HUD MA Supplementary Material

Search terms used in MA

Medline

5	(handheld OR hand?held OR pocket?siz* OR hand?carried OR mobile OR bed?side OR bedside).ti,ab	141,288
6	(echocardiogram OR echocardiography OR ultrasound).ti,ab	359,331
7	(5 AND 6)	6,198

EMBASE

1	(handheld OR hand?held OR pocket?siz* OR hand?carried OR mobile OR bed?side OR bedside).ti,ab	183,391
2	(echocardiogram OR echocardiography OR ultrasound).ti,ab	580,544
3	(1 AND 2)	11,019

Table 1. Individual study data incorporated into the meta-analysis.

Study	Parameter	Threshold	Whole Sample Size	Total Number Measured	Total Number Positive	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
LVEF									
	LV border	LVEF <50% - At							
Aldaas	detection and	least adequate							
(exp) 2019	tracking	image quality	70	56	8	75	98	N/A	N/A
Aldaas	LV border	LVEF <50% - At							
(inexp)	detection and	least adequate							
2019	tracking	image quality	70	56	8	75	100	100	96
	Visual estimation								
Alexander	of LV systolic								
2004	function	LVEF <55%	537	533	223	82	71	67	85
Andersen	Qualitative	SE>=moderate	100	100	25	07		07	
2011	assessment	pathology	108	108	35	97	99	97	99
	Visual estimation								
	of LV systolic		151	1 - 1	20	96	00	06	07
Bials 2012	Tunction	LVEF <50%	151	151	28	80	99	96	97
	Qualitative	LV dysfunction	200	140	20	<u>00</u>	NI/A	NI/A	NI/A
(exp) 2003	assessment	LV UYSIUNCUON	500	149	30	09	N/A	N/A	N/A
(inevn)	Qualitative								
2003	assessment	IV dysfunction	300	151	47	97	Ν/Δ	Ν/Δ	Ν/Δ
Fedson	Qualitative	Evaystatiction	500	151		57	N/A		Ny A
2003	assessment	>=mild	103	39	11	73	64	44	86
	Visual estimation								
Galasko	of LV systolic								
2003	function	LVEF <50%	562	531	51	96	98	83	99.6
	Visual estimation								
	of LV systolic								
Ghani 2006	function	LVEF <40%	80	73	16	75	91	71	93
Gulic (exp)	Qualitative	Any reduction in							
2016	assessment	LVEF	200	200	22	72	94	64	97
Gulic									
(inexp)	Qualitative	Any reduction in							
2016	assessment	LVEF	200	200	22	84	92	58	98
		Normal >=55%,							
	Visual estimation	moderate 35%-							
	of LV systolic	<55%, severely							
Khan 2014	function	reduced <35%	240	239	70	93	92	84	97

	Visual estimation								
KIRKPATRICK	of LV systolic		62	62	2	100	02	22	100
2005	Visual estimation		03	03	5	100	05	25	100
	of LV systolic								
Kobal 2005	function	1VFE < 50%	61	61	22	86	82	73	91
Liebo	Visual estimation		01	01		00	02	/5	51
(exnDR)	of LV systolic								
2011	function	I VFF <45%	97	91	13	85	99	92	97
Liebo	Visual estimation				10		33		57
(expMS)	of LV systolic								
2011	function	LVEF <45%	97	90	12	92	99	92	99
Liebo	Visual estimation								
(inexpRI)	of LV systolic								
2011	function	LVEF <45%	97	97	13	85	93	65	98
Liebo	Visual estimation								
(inexpML)	of LV systolic								
2011	function	LVEF <45%	97	92	11	73	98	80	96
Lopez-									
Palmero	Qualitative	Normal or							
2015	assessment	depressed	223	212	85	95.2	93.7	91	96.7
Martin	Qualitative	Normal or							
2009	assessment	abnormal	354	336	124	81	92	85	89
Mehta	Qualitative								
2014	assessment	LVEF<40%	250	250	54	96	89	70	99
	Systolic excursion								
	of AV plane and								
	visual estimation								
Mjolstad	of LV systolic	LVEF <45% =							
2013	function	moderate+	199	129	30	92	94	80	98
	Visual estimation								
Nilsson	of LV systolic								
2019	function	LVEF<50%	100	140	19	47	81	28	91
Oleson	Qualitative								
2015	assessment	LVEF<50%	260	255	125	65	83	79	71
	Visual estimation								
	of LV systolic								
Razi 2011	function	LVEF <40%	50	50	33	94	94	97	88
	Visual estimation								
Ruddox	of LV systolic				•				
2013	tunction	LVEF<40%	303	283	81	57	92	74	84
Stokke	Visual estimation								
(inexp)	of LV systolic				a :				
2014	function	LVEF <45%	72	105	61	90	57	74	81

	Visual estimation								
Stokke	of LV systolic								
(exp) 2014	function	LVEF <45%	72	101	59	92	67	79	85
Vignon									
2004	Not specified	Not specified	55	42	22	91	89	91	89
	Visual estimation								
Vourvouri	of LV systolic								
2003	function	LVEF <40%	88	82	19	89	98	94	97
Xie 2006	Not Specified	LVEF<50%	100	100	33	91	99	97	96
WMA									
	Qualitative								
Bruce 2002	assessment	Present	374	124	97	88	82	94	65
	Based on 16-								
Cullen 2013	segment model	Present	190	190	15	60	95	50	97
Decara	Qualitative								
(exp) 2003	assessment	Present	300	149	14	79	N/A	N/A	N/A
Decara									
(inexp)	Qualitative								
2003	assessment	Present	300	151	20	55	N/A	N/A	N/A
Fedson	Qualitative								
2003	assessment	Present	103	39	0	N/A	90	N/A	N/A
Giusca									
2010	Not Specified	Present	56	52	23	65.2	89.5	76.5	83.3
	Lack of normal								
	systolic thickening								
	or translational								
	motion towards	_							
Khan 2014	centreline	Present	240	232	94	86	97	95	91
	Lack of normal								
	systolic thickening								
Liebo	or translational								
(expDR)	motion towards	. .	07	00	45	c7	01	50	05
2011	centreline	Present	97	90	15	6/	91	53	95
	Lack of normal								
Lister	systolic thickening								
	or translational								
(expivis)	motion towards	Drocont	07	74	11	07	04	60	07
2011		Present	97	/4	11	82	94	69	97
	Lack of normal								
Lioba	or translational								
	or translational								
(mexpRI) 2011	centreline	Procont	97	76	10	80	85	11	97
2011	Centrelline	FIESEIIL	57	70	10	60	65	44	51

	Lack of normal								
	systolic thickening								
Liebo	or translational								
(inexpML)	motion towards								
2011	centreline	Present	97	80	10	60	94	60	94
	Abnormal wall								
	movement/thicken								
Lucas 2009	ing during systole	Present	322	314	80	85	88	71	95
	Abnormal wall								
	movement/thicken								
Lucas 2011	ing during systole	Present	210	210	67	84	85	73	92
Ruddox									
2013	Visual estimation	Present	303	261	96	76	88	79	86
Vignon									
2004	Not specified	Not specified	55	23	21	90	100	100	50
Wejner-Mik									
2019	Visual estimation	Present	87	85	50	88	97	98	86
Xie 2006	Not Specified	Present	100	100	36	97	98	97	98
	· ·								
LV Dilation									
		Ves/No							
	Qualitative	SE-IV dilation							
Biais 2012	assessment	SL-LV ullation	151	151	Q	94	96	57	100
Coletta	assessment	Normal	151	151	0	54	50	57	100
2006		30mm/m2	112	105	87	100	65	03	100
Giusco	LVLDD	501111/112	112	105		100	05	55	100
2010	IV diamotor	\50mm	56	52	7	71	100	100	05 7
Gulic (ovp)	Qualitativo	>J911111	50	52	/	/1	100	100	55.7
2016	assessment	Ves/No	200	200	٩	11	07	50	97
2010 Culic	assessment	165/110	200	200	9	44	57	50	57
(inovn)	Qualitativo								
(inexp) 2016	assessment	Ves/No	200	200	٩	55	Q/I	21	90
2010	assessment	>E2mm womon	200	200	5	55	54	51	50
Khan 2014		>59mm mon	240	225	22	97	08	01	08
Kildii 2014	LVEDD	>3911111 Hieff	240	225		07	90	91	90
	Qualitativo	Voc/No							
Kobal 2005	Qualitative	SESEG	61	61	10	67	04	72	02
KUDal 2003	assessment	3E>3011111	01	01	12	07	94	75	92
		S52mm women							
(EXPDR)		>50mm mon	07	02	1⊑	67	00	01	01
Lioha		~55mm men	57	92	12	07	22	91	54
		S52mm women							
(expivis)		>50mm mon	07	02	1/	64	100	100	01
2011		~JJIIIII IIIEII	51	33	14	04	100	100	54

Jenkins S, et al. Heart 2021; 107:1826-1834. doi: 10.1136/heartjnl-2021-319561

Supplemental material

Liebo									
(inexpRI)		>53mm women,							
2011	LVEDD	>59mm men	97	92	15	73	95	73	95
Liebo									
(inexpML)		>53mm women,							
2011	LVEDD	>59mm men	97	90	15	53	97	80	91
Lopez-									
Palmero		>53mm women,							
2015	LVEDD	>59mm men	223	212	34	94	97	84.2	98.8
Ruddox									
2013	LVEDD	Not specified	303	293	52	46	93	60	89
Xie 2006	LVEDD	LVEDD >=55mm	100	100	19	89	99	94	98
LVH									
	Qualitative	Yes/No							
Biais 2012	assessment	SE=IVS>13mm	151	151	26	77	97	83	95
Coletta									
2006	IVS	Normal 12mm	112	105	82	97	79	94	88
Coletta									
2006	PW	Normal 12mm	112	105	93	97	70	96	74
Decara	Qualitative								
(exp) 2003	assessment	Severe	300	149	1	100	N/A	N/A	N/A
Galasko									
2003	IVS or PW	>=13mm	562	540	31	94	93	45	99.6
Galasko									
2003	IVS or PW	>=12mm	562	540	55	82	96	69	98
	End-diastolic								
	thickness of								
Giusca	interventricular								
2010	septum	>=11mm	56	52	9	56	100	100	91.5
Gulic (exp)	Qualitative	Yes/No							
2016	assessment	SE=IVS>14mm	200	200	108	72	75	77	70
Gulic									
(inexp)	Qualitative	Yes/No							
2016	assessment	SE=IVS>14mm	200	200	108	83	58	70	75
		Yes/No							
	Qualitative	SE=IVS/PW>=12m							
Kobal 2005	assessment	m	61	61	23	65	71	58	77
Lopez-									
Palmero									
2015	IVS or PW	>10mm	223	212	134	96	91	94.8	92.2
	Posterior/septal			_					
Lucas 2009	wall thickness	>=12mm	322	314	33	70	73	23	95
	Posterior/septal	>=1.4 (M), >=1.3							
Lucas 2011	wall thickness	(F)	210	209	34	50	68	23	88

Perez-									
Avraham		IVS>=11.7,							
2010	IVS or PW	PW>=9.8	85	85	18	100	99	95	100
		>134gm2/m2							
Senior 2004	LVMI	(M), 110 (F)	189	179	46	72	91	73	90
Vourvouri		>134gm2/m2							
2002	LVMI	(M), 110 (F)	100	100	18	83	96	79	96
	Septal wall								
Xie 2006	thickness	>=12mm	100	100	41	80	93	89	87

We extracted and collated data using a standardised, agreed upon, data extraction form. Data collected included:

- 1. Methods:
 - Study design
 - o Total duration of study
 - o Study setting
 - Date of study
 - Country of study
- 2. Participants:
 - o Number included and analysed for the index and reference test
 - $\circ \quad \text{Mean age} \quad$
 - o Gender
 - o Inclusion criteria
 - o Exclusion criteria.
- 3. Index test:
 - Type of HUD
 - Experience of operators
 - o Number of operators
 - o Time between index and reference test
- 4. Reference Standard:
 - Type of standard echocardiography
 - o Experience of operators
 - Number of operators
- 5. Outcomes: LV parameters including function, dilatation, wall motion abnormality and hypertrophy.
- 6. Thresholds:
 - o LVEF
 - Mild = LVEF 45-55%
 - Moderate/severe = LVEF <45%
 - o LV dilatation
 - LVEDD >53mm
 - o WMA
 - Present/absent
 - o LVH
 - Interventricular septum/posterior wall >10mm
- 7. Diagnostic data:

- Sensitivity/specificity/PPV/NPV
- TP/TN/FP/FN
- o Prevalence
- $\circ \quad \text{Total number measured} \quad$

Table 2. Diagnostic odds ratios for HUD cardiac assessment.

Characteristic	DOR Overall (CI)	DOR Experienced (CI)	DOR Inexperienced (CI)	p-value
LVEF (any abnormality)	58.63 (26.11-131.63)	131.24 (37.75-456.22)	28.11 (11.19-70.56)	0.051
LVEF (moderate/severe)	88.55 (38.88-201.68)	276.02 (57.70- 1320.41)	41.45 (18.34-93.72)	0.035
WMA	40.81 (25.19-66.10)	89.97 (30.56-264.86)	28.34 (19.76-40.63)	0.047
LVH	26.69 (11.27-78.25)	54.92 (13.96-216.08)	18.17 (5.05-65.41)	0.248
LVH (quantitative only)	54.69 (11.99-249.45)	96.59 (50.81-183.59)	39.48 (4.81-323.90)	0.436
LV Dilatation	95.81 (40.12-228.85)	224.63 (87.38-577.51)	44.84 (16.38-122.77)	0.022
LV Dilatation (quantitative only)	142.29 (42.94-471.48)	405.51 (143.18- 1148.50)	62.41 (14.30-272.40)	0.042

Table 3. Heterogeneity assessment and evaluation of operator experience on the

diagnostic performance of HUD.

	Heterogeneity Assessment	Operator Experience	
Parameter	Correlation coefficient between log Sp and log SN	Meta-regression covariate coefficient	P value
LVEF	0.3	-1.64	0.04
LVEF <40	-0.14	-1.65	0.04
LV dilatation	-0.39	-0.09	0.88
LVH	0.39	-1.08	0.31
WMA	-0.06	-1.055	0.01

Contrary to intervention meta-analyses, the l² statistic is not a reliable indicator for heterogeneity in diagnostic test accuracy reviews and therefore was not assessed(1). Instead, heterogeneity can be analysed by estimating the correlation between sensitivity and specificity(2). In a normal ROC curve, an increase in sensitivity is offset by a decrease in specificity and therefore they have a negative correlation. A correlation coefficient larger than zero indicates possible heterogeneity. The correlation coefficient of the logit-transformed sensitivity and specificity was calculated for all variables.

The sensitivity and specificity are proportion data and limited between the lower and upper limits of 0 and 1. To apply the correlation statistics and meet its distribution assumption, the proportion data are logit-transformed to release the upper and lower limits of the sensitivity and specificity data(2).

We planned to assess the effect of operator experience, pre-existing comorbidities and baseline LV function on the results in a meta-regression covariate analysis. However, only operator experience was sufficiently reported and showed that experience was a significant factor in detecting LVEF, WMA and LV dilatation.

Domain	Risk of bias (%)		
	High	Unclear	Low
Flow and Timing	3	27	70
Reference Standard	9	15	76
Index Test	3	15	82
Patient Selection	0	21	79

Figure 1. Tabulated and graphical displays for QUADAS-2 results.

The risk of bias was qualitatively assessed based on the domains of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 tool. Parameters evaluated included random or consecutive recruitment of patients (patient sampling), blinding of assessors to index and reference test, and the time between HUD and TTE (flow and timing). Two reviewers (SJ and PG) independently assessed the risk of bias for each study with disagreements discussed with a third author (SA). Studies categorised as low for all domains were regarded as having a low risk of bias Studies stated as being high or unclear in \geq 1 domain were judged to be at risk of bias.

Figure 2. Risk of bias summary for each included study

LVEF <45% (moderate/severe dysfunction)

Figure 3. Meta-analyses of LVEF <45%. Sensitivity and specificity [CI] values are

reported.

The bivariate method was used to calculated overall sensitivity and specificity and their 95% confidence intervals. The summary estimates of sensitivity and specificity using this method represent the average operating point across studies. The bivariate nature of the input data is maintained throughout the analysis using the bivariate model which allows the calculation of reliable summary estimates. Other advantages of the bivariate method include accounting for the study size, between-study heterogeneity and adjusting for the threshold effect seen when there is a negative correlation between the sensitivity and the specificity of the index test(3).

References

- 1. Macaskill P, Gatsonis C, Deeks J, Harbord R, Takwoingi Y. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. :61.
- Shim SR, Kim S-J, Lee J. Diagnostic test accuracy: application and practice using R software. Epidemiol Health [Internet]. 2019 Mar 28 [cited 2021 Mar 26];41. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545496/
- 3. Reitsma JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005 Oct;58(10):982–90.