺ m/z 370.2013). ¹H NMR δ (ppm) (500 MHz, CDCl₃): 7.20-7.32 (m, 5H), 6.83 (d, *J*=7.8 Hz, 1H), 6.68-6.71 (m, 2H), 4.25 (t, *J*=6.9 Hz, 2H), 3.86 (s, 3H), 3.48 (s, 2H), 2.80-2.87 (m, 2H), 2.24-2.31 (m, 1H), 2.00-2.03 (m, 2H), 1.83-1.86 (m, 2H), 1.70-1.79 (m, 2H). ¹³C NMR (500 MHz, CDCl₃): 175.31, 146.68, 144.53, 129.8, 129.34, 128.5, 127.25, 121.84, 114.58, 111.60, 65.21, 63.41, 56.09, 41.36, 35.04, 32.12, 28.42.

4-hydroxyphenethyl 1-benzylpiperidine-4-carboxylate (HT4): White power, Yield=55%; R_{f} = (DCM:MeOH:TEA – 90:8:2) 0.37. HRMS: [M+H]⁺ m/z 340.1898 (theoretical [M+H]⁺ m/z 340.1907). ¹H NMR δ (ppm) (500 MHz, CDCl₃): 7.23-7.32 (m, 5H), 7.03 (d, *J*=8.4 Hz, 2H), 6.72 (d, *J*=8.4 Hz, 2H), 4.23 (t, *J*=6.9 Hz, 2H), 3.50 (s, 2H), 2.83 (t, *J*=6.9 Hz, 4H), 2.23-2.33 (m, 1H), 2.00-2.08 (m, 2H), 1.82-1.86 (m, 2H), 1.70-1.79 (m, 2H). ¹³C NMR (500 MHz, CDCl₃): δ 175.31, 154.89, 137.84, 130.22, 129.68, 129.57, 128.46, 127.39, 115.68, 65.31, 63.40, 52.95, 41.23, 34.46, 32.12, 28.16.

4-(2-(1-benzylpiperidine-4-carbonyloxy)ethyl)-1,2-phenylene diacetate (HT1a): Orange oil, Yield=55%, R_f= (CH₂Cl₂:MeOH:TEA-90:8:2) 0.52. HRMS: [M+H]⁺ m/z 401.1706 (theoretical [M+H]⁺ m/z 401.1707). ¹H NMR δ (ppm) (CDCl₃, 300 MHz): 7.22-7.37 (m, 5H), 7.08-7.18 (m, 2H), 7.00-7.08 (m, 1H), 4.29 (t, *J*=9.9 Hz, 2H), 3.50 (s, 2H), 2.92 (t, *J*=9.9 Hz, 2H), 2.84 (d, *J*=11 Hz, 2H), 2.22-2.38 (m, 7H), 1.92-2.10 (m, 2H), 1.90-1.65 (m, 4H); ¹³C NMR (CDCl₃, 300 MHz). δ: 179.1, 175.2, 168.4, 146.3, 142.5, 137.8, 135.3, 129.9, 128.7, 127.5, 124.3, 65.4, 63.3, 52.4, 41.9, 34.6, 28.1, 20.7.

4-acetoxy-3-methoxyphenethyl 1-benzylpiperidine-4-carboxylate (HT3a): Orange oil, Yield=98%, R_f = (CH₂Cl₂:MeOH:TEA – 90:8:2) 0.77; HRMS: [M+H]⁺ m/z 412.2111 (theoretical [M+H]⁺ m/z 412.2118). ¹H NMR δ (ppm) (500 MHz, CDCl₃): 7.15-7.24 (m, 5H), 6.87 (d, *J*=8.0 Hz, 1H), 6.69-6.75 (td, *J*=8.0 and *J*=1.8 Hz, 2H), 4.22 (t, *J*=7.2 Hz, 2H), 3.74 (s, 3H), 3.41 (s, 2H), 2.84 (t, *J*=7.0 Hz, 2H), 2.75 (br d, *J*=11.0 Hz, 2H), 2.24 (s, 3H), 2.16-2.22 (m, 1H), 1.94 (t br, =11.0 Hz, 2H), 1. 77-1.79 (m, 2H), 1.63-1.73 (m, 2H). ¹³C NMR (CDCl₃, 500 MHz): 175.32, 169.34, 151.13, 138.6, 136.99, 129.28, 128.4, 127.19, 122.88, 121.27, 113.27, 64.76, 63.44, 56.07, 53.07, 41.42, 35.26, 28.49, 20.88.

4-acetoxyphenethyl 1-benzylpiperidine-4-carboxylate (HT4a): Incolor oil; Yield=85%; R_{f} = (CHCl₃:AcOEt:TEA-60:38:2) 0.28. HRMS: [M+H]⁺ m/z 382.2005 (theoretical [M+H]⁺ m/z 382.2013); ¹H NMR δ (ppm) (500 MHz, CDCl₃): 7.15-7.24 (m, 5H), 7.14 (d, *J*=8.4 Hz, 2H), 6.94 (d, *J*=8.5 Hz, 2H), 4.21 (t, *J*=6.8 Hz, 2H), 3.41 (s, 2H), 2.85 (t, *J*=6.9 Hz, 2H), 2.73-2.77 (br d, *J*=11.5 Hz, 2H), 2.16-2.23 (m, 4H), 1.91-1.96 (br t, *J*=10.8 Hz, 2H), 1.74-1.81 (m, 2H), 1.61-1.70 (m, 2H); ¹³C NMR (500 MHz, CDCl₃): δ 175.31, 169.77, 149.54, 138.58, 135.66, 130.08, 129.32, 128.40, 127.19, 121.75, 64.78, 63.45, 53.08, 41.37, 34.72, 28.1, 21.35.

7 HRMS

HT1

HT2

HT3

HT4

PaolaCostanzo-EST22-MeoH10-10ng #4858 RT: 19.27 AV: 1 NL: 9.60E9 T: FTMS + p NSI Full ms [100.0000-1000.0000]

HT1a

HT3a

PaolaCostanzo-EST-27-1ng #6431-6438 RT: 25.73-25.74 AV: 2 NL: 1.46E9 T: FTMS + p NSI Full ms [100.0000-1000.0000]

8¹H-NMR

6

HT1

4

2

- 6

50

0

[ppm]

0

HT1a

HT4a

9 ¹³C-NMR

HT2

HT3

HT1a

HT3a

HT4a

10 References

Ou, B., Hampsch-Woodill, M., and Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe, *J. Agric. Food Chem.* 49, 4619–4626. doi: 10.1021/jf0105860.

Ozyürek, M., Bektaşoğlu, B., Güçlü, K., Güngör, N., and Apak, R. (2008). Simultaneous total antioxidant capacity assay of lipophilic and hydrophilic antioxidants in the same acetone-water solution containing 2% methyl-beta-cyclodextrin using the cupric reducing antioxidant capacity (CUPRAC) method. *Anal. Chim. Acta.* 630(1), 28-39. doi: 10.1016/j.aca.2008.09.057.