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1 Base model construction

Platform for infectious disease dynamics simulation

We developed a deterministic compartmental model of COVID-19 transmission using the AuTuMN

platform, publicly available at https://github.com/monash-emu/AuTuMN/. Our repository allows

for the rapid and robust creation and stratification of models of infectious disease epidemiology

and includes pluggable modules to simulate heterogeneous population mixing, demographic pro-

cesses, multiple circulating pathogen strains, repeated stratification and other dynamics relevant

to infectious disease transmission. The platform was created to simulate TB dynamics, being an

infectious disease whose epidemiology differs markedly by setting, such that considerable flexibility

is desirable [1]. We have progressively developed the structures of our platform over recent years,

and further adapted it to be sufficiently flexible to permit simulation of other infectious diseases,

such as COVID-19. A similar model has been applied to several countries of the Asia-Pacific,

with the application to the Philippines (without structure to represent geospatial stratification or

contact tracing) previously described.[2]

Base COVID-19 model

Using the base framework of an SEIR model (susceptible, exposed, infectious, removed), we split

the exposed and infectious compartments into two sequential compartments each (SEEIIR). The

two sequential exposed compartments represent the non-infectious and infectious phases of the

incubation period, with the latter representing the “presymptomatic” phase such that infectious-

ness occurs during three of the six sequential phases. For this reason, “active” is a more accurate

term for the two sequential “I” compartments and is preferred henceforward. The two infectious

compartments represent early and late phases of active disease, during which symptoms occur if

the disease episode is symptomatic, and allow explicit representation of notification, case isola-

tion, hospitalisation and admission to the intensive care unit (ICU). The “active” compartment

also includes some persons who remain asymptomatic throughout their disease episode, such that

these compartments do not map directly to either persons who are infectious or those who are

symptomatic (Figure 1).

The latently infected and infectious presymptomatic periods together comprise the incubation

period, with the incubation period and the proportion of this period for which patients are infectious

defined by input parameters described below. In general, two sequential compartments can be
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Figure 1: Unstratified compartmental model structure. S = susceptible, E = exposed, I =

active, R = recovered/removed. Depth of pink/red shading indicates the infectiousness of the

compartment.

used to form a gamma-distributed profile of transition to infectiousness following exposure if the

progression rates for these two compartments are equal, although in implementing this model

the relative sojourn times in the two sequential compartments usually differed. Nevertheless, the

profiles implemented are broadly consistent with the empirically observed log-normal distribution

of individual incubation periods [3].

The transition from early active to late active represents the point at which patients are detected

(for those persons for whom detection does eventually occur) and isolation then occurs from this

point forward (i.e. applies during the late active phase only). This transition point is also used to

represent the point of admission to hospital or transition from hospital ward to intensive care for

patients for whom this occurs (see Section 1).

Age stratification

All compartments of this base compartmental structure were stratified by age into five-year bands

from 0-4 years of age through to 70-74 years of age, with the final age group being those aged

75 years and older. Heterogeneous baseline contact patterns by age were incorporated using age-

specific contact rates estimated from survey data from the POLYMOD study, which reported rates

of age-specific contacts in various locations between persons of different age groupings (as described

below 1). These are then modified by non-pharmaceutical interventions. Our modelled age groups

were chosen to match these mixing matrices. The automatic demographic features of AuTuMN

that can be used to simulate births, ageing and deaths were not implemented, because the issues

considered pertain to the short- to medium-term and the immediate implementation of control

strategies, for which population demographics are less relevant.
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Contact matrices construction

For each location L (home, school, work, other locations) the age-specific contact matrix CL =

(cLi,j) ∈ R16×16
+ is defined such that cLi,j is the average number of contacts that a typical individual

aged i has with individuals aged j. As there is no contact survey available for Australia that is

complete across all age groups, the matrices CL were obtained by extrapolating contact matrices

from the United Kingdom, being a country included in the POLYMOD study in 2005 [4]. The

original matrices from the United Kingdom are denoted QL = (qLi,j) ∈ R16×16
+ , where qLi,j is

defined using the same convention as for cLi,j . The matrices QL were extracted using the R package

“socialmixr” (v 0.1.8) and then adjusted to account for age distribution differences between Victoria

and the United Kingdom.

Let πj denote the proportion of people aged j in Victoria, and ρj the proportion of people aged

j in the United Kingdom. The contact matrices CL were obtained from:

cLi,j = qLi,j ×
πj

ρj
.

In sensitivity analysis, we replaced the United Kingdom with Belgium as the proxy country

from which survey data were used for constructing Victoria’s matrices. Belgium was chosen as

the POLYMOD country with the closest similarity in age distribution of Australia and Belgium in

2005.

Clinical stratification

The age-stratified late exposed/incubation and both the early and late active disease compartments

were further stratified into five “clinical” categories: 1) asymptomatic, 2) symptomatic ambulatory,

never detected, 3) symptomatic ambulatory, ever detected, 4) ever hospitalised, never critical and

5) ever critically unwell (Figure 2). The proportion of new infectious persons entering stratum 1

(asymptomatic) is age-dependent. The proportion of symptomatic patients (strata 2 to 5) ever

detected (strata 3 to 5) is set through a parameter that represents the time-varying proportion of all

symptomatic patients who are ever detected (the case detection rate). Of those ever symptomatic

(strata 2 to 5), a time-constant but age-specific proportion is considered to be hospitalised (entering

strata 4 or 5). Of those hospitalised (entering strata 4 or 5), a fixed proportion was considered to

be critically unwell (entering stratum 5, Figure 3).
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Figure 2: Illustration of the implementation of the clinical stratification. Depth of pink/red

shading indicates the infectiousness of the compartment. Typical parameter values represented,

although the infectiousness of asymptomatic persons is varied in calibration. ICU, intensive care

unit.

Hospitalisation

For COVID-19 patients who are admitted to hospital, the sojourn time in the early and late

active compartments is modified, superseding the default values of the sojourn times for these

compartments. The point of admission to hospital is considered to be the transition from early

to late active disease, such that the sojourn time in the late disease represents the period of time

admitted to hospital for patients not admitted to ICU. For patients admitted to ICU, admission

to ICU occurs at this same transition point. For this group, the period of time hospitalised prior

to ICU admission is estimated as a proportion of the early active period, such that the early active

period represents both the period ambulatory in the community and the period in hospital prior
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Figure 3: Illustration of the rationale for the clinical stratification.

to ICU admission.

Infectiousness

Asymptomatic persons are assumed to be less infectious per unit time active than symptomatic

persons not undergoing case isolation (typically by around 50%, although this is varied in calibra-

tion/uncertainty analysis). Infectiousness is also decreased for persons who have been detected to

reflect case isolation, and for those admitted to hospital or ICU to reflect infection control pro-

cedures (by 80% for both groups). Presymptomatic individuals are assumed to have equivalent

infectiousness to those with early active COVID-19.
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Application of COVID-19-related death

Age-specific infection fatality rates (IFRs) were applied and distributed across strata 4 and 5, with

no deaths typically applied to the first three strata. A ceiling of 50% is set on the proportion of

those admitted to ICU (entering stratum 5) who die. If the infection fatality rate is greater than

this ceiling, the proportion of critically unwell persons dying was set to 50%, with the remainder of

the infection fatality rate then applied to the hospitalised proportion. Otherwise, if the infection

fatality rate is less than half of the absolute proportion of persons critically unwell, the infection

fatality rate is applied entirely through stratum 5 (such that the proportion of critically unwell

persons dying in that age group becomes <50% and the proportion of stratum 4 dying is set

to zero). In the event that the infection fatality rate for an age group is greater than the total

proportion hospitalised (which is unusual, but could occur for the oldest age group under certain

parameter configurations), the remaining deaths are assigned to the asymptomatic stratum. This

approach was adopted for computational ease and is valid because the duration active for persons

entering this stratum is the same as for the other non-hospitalised strata, such that the dynamics

are identical to assigning the deaths to any of the first three strata. We used the age-specific IFRs

previously estimated from age-specific death data from 45 countries and results from national-level

seroprevalence surveys [5]. Uncertainty in the IFR estimates used in the model is incorporated as

described in Section 10.

Clinical

stratum

Stratum name Pre-

symptomatic

Early Late

1 Asymptomatic 0.5 0.5 0.5

2 Symptomatic ambulatory never detected 1 1 1

3 Symptomatic ambulatory ever detected 1 1 0.2

4 Hospitalised never critical 1 1 0.2

5 Ever critically unwell 1 1 0.2

Table 1: Illustration of the relative infectiousness of disease compartments by clinical strat-
ification and stage of infection. Typical parameter values displayed.

2 Case detection and isolation
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Determining the proportion of cases detected

We calculate a time-varying case detection rate, being the proportion of all symptomatic cases

(clinical strata 2 to 5) that are detected (clinical strata 3 to 5). This proportion is informed by

the number of tests performed using the following formula:

CDR(time) = 1− e−shape×tests(time)

time is the time in days from the 31st December 2019 and tests(time) is the number of tests per

capita done on that date. To determine the value of the shape parameter, we solve this equation

based on the assumption that a certain daily testing rate tests(t) is associated with a certain

CDR(t). Solving for shape yields:

shape =
−log(1− CDR(t))

tests(t)

That is, if it is assumed that a certain daily per capita testing rate is associated with a certain

proportion of symptomatic cases detected, we can determine shape. As this relationship is not well

understood and unlikely to be consistent across all settings, we vary the CDR that is associated

with a certain per capita testing rate during uncertainty/calibration. Given that the CDR value

can be varied widely, the purpose of this is to incorporate changes in the case detection rate that

reflect the empirical historical profile of changes in testing capacity over time.

The proportion of persons entering clinical stratum 3 is calculated once the CDR is known,

along with the proportion of all incident cases hospitalised (strata 4 and 5).

Isolation of detected cases

As described in the Section 1 above, as infected persons progress from the early to the late stage

of active COVID-19, infectiousness is reduced for those in the detected strata (3 to 5) to reflect

case isolation.

3 Contact tracing and quarantine

Model adaptation

We simulate quarantining of persons identified as first degree contacts of COVID-19 patients explic-

itly through stratification of the compartments representing active COVID-19. That is, the com-

partments representing both phases of the incubation period and both phases of active COVID-19
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are duplicated, with model strata referred to as “traced” and “untraced”. In model initialisation,

all infectious seed is assigned to the untraced stratum. All newly infected persons commence their

incubation period in the untraced stratum of the early incubation period. As for isolated and

hospitalised patients, those undergoing quarantine have their infectiousness reduced by 80%.

Contact tracing process

Identification of infected persons through contact tracing is assumed to apply to those in their early

incubation period, with flows added to the model that transition persons during their incubation

period from the untraced to the traced stratum of this compartment type. The rate of transition

from the untraced to the traced stratum of the early incubation period is determined by the

proportion of contacts traced. It is assumed that only the contacts of identified cases can be traced,

such that the case detection rate (the proportion of symptomatic cases detected) is considered

the ceiling for the proportion of contacts traced. The proportion of contacts of identified cases

that is traced is multiplied by the proportion of contacts whose index is detected to determine

the proportion of all persons entering the incubation period who are traced. The proportion

of contacts with detected index, u(t), is calculated as the relative contribution of ever-detected

infectious individuals to the total force of infection, given as:

u(t) =

∑
c∈C

∑
s∈D prevc,s(t)× infc,s∑

c∈C
∑

s∈S prevc,s(t)× infc,s
,

where C is the set of infectious compartments, S represents all clinical strata and D ⊂ S is the

list of detected clinical strata. The prevalence of infectious compartment c in clinical stratum s

at time t is represented by prevc,s(t), and infc,s is the relative infectiousness of compartment c in

clinical stratum s.

The proportion of contacts of identified cases that is traced, q(t), is considered to decrease as

the severity of the COVID-19 epidemic increases, because we expect contact tracing to decline

in efficiency as more cases are identified. That is, we assume that contact tracing is universal as

COVID-19 prevalence approaches zero and declines exponentially with increasing prevalence. The

relationship between the proportion of contacts of identified patients who are quarantined and

prevalence is given as:

q(t) = e−prev(t)×τ

Rather than estimate τ directly, we estimate the more intuitive quantity of the proportion of
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contacts of identified patients who would be quarantined at a particular prevalence. Solving for

the previous equation for τ , we obtain:

τ =
−log(q(t))

prev(t)

or τ = −log(q0)
prev0

at a specific prevalence that accords with a particular value of q. Fixing prev0

at 10−3, we can vary q0 in calibration as the proportion of contacts of identified cases detected at

a prevalence of one active case per thousand population.

Finally, q(t)×u(t) gives the proportion of all infected persons who are traced. This proportion

of persons entering their early latent period transition to the equivalent compartment in the traced

stratum before proceeding to the late latent period.

Contact tracing processes

Figure 4 presents the time-varying processes and parameters relating to contact tracing implemen-

tation in the model.

Testing data

Statewide daily testing data by date of test were provided by DHHS and applied to all health

service clusters to provide a broad profile of the variation in testing capacity over time, including

the lower testing numbers in early June compared to at the peak of the epidemic. Data sparseness

precluded us from implementing separate functions for each individual health service cluster. For

this application to Victoria, the case detection proportion corresponding to a per capita rate

of testing of one test per thousand population per day was varied as a calibration parameter

in creating the time-varying case detection proportion function. Note that testing rates were

typically considerably higher than one per thousand per day during the period modelled, such

that the actual modelled case detection proportion is considerably higher than the case detection

calibration parameter for most of the simulation period.

4 Implementation of non-pharmaceutical interventions

A major part of the rationale for the development of this model was to capture the past impact

of non-pharmaceutical interventions (NPIs) and produce future scenarios projections with the

implementation or release of such interventions.
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Isolation and quarantine

For persons who are identified with symptomatic disease and enter clinical stratum 3, self-isolation

is assumed to occur and their infectiousness is modified as described above. The proportion of

ambulatory symptomatic persons effectively identified through the public health response by any

means is determined by the case detection rate as described above.

Community quarantine or “lockdown” measures

For all NPIs relating to reduction of human mobility or “lockdown” (i.e. all NPIs other than

isolation and quarantine), these interventions are implemented through dynamic adjustments to

the age-assortative mixing matrix.

The age-specific mixing matrices we describe above (Section 1) have the major advantage of

allowing for disaggregation of total contact rates by location, i.e. home, work, school and other

locations. This disaggregation allows for the simulation of various NPIs in the local context by

dynamically varying the contribution of each location to reflect the historical implementation of

the interventions.

The corresponding mixing matrix (denoted C0) is presented using the standard convention that

a row represents the average number of age-specific contacts per day for a contact recipient of a

given age-group. In other words, the element C0i,j is the average number of contacts per day that

an individual of age-group j makes with individuals of age-group i.

This matrix results from the summation of the four location-specific contact matrices: C0 =

CH +CS +CW +CL, where CH , CS , CW and CL are the age-specific contact matrices associated

with households, schools, workplaces and other locations, respectively.

In our model, the contributions of the matrices CS , CW and CL vary with time such that the

input contact matrix can be written:

C(t) = CH + s(t)2CS + w(t)2CW + l(t)2CL

The modifying functions are each squared to capture the effect of the mobility changes on both

the infector and the infectee in any given interaction that could potentially result in transmission.

The modifying functions incorporate both macro-distancing and microdistancing effects, depending

on the location.
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School closures/re-openings

Reduced attendance at schools is represented through the function s(t), which represents the

proportion of all school students currently attending on-site teaching. If all education is fully

remote, s(t) = 0 and CS does not contribute to the overall mixing matrix C(t). s(t) is calculated

through a series of estimates of the proportion of students attending onsite education, to which a

smoothed step function is fitted. Note that the dramatic changes in this contribution to the mixing

matrix with school closures/re-openings is a more marked change than is seen with the simulation

of policy changes in workplaces and other locations (which are determined by empiric data and so

do not vary so abruptly or reach a value of zero).

Workplace closures

Workplace closures are represented by quadratically reducing the contribution of workplace con-

tacts to the total mixing matrix over time. This is achieved through the scaling term w(t)2 which

modifies the contribution of CW to the overall mixing matrix C(t). The profile of the function

w(t) is set by fitting a polynomial spline function to Google mobility data for workplace attendance

(Table 2).

Community-wide movement restriction

Community-wide movement restriction (or “lockdown”) measures are represented by proportionally

reducing the contribution of the other locations contacts to the total mixing matrix over time.

This is achieved through the scaling term l(t)2 which modifies the contribution of CL to the overall

mixing matrix C(t). The profile of the function l(t) is set by fitting a polynomial spline function

to an average of Google mobility data for various locations, as indicated in Table 2.

Household contacts

The contribution of household contacts to the overall mixing matrix C(t) is fixed over time. Al-

though Google provides mobility estimates for residential contacts, the nature of these data are

different from those for each of the other Google mobility types in that they represent the time

spent in that location rather than the number of attendances. The daily frequency with which

people attend their residence is likely to be close to one and we considered that household members

likely have a daily opportunity for infection with each other household member. Therefore, we did
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not implement a function to scale the contribution of household contacts to the mixing matrix

with time.

Matrix location Approach Google mobility types

School Policy response Not applicable

Household Constant Not applicable

Workplace Google mobility Workplace

Other locations Google mobility Unweighted average of:

� Retail and recreation

� Grocery and pharmacy

� Parks

� Transit stations

Table 2: Mapping of Google mobility data to contact locations .

Microdistancing

Interventions other than those that prevent people coming into contact with one another are

thought to be important to COVID-19 transmission and epidemiology, such as maintaining in-

terpersonal physical distance and the wearing of face coverings. We therefore implemented a

“microdistancing” function to represent reductions in the rate of effective contact that is not at-

tributable to persons visiting specific locations and so is not captured through Google mobility

data. This microdistancing function reduces the values of all elements of the mixing matrices

by a certain proportion. These time-varying functions multiplicatively scale the location-specific

contact rate modifiers s(t), w(t) and l(t).

5 Simulation of local NPI implementation during Victoria’s second wave

School closures

The effect of Victorian school closures is captured through the timeline presented in Table 3.
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Date of change Policy change Modification applied

to school contacts

contribution to mix-

ing matrix, s(t)

From model start Remote learning 0.1

26th May 400,000 school students return to

school

0.393

9th June Remaining 618,000 school students re-

turn to school

1

9th July Remote learning for stage 3 restrictions 0.1

Table 3: Timeline used to implement Victorian school closure policies. The function is ap-
plied to both metropolitan and regional services.

Macrodistancing in workplaces and other locations

The functions applied here are determined by the Google mobility data according to Table 2,

as described above, but are applied separately for each service. Because Google mobility data

pertains to local government areas (LGAs), whereas health service clusters may receive patients

from across the state, it was necessary to map mobility data to services. Health service clusters’

overall mobility values in each location were calculated using a weighted average of LGA mobility

values according to the historical pattern of the origin of patients presenting to services within

each service.

As a hypothetical example, if 50% of patients historically presenting to Barwon South West

health services come from the City of Geelong, the mobility data for the City of Geelong will

contribute 50% of the Google mobility estimate of Barwon South West.

Historical patterns of patient presentations by health service cluster were provided by the

Victorian Department of Health and Human Services (DHHS).

Microdistancing approach

In this application to Victoria, the microdistancing function m(t) is comprised of two compo-

nents: physical distancing and face coverings. Both physical distancing and face coverings micro-

distancing are applied to the three non-household locations, such that the microdistancing function
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for non-household locations is given by:

m(t) = d(t)2 × f(t)2

The two interventions are assumed to be independent and so are multiplicative. As for the

macrodistancing functions, the two functions of time are squared to represent their effects on

both the infector and the infectee in any potentially infectious interaction.

Physical distancing

The physical distancing function d(t) is a transposed and translated hyperbolic tan function. The

parameters of this function were estimated by using maximum a posteriori inference, with priors

that penalised large shape parameters (to avoid extremely rapid transitions). The proportions

of respondents answering “always” to YouGov surveys of Victorian residents asking “Thinking

about the last 7 days, about how many people from your household have you come into physical

contact with (within 2 meters / 6 feet)?” were used as input data. Resulting parameters were:

shape, 0.262764; lower asymptote, 0.2803973; upper asymptote; 0.4421819; and inflection point,

15th July. The resulting function is presented in Figure 5.

Face coverings

Two separate face coverings microdistancing functions are employed, one for metropolitan and one

for regional health service clusters. These functions were fitted using the same methods as for

physical distancing, using YouGov data on Victorian residents’ survey responses to the question

“Thinking about the last 7 days, have you worn a face mask outside your home (e.g. when on

public transport, going to a supermarket, going to a main road)?”. Estimated parameters were:

shape, 0.5261693; lower asymptote, 0.130469; upper asymptote, 0.9143849; and inflection point,

26th July (consistent with the policy change in metropolitan Melbourne). This was applied directly

to metropolitan services and translated ten days later for regional services, where face coverings

were mandated from the 2nd August. The resulting function is presented in Figure 6.

6 Between service mixing

The preceding section describes the creation of heterogeneous mixing matrices by age for each of

the nine health service clusters individually. These mixing matrices are then combined to create

a single time-varying heterogeneous mixing matrix by service and age resulting in a 144 by 144

15



(9× 16 = 144) square mixing matrix. The force of infection for an index service is calculated from

the mixing matrices of the age-assortative matrix for each of the services modelled. The spatial

mixing matrix is based on the adjacency of health service clusters as indicated in Table 4.

7 Model initialisation

The model was commenced from around one to two weeks earlier than the actual beginning of

Victoria’s second wave (as determined by genomic analysis), in order that the distribution of

infectious persons distributes naturally across compartments as the model approaches the actual

beginning of Victoria’s second wave in early June. The actual start date selected was the 14th

May. The infectious seed needed at this time was then calibrated to ensure dynamics were realistic

at the beginning of the second wave. The infectious seed is distributed evenly across metropolitan

services, consistent with the epidemic’s emergence from Metropolitan Melbourne.

8 Parameters

Non-age-stratified parameters

Parameter Value Rationale

Incubation period Calibration

parameter,

truncated normal

distribution, mean

5.5 days

Estimates of the incubation period have in-

cluded 5.1 days, 5.2 days and 4.8 days

[6, 7, 8, 9]. A systematic review [3] found

that data are best fitted by a log-normal dis-

tribution (mean 5.8 days, CI 5.0 to 6.7, me-

dian 5.1 days). Our systematic review [10]

found that estimates of the mean incubation

period have varied from 3.6 to 7.4 days.
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continuation of parameters table

Proportion of incubation

period infectious

50% Infectiousness is considered to be present

throughout a considerable proportion of the

incubation period, based on analyses of

confirmed source-secondary pairs [11] and

early findings that the incubation period was

similar to the serial interval [6]. The study

of source-secondary pairs was also the pri-

mary reference cited by a review of the infec-

tious period that identified studies that quan-

tified the pre-symptomatic period, which

concluded that the median pre-symptomatic

period could range from less than one to four

days [12].

Active period (regardless

of detection/isolation, for

clinical strata 1 to 3)

Calibration

parameter,

truncated normal

distribution, mean

8 days

This quantity is difficult to estimate, given

that identified cases are typically quaran-

tined. Studies in settings of high case as-

certainment and an effective public health

response have suggested a duration of

greater than 5.5 days [9]. PCR positivity,

which may continue for up to two to three

weeks from the point of symptom onset [11]

[12], is difficult to interpret and does not

necessarily indicate infectiousness. Consis-

tent with these findings, the duration infec-

tious for asymptomatic persons has been

estimated at 6.5 to 9.5 days [12] (although

in our model, this would include the pre-

symptomatic infectious period).

Proportion of infectious

period before isolation or

hospitalisation can occur

0.333 Assumed
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continuation of parameters table

Disease duration prior to

admission for

hospitalised patients not

critically unwell (i.e. early

active sojourn time,

stratum 4)

7.7 days Mean value from ISARIC cohort, as re-

ported on 4th October 2020 in Table 6 [13],

and similar to the expected mean from ear-

lier reports from ISARIC [14]. This co-

hort represents high-income countries bet-

ter than low and middle-income countries,

with the United Kingdom contributing data

on the greatest number of patients, followed

by France. Earlier estimates of this quantity

from China included 4.4 days [6].

Duration of

hospitalisation if not

critically unwell (late

active sojourn time,

stratum 4)

12.8 days Mean value from the ISARIC cohort, as re-

ported on 4th October 2020 in Table 6 [13].

ICU duration (late active

sojourn time, stratum 5)

10.5 days Mean duration of stay in ICU/HDU from IS-

ARIC cohort for patients with complete data,

as reported on 10th October 2020 Table 6

[13]. Many other studies reporting on the

average duration of ICU stay suffer from

right-truncation issues, often estimating 7-

10 days length of stay.

Duration of time prior to

ICU for patients admitted

to ICU

10.5 days Calculated as the sum of the time from

symptom onset to hospital admission (7.7

days above) plus the duration from hospital

admission to ICU admission reported by Oc-

tober ISARIC report (2.8 days) [13].

Relative infectiousness of

asymptomatic persons

(per unit time with active

disease)

0.5 Assumed
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continuation of parameters table

Relative infectiousness of

persons admitted to

hospital or ICU

0.2 Assumed

Relative infectiousness of

identified persons in

isolation

0.2 Assumed

Proportion of hospitalised

patients ever admitted to

ICU

0.17 Assumed

Table 5: Universal (non-age-stratified) model parameters. Point estimates are used as model

parameters except where ranges are indicated in calibration parameter table below in calibration

table.

Age-specific parameters

Age-structured parameters are presented in Table 6.
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Figure 4: Contact tracing time-varying processes and parameters. Upper left panel, mod-

elled prevalence of active COVID-19 episodes (including asymptomatic cases); upper right panel,

proportion of contacts traced among contacts of detected cases (declines with increasing preva-

lence); lower left panel, proportion of all contacts whose index is detected (scales with proportion

of symptomatic cases detected, but includes asymptomatic cases); lower right panel, final propor-

tion of all infected persons quarantined through contact tracing. Dark blue line shows the median

modelled estimate. Shaded areas represent the 25th to 75th centile (mid blue), 2.5th to 97.5th

centile (light blue) and 1st to 99th centile (faintest blue) of estimated detected cases.
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Figure 5: Physical distancing micro-distancing function with data used for fitting (for all

services).
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Figure 6: Face coverings micro-distancing function for metropolitan Melbourne services

with data used for fitting.
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Barwon

South West

R 0 0 0 M M 0 0 M

Gippsland 0 R M 0 0 0 M M 0

Hume 0 M R M 0 M M 0 0

Loddon-

Mallee

0 0 M R M M 0 0 M

Grampians M 0 0 M R M 0 0 M

North Metro M 0 M M M R M 0 M

South East

Metro

0 M M 0 0 M R M 0

South Metro 0 M 0 0 0 0 M R 0

West Metro M 0 0 M M M 0 0 R

Table 4: Adjacency-based spatial mixing matrix. 0, no mixing between spatial patches; M,
calibrated inter-service mixing parameter for adjacent services; R, the diagonal matrix elements
are populated with the complement of the other values for each row/column (and so may take a
different value in each cell in which it appears)
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Age group

(years)

Clinical

fractiona

Relative suscepti-

bility to infection

Infection fatality

rate

Proportion of

symptomatic

patients hospi-

talised

0 to 4 0.533 0.36 3 × 10-5 0.0777

5 to 9 0.533 0.36 1 ×-5 0.0069

10 to 14 0.533 0.36 1 ×-5 0.0034

15 to 19 0.533 1 3 ×-5 0.0051

20 to 24 0.679 1 6 ×-5 0.0068

25 to 29 0.679 1 1.3 ×-4 0.0080

30 to 34 0.679 1 2.4 ×-4 0.0124

35 to 39 0.679 1 4.0 ×-4 0.0129

40 to 44 0.679 1 7.5 ×-4 0.0190

45 to 49 0.679 1 1.21 ×-3 0.0331

50 to 54 0.679 1 2.07 ×-3 0.0383

55 to 59 0.679 1 3.23 ×-3 0.0579

60 to 64 0.803 1 4.56 ×-3 0.0617

65 to 69 0.803 1.41 1.075 ×-2 0.1030

70 to 74 0.803 1.41 1.674 ×-2 0.1072

75 and

above

0.803 1.41 5.748 ×-2, b 0.0703

Source/ ra-

tionale

Table 1 of

systematic

review and

meta-analysis

with appropri-

ate accounting

for testing

during the pre-

symptomatic

period [15].

Conversion of odds

ratios presented in

Table S15 of Zhang

et al. 2020 to

relative risks using

data presented in

Table S14 of the

same study [6].c

Estimated from

pooled analysis of

data from 45 coun-

tries from Table

S3 of O’Driscoll

et al [5]. Values

consistent with

previous estimates

using serosurveys

performed in Spain

[16].

Estimates from

the Netherlands

as the first wave

of infections de-

clined from 4th

May to 21st July

[17].

Table 6: Age-stratified parameters not varied during calibration, or varied through a com-
mon multiplier. aProportion of incident cases developing symptoms. bWeighted average of IFR
estimates for 70 to 79 and 80 and above age groups. cNote the relative magnitude of these values
are similar to those estimated by the analysis we use to estimate the age-specific clinical fraction.
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9 Calculation of outputs

Incidence

Incidence is calculated as any transitions into the early active compartment (“I”).

Hospital occupancy

This is calculated as the sum of three quantities:

1. All persons in the late active compartment in clinical stratum 4, representing those admitted

to hospital but never critically unwell.

2. All persons in the late active compartment in clinical stratum 5, representing those currently

admitted to ICU.

3. A proportion of the early active compartment in clinical stratum 5, representing those who

will be admitted to ICU at a time in the future. This proportion is calculated as the quotient

of 1) the difference between the pre-ICU period and the pre-hospital period for clinical

stratum 4, divided by 2) the total pre-ICU period. That is, a proportion of the pre-ICU

period is considered to represent patients in hospital who have not yet been admitted to

ICU.

ICU occupancy

This is calculated as all persons in the late active compartment in clinical stratum 5.

Seropositive proportion

This is calculated as the proportion of the population in the recovered (“R”) compartment. Al-

though very similar numerically to the attack rate, persons who died of COVID-19 are not included

in the denominator.

COVID-19-related mortality

This is calculated as all transitions representing death, exiting the model. This is implemented as

depletion of the late active compartment.
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Notifications

Local case notifications are calculated as transitions from the early to the late active compartment

for clinical strata 3 to 5.

10 Calibration

We calibrated the model using the adaptive Metropolis algorithm described by Haario et al. [18].

A standard Metropolis algorithm with fixed proposal distribution parameters was used for the first

500 iterations to initiate the covariance matrix before the adaptive algorithm commenced. Seven

chains were then run to ensure 10,000 iterations post-burn-in were achieved.

Rationale for service-specific targets

For all services (both metropolitan and regional), we included the time series of daily notifications

for that service as a calibration target, using a normal distribution for the likelihood function. A

normal distribution is preferred because the mapping process for the notifications for each service

results in these quantities not being integer-valued.

In addition, we include time series for the following quantities at the state level. Because these

quantities are counts, Poisson distributions are used in likelihood calculations:

� Daily new COVID-19 notifications

� Daily new hospital admissions

� Daily new ICU admissions

� Daily deaths

Assigning targets to services

Hospital admissions and ICU admissions can be mapped directly to a health service cluster. Health

service clusters include all health care (including public hospitals, private, rehab, acute, mental

health, etc.) and some metropolitan services have changed service assignment over the years. Map-

ping was performed as at August 2020. However, for the other two indicators used (notifications

and deaths), mapping was not possible because these events do not necessarily occur within a

health service cluster. Therefore, the local government area (LGA) of residence of the person no-

tified or dying is considered. Each notification and death is split proportionately across the health

26



service clusters to which they would typically present, according to historical data on hospital

presentations for each LGA provided by DHHS. (Note that only notifications are considered as

calibration targets, although these considerations are relevant to the comparison between data and

modelled outputs undertaken for validation purposes.)

Variation of age-specific proportion hospitalised using “adjuster” parameters

Our parameters included the age-specific proportions of cases hospitalised, which were varied up

and down together during calibration. These proportion parameters were modified through an

“adjuster” parameter that is not strictly a multiplier, but is rather implemented in such a way as

to scale the base parameter value while ensuring that the adjusted parameter remains a proportion

(with range zero to one). This adjuster parameter can be considered as a multiplicative factor that

is applied to the odds ratio that is equivalent to the baseline proportion to be adjusted. Specifically,

the adjusted proportion is equal to:

proportion× adjuster

proportion× (adjuster − 1) + 1

Variation of infection fatality rate

The infection fatality rate can be defined as the risk of death given an episode of infection, including

asymptomatic and undetected episodes. This is considered a more stable quantity than the case

fatality rate. However, it is still likely to vary considerably between settings and so is adjusted

during the calibration process. Because the epidemic in Victoria was characterised by high rates of

transmission and disease in aged care, we fix the infection fatality rate for all age groups up to 74

years to the estimates derived from the literature, but vary the infection fatality rate for those aged

75 and above. This is intended to capture the increased risk of death for those in residential aged

care during the second wave, the large majority of whom would be included in this age bracket.

11 Likelihood function

Likelihood functions are derived from comparing model outputs to target data at each time point

nominated for calibration.

The composite likelihood function is given formally as:∏
t

nt(θ)dt(θ)ht(θ)it(θ)×
∏
t,g

nt,g(θ, σ)
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where t indexes the date, g indexes the service, nt refers to daily new notifications, dt to daily

deaths, ht to daily new hospitalisations and it to daily new ICU admissions. The contributions

of each state-wide component to the composite likelihood are measured with Poisson distributions

(e.g. nt(θ) = Poiss(νt(θ)), where νt(θ) is the number of notifications simulated by the model

at date t under parameter set θ), and normal distributions are used for each nt,g (because these

targets are not integer-valued). σ is the ratio of the peak of each service-specific notification to

the corresponding standard deviation of each of the normal distributions used in calculating their

contribution to the likelihood. This was included as a calibration parameter to improve calibration

efficiency.

12 Ordinary differential equations

For the clearest description of the model, we refer the reader to our code repository, because

our object-oriented approach to software development is intended to be highly transparent and

readable. For those who prefer dynamical systems such as this presented in the form of ordinary

differential equations, we present the following.

dSa,g

dt
= −λa,g(t)σaSa,g

dEa,g,q=1

dt
= λa,g(t)σaSa,g − αEa,g,q=1 − χ(t)Ea,g,q=1

dEa,g,q=2

dt
= −αEa,g,q=2 + χ(t)Ea,g,q=1

dPa,c,g,q

dt
= pa,c(t)αEa,g,q − νPa,c,g,q

dIa,c,g,q
dt

= νPa,c,g,q − γcIa,c,g,q

dLa,c,g,q

dt
= γcIa,c,g,q − δa,cLa,c,g,q − µa,cLa,c,g,q

dRa,g

dt
=

∑
c,q

δa,cLa,c,g,q

where

λa,g = β
∑
g′

Gg,g′

∑
j,c

ϵPj,c,g′(t) + ιcIj,c,g′(t) + κcLj,c,g′(t)

Nj,g′(t)
Ca,j(t)

∑
c

pa,c(t) = 1,∀t ∈ R
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χ(t) =
αq(t)u(t)

1− q(t)u(t)

C0 = CH +CS +CW +CL

Cg(t) = CH + sg(t)
2CS + wg(t)

2CW + lg(t)
2CL

lg(t) =
reg(t) + grg(t) + pag(t) + trg(t)

4

Symbol Explanation

S Persons susceptible to infection

E Persons in the non-infectious incubation period

P Persons in the incubation period

I Persons in the early active disease period, before isolation or hospitali-

sation may occur

L Persons in the late active disease period, after isolation or hospitalisation

may have occurred

R Persons in the recovered period, from which re-infection cannot occur

13 Sensitivity analyses

Sensitivity analysis using alternative base mixing matrices

We ran a sensitivity analysis using age-specific mixing matrices derived from survey data for

Belgium, rather than the United Kingdom, which were weighted to the Victorian age structure

using the same methods as described above. The results of this analysis were similar to that of

the baseline analysis and are presented in Figure 21, Figure 22 and Figure 23. These results show

no significant epidemiological differences from those derived from the base case analysis.

Sensitivity analysis with Google residential mobility used to scale home location contribu-

tion to mixing matrices

We ran an alternative analysis, in which the home location contribution to the dynamic mixing

matrices scaled with Google residential mobility data. This replaced the baseline assumption that
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Symbol Explanation

t Time

a Compartment of age group a

c Compartment of clinical stratification c

g Compartment of geographical service stratification g

q Compartment of tracing stratification q

α Rate of progression from non-infectious to infectious incubation period

ν Rate of progression from infectious incubation to early active disease

γ Rate of progression from early active disease to late active disease

µ Rate of disease-related death

ϵ Relative infectiousness of pre-symptomatic compartment

ι Clinical stratification infectiousness vector for early active compartment

κ Clinical stratification infectiousness vector for late active compartments

β Probability of infection per contact between an infectious and susceptible

individual

j Infectious populations

p Proportion progressing to each clinical stratification

G Square matrix of dimensions 9 × 9 for nine services, as presented in

Table 4

the rates of home location contacts remained fixed throughout the simulations. The results of this

analysis were similar to that of the baseline analysis and are presented in Figure 24, Figure 25 and

Figure 26.

With this approach, the posterior distributions for the incubation period and the duration active

shortened well into the lower tail of their respective normal prior distributions. Meanwhile, the

effect of face coverings was clustered towards the upper bound of its prior distribution. Exploring

the model through manual calibration, the reason for this was determined to be that it was not

possible to achieve a sufficiently steep decline in case rates without shortening the serial interval and

emphasising the effect of face coverings. This remained the case even if the effect of face coverings

was allowed to reach extremely high (and implausible) levels (e.g. 100%). This is because the

importance of home contacts increased towards the peak of the epidemic, as Google residential

mobility increased. We do not consider this realistic because these contacts would likely have
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Symbol Explanation

C Mixing matrix

H Household contribution to mixing matrix

W Workplace contribution to mixing matrix

O Other locations contribution to mixing matrix

S Schools contribution to mixing matrix

l Other locations macrodistancing function of time

w Function fit to Google mobility data for workplaces

s Function fit to Google mobility data for schools

re Function fit to Google mobility data for retail and recreation

gr Function fit to Google mobility data for grocery and pharmacy

pa Function fit to Google mobility data for parks

tr Function fit to Google mobility data for transit stations

been saturated for those in households with active cases, given that Google residential mobility

represents the time spent at home, rather than the number of visits taken to a household. Further,

we consider the posterior distributions for the incubation period and duration active too short to

be realistic under this model configuration.

14 Additional analysis of calibration convergence

In the main analysis described above, each of the seven chains of the adaptive Metropolis algo-

rithm was initialised by adding random noise around parameter values obtained from a previous

calibration. This approach was used to assist the algorithm to reach the parameter space’s high

posterior areas within a reasonable number of iterations. The high number of dimensions (N = 18)

made other approaches such as Latin-Hypercube-based initialisation impractical, as chains could

take millions of iterations before adequately sampling plausible parameter sets.

In a separate experiment, we ran another adaptive Metropolis algorithm where only ten pa-

rameters were varied, but this time initialisation was performed with Latin Hypercube Sampling

(LHS) across ten independent chains. The ten parameters were selected based on their expected

influence on the main findings and whether they were among the primary estimands of interest

(e.g. the face coverings effect parameter). The remaining eight parameters were fixed to the max-

imum a-posteriori value obtained in the main analysis. The aim of this analysis was to verify that
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Figure 7: Calibration fit to daily time series of notifications for each metropolitan health

service cluster. Daily confirmed cases (black dots) overlaid on the median modelled detected

cases (dark blue line), with shaded areas representing the 25th to 75th centile (mid blue), 2.5th to

97.5th centile (light blue) and 1st to 99th centile (faintest blue) of estimated detected cases.

the calibration algorithm could recover similar convergence to that obtained in the main analysis

despite starting from highly diverse initial points.

Figures 27 and 28 illustrate the progression of the parameters during this experiment. The

parameter traces were compared against the posterior distributions obtained from the main analysis

(Figure 28). We found that the chains converged to similar values when considering the LHS-

based calibration compared to the original analysis. The posterior ranges obtained with the LHS-

based analysis were sometimes slightly narrower compared to the original calibration. This is

attributable to the fact that more parameters were fixed throughout calibration in the LHS-based

calibration than in the original calibration. Consequently, more constraints were imposed on the

varied parameters that were previously found to be correlated with parameters that have been
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Parameter Convergence statistic (R̂)

incubation period 1.022

duration active 1.03

north and west metro 1.036

south and south east metro 1.012

barwon south west 1.04

regional 1.033

infection risk per contact 1.071

inter-service mixing 1.006

infectious seed 1.013

asympt infect multiplier 1.036

75 and above IFR 1.005

hospitalisation adjuster 1.007

CDR at base testing rate 1.016

pre-ICU period 1.016

physical distancing 1.036

face coverings 1.005

home contacts reduction 1.004

target output ratio 1.006

traced prop high prevalence 1.009

Table 7: Chain convergence statistics.

fixed in the LHS-based analysis.
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Figure 8: Calibration fit to daily time series of notifications for each regional health service

cluster. Daily confirmed cases (black dots) overlaid on the median modelled detected cases (dark

blue line), with shaded areas representing the 25th to 75th centile (mid blue), 2.5th to 97.5th centile

(light blue) and 1st to 99th centile (faintest blue) of estimated detected cases.
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Figure 9: Validation fit to daily time series of hospitalisations for each metropolitan health

service cluster. Daily hospitalisation (black dots) overlaid on the median modelled hospitalisa-

tions (dark blue line), with shaded areas representing the 25th to 75th centile (mid blue), 2.5th to

97.5th centile (light blue) and 1st to 99th centile (faintest blue) of estimated hospitalisations.
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Figure 10: Validation fit to daily time series of hospitalisations for each regional health ser-

vice cluster. Daily hospitalisation (black dots) overlaid on the median modelled hospitalisations

(dark blue line), with shaded areas representing the 25th to 75th centile (mid blue), 2.5th to 97.5th

centile (light blue) and 1st to 99th centile (faintest blue) of estimated hospitalisations.

36



8-Jun 28-Jun 18-Jul 7-Aug 27-Aug 16-Sep 6-Oct
0

1

2

3

4

5

6

7

8

9 north metro

8-Jun 28-Jun 18-Jul 7-Aug 27-Aug 16-Sep 6-Oct
0

1

2

3

4

5

6

7

8

9 south east metro

8-Jun 28-Jun 18-Jul 7-Aug 27-Aug 16-Sep 6-Oct
0

1

2

3

4

5

6

7

8

9 south metro

8-Jun 28-Jun 18-Jul 7-Aug 27-Aug 16-Sep 6-Oct
0

1

2

3

4

5

6

7

8

9 west metro

icu admissions

Figure 11: Validation fit to ICU occupancy for each metropolitan health service cluster. ICU

occupancy (black dots) overlaid on the median modelled ICU occupancy (dark blue line), with

shaded areas representing the 25th to 75th centile (mid blue), 2.5th to 97.5th centile (light blue) and

1st to 99th centile (faintest blue) of estimated ICU occupancy.
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Figure 12: Histograms of state-wide epidemiological parameter posteriors, other than key

parameters of interest (presented in main manuscript).
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Figure 13: Histograms of service-specific contact rate modifier parameter posteriors.
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Figure 14: Correlation matrix for key epidemiological parameters of interest.
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Figure 15: Correlation matrix for other state-wide epidemiological parameters. Key: 1, incu-

bation period; 2, duration active; 3, infection risk per contact; 4, inter-service mixing; 5, infectious

seed; 6, asympt infect multiplier; 7, 75 and above IFR; 8, hospitalisation adjuster; 9, CDR at base

testing rate; 10, pre-ICU period; 11, home contacts reduction; 12, traced prop at high prevalence.
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Figure 17: Parameter progression traces for key estimation parameters.
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Figure 18: Parameter progression traces for epidemiological parameters.
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Figure 20: Estimated proportion of population recovered from COVID-19 at 1st October

2020, by age group and health service cluster. Point estimates with associated 50% credible

intervals. (This quantity is similar to an attack rate, except with deaths excluded from the denomi-

nator. Infections from first wave not considered.)
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Figure 21: Model fit to statewide indicators under sensitivity analysis using matrices de-

rived using data from Belgium. Daily confirmed cases (black dots) overlaid on the median

modelled detected cases (dark blue line), with shaded areas representing the 25th to 75th centile

(mid blue), 2.5th to 97.5th centile (light blue) and 1st to 99th centile (faintest blue) of estimated

detected cases.
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Figure 22: Posterior distributions of key model parameters under sensitivity analysis using

matrices derived using data from Belgium.
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Figure 23: Posterior distributions of epidemiological parameters under sensitivity analysis

using matrices derived using data from Belgium
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Figure 24: Model fit to statewide indicators under sensitivity analysis mapping Google res-

idential mobility to home locations of mixing matrices. Daily confirmed cases (black dots)

overlaid on the median modelled detected cases (dark blue line), with shaded areas representing

the 25th to 75th centile (mid blue), 2.5th to 97.5th centile (light blue) and 1st to 99th centile (faintest

blue) of estimated detected cases.
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Figure 25: Posterior distributions of key model parameters under sensitivity analysis map-

ping Google residential mobility to home locations of mixing matrices.
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Figure 26: Posterior distributions of epidemiological parameters under sensitivity analysis

mapping Google residential mobility to home locations of mixing matrices.
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Figure 27: Likelihood against ten key parameters during calibration initialised with Latin

Hypercube Sampling. The different colours represent the ten independent adaptive Metropolis

chains initialised with Latin Hypercube Sampling. The likelihood values were transformed to in-

crease clarity using x → −log(−log(x) + m + 1), where m is the maximum log-likelihood value.

The pink stars highlight the starting points.
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Figure 28: Parameter progression traces during calibration initialised with Latin Hypercube

Sampling. The horizontal lines represent the median (solid line) and 95% credible interval (dotted

lines) of the posterior estimates obtained in the main analysis.
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