
Supplementary Information for 

Exacerbated drought impacts on global ecosystems due to structural overshoot 

Yao Zhang1,2,3*, Trevor F. Keenan1,2*, Sha Zhou1,2,4,5 

1Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, 

CA, USA 

2Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, 

USA 

3Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, 

Peking University, Beijing, China  

4Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA 

5State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical 

Science, Beijing Normal University, Beijing, China 

 

*Corresponding author: zhangyao@pku.edu.cn; trevorkeenan@berkeley.edu  

 

The SI contains 5 Supplementary Text, 1 Supplementary Table, 19 Supplementary Figures, and 
Supplementary References.  

 

  



Supplementary Text 1. Bayes forward filtering for estimating DLM coefficients. 

We use the DLM to obtain the dynamic sensitivities of NDVI to previous months’ NDVI and 

precipitation. the DLM consists of two equations: one observation equation and one state evolution 

equation: 

𝑦! = 𝑭!"𝜽! + 𝜐!																																																														(1𝑎) 

𝜽! = 𝑮𝜽!#$ +𝑾!																																																													(1𝑏) 

The model decomposes the time series of NDVI observations (𝑦!) into three components, i.e., the 

local/trend component (subscript 𝑙), the seasonal component (subscript 𝑠), and the regression 

component (subscript 𝑟). Similarly, the regressor vector (𝑭!), the state vector (𝜽!), and the state 

evolution matrix (𝑮) also consist of three corresponding components. 
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(1) The local component describes the mean and trend of the NDVI, with 
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where θ%$,! and θ%),! indicate the mean and trend at time step 𝑡, respectively. With these, Eq. (1a) 

and Eq. (1b) can be rewritten as: 
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(2) The seasonal component is a combination of three Fourier forms of seasonality with 
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where 
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With the historical data before time step 𝑡, the expectation of the seasonal component at time 𝑡 +

𝑘  can be expressed as the summation of three cosines functions with different frequency, 

amplitude and phases: 
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where 𝐴.,! and 𝜙.,! represent the magnitudes and phases of the harmonic components, respectively. 

Both 𝐴.,! and 𝜙.,! are determined by 𝛉&(.),!.  

(3) The regression component uses a series of independent variables (𝑥$, 𝑥), … , 𝑥3) to predict their 

effect on 𝑦!. 

𝑭',! = Q𝑥$,! , 𝑥),! , … , 𝑥3,!T
" , 𝑮' = 𝑰3 

where 𝑰3 is the identity matrix with a dimension of 𝑝. These independent variables include the de-

seasonalized detrended NDVI anomalies at different previous time scales, as well as the 

temperature anomalies for current month [𝑡], and precipitation anomalies from the previous 2 

months to the current month [𝑡 − 2, 𝑡] . The de-seasonalized detrended NDVI anomalies are 

obtained by running the DLM for one time without the regression component, through which the 

trend and seasonal signal of the NDVI time series can be obtained and removed. The summation 

of NDVI anomalies is calculated for [𝑡 − 3, 𝑡 − 2] months (sub-seasonal), [𝑡 − 6, 𝑡 − 4]	months 

(seasonal), [𝑡 − 12, 𝑡 − 7] months (intra-annual), and [𝑡 − 24, 𝑡 − 13]	months (inter-annual). In 

addition, we add the previous month NDVI (lag-1) as another independent variable. In total, 7 

independent variables (𝑝 = 7) were used (four NDVI anomalies from previous periods as the 

lagged effect, one NDVI anomaly from previous month as the direct effect, one temperature 

anomaly for temperature stress and one precipitation anomaly as the direct water stress). We did 

not include longer time periods since their effect on current vegetation is expected to be small. 



𝜽',!, and the contribution from each independent variable (𝑦',.,! = 𝑥.,!𝜃',.,!) are used for overshoot 

identification.  

To solve the above mentioned DLM, we used a method called forward filtering. The basic 

idea behind this method is similar to Kalman Filtering, with an additional step to back propagate 

the posterior estimate of 𝑦! to get the posterior estimate of 𝜽!. To do this, we first assume that the 

variance of noise 𝜐! and 𝑾! are known.  

 

(a) Posterior at 𝑡 − 1. Given all observations 𝐷!#$ = {𝑦$, 𝑦), … , 𝑦!#$}, 𝜽!#$ is assumed to follow 

a multivariate normal distribution: 

𝜽!#$|𝐷!#$~𝑁(𝒎!#$, 𝑪!#$)																																																						(5) 

where 𝒎!#$ is the predicted mean, and 𝑪!#$ is the variance matrix. 

(b) Prior at 𝑡. Together with Eq. (2), we can get the prior distribution of 𝛉!, 

𝜽!|𝐷!#$~𝑁(𝒂! , 𝑹!)																																																												(6) 

where  

𝒂! =	𝑮!𝒎!#$, 𝑹! = 𝑮!𝑪!#$𝑮!" +𝑾! 

(c) One step forecast. Together with Eq. (1), the predictive distribution of 𝑦! is 

𝑦!|𝐷!#$~𝑁(𝑓! , 𝑞!)																																																												(7) 

where  

𝑓! = 𝑭!"𝒂!, 𝑞! = 𝑭!"𝑹!𝑭! + 𝜐! 

(d) Posterior at 𝑡. Comparing with the observed 𝑦! and, the posterior estimation of 𝜽! based all 

observation until time 𝑡 is given by the Bayes rule: 

𝑝(𝜽!|𝐷!) = 𝑝(𝜽!|𝑦! , 𝐷!#$) ∝ 	𝑝(𝜽!|𝑦! , 𝐷!#$)𝑝(𝑦!|𝜽! , 𝐷!#$) = 𝑁(𝒎! , 𝑪!)															(8) 

with  

𝒎! = 𝒂! + 𝑨!𝑒!, 𝑪! = 𝑹! − 𝑞!𝑨!𝑨!" 

where  

𝑒! = 𝑦! − 𝑓!, 𝑨! = 𝑹!𝑭!/𝑞! 

Here, 𝑨! is the matrix of adaptive coefficients, 𝑒! represents the one-step forecast errors. When 𝑦! 

is missing due to cloud or snow, the prior from historical data 𝑝(𝜽!|𝐷!#$) from Eq. (5) is used to 

estimate 𝜽!. 



In practice, the variance of noise 𝜈 and 𝑾!  are unknown. We therefore revised the above 

process for variance learning. We first assume 𝜐!~𝑁(0, 𝜈) and 𝒘!~𝑁(0, 𝜈	𝑾!
∗). Both 𝜈 and 𝑾!

∗ 

are unknown, and 𝑾!
∗ is rescaled from 𝑾!. Conditioned on	𝜈, Eq. (5-8) share the same format, 

𝜽!#$|𝐷!#$, 𝜈~𝑁(𝒎!#$, 𝜈	𝑪!#$∗ )																																																(9) 

𝜽!|𝐷!#$, 𝜈~𝑁(𝒂! , 𝜈	𝑹!∗)																																																							(10) 

𝑦!|𝐷!#$, 𝜈~𝑁(𝑓! , 𝜈	𝑞!∗)																																																							(11) 

𝜽!|𝐷! , 𝜈~𝑁(𝒎! , 𝜈	𝑪!∗)																																																								(12) 

We assume the variation of observational error (𝜈) follows an inverse-gamma (IG) distribution, 

𝜈|𝐷!#$~𝐼𝐺(𝑛!#$/2, 𝑑!#$/2)																																																					(13) 

𝜈|𝐷!~𝐼𝐺(𝑛!/2, 𝑑!/2)																																																										(14) 

𝑛! = 𝑛!#$ + 1 

𝑑! = 𝑑!#$ + 𝑒!)/𝑞!∗ 

where 𝑛!is the degree of freedom, and  

𝜽!#$|𝐷!#$~𝑇(𝒎!#$, 𝑠!#$𝑪!#$∗ )																																																(15) 

𝜽!|𝐷!#$~𝑇(𝒂! , 𝑠!#$𝑹!∗)																																																							(16) 

𝑦!|𝐷!#$~𝑇(𝑓! , 𝑠!#$𝑞!∗)																																																							(17) 

𝜽!|𝐷!~𝑇(𝒎! , 𝑠!𝑪!∗)																																																								(18) 

𝑠!#$ = 𝑑!#$/𝑛! 

𝑠! = 𝑑!/𝑛! 

We estimate 𝑾! using the method of discounting. From Eq. (6), we can get the prior variance 

of 𝜽!  as 𝑉𝑎𝑟(𝜽!| = 𝐷!#$) = 𝑹! = 𝑮!𝑪!#$𝑮!" +𝑾! = 𝑷! +𝑾! , where 𝑷!  is the variance 

without stochastic noise, that is, 𝑾! = 0. If 𝑾! ≠ 0, we can assume that 𝑹! = 𝑷!/𝛿 with the 

parameter 𝛿 ∈ (0,1]. This means that due to the stochastic noise, the variance inflates by 1/𝛿 − 1 

for each step, i.e., discounting the degree of freedom from 𝑛! to 𝛿𝑛! (ref.1). The smaller 𝛿, the 

larger changes in 𝜽!  and vice versa. To obtain relatively stable local trend and seasonal 

components without being affected by the anomalies, we use two different 𝛿 values, 0.999 for 

trend and seasonal, and 0.98 for regression components, respectively. This also allows us to have 

a relatively larger degree of freedom for regression, so that the NDVI anomalies can be correctly 

attributed to environmental influences and previous vegetation status. We initiate the model using 

non-informative priors of 𝒎5 = 𝟎, 𝑪5 = 𝑰, 𝑛5 = 𝑝, 𝑑5 = 0.2)𝑛5 at time step 0, allowing 𝜽!  to 

vary freely in the beginning and gradually converge with more observations. To minimize the 



influence of this initial large fluctuation on overshoot identification, we recycle the first 5 years of 

NDVI and precipitation data (1981/7~1986/6) twice (a total of 10 years) as a “spin-up” period. We 

also test different lengths of “spin-up” period. The results are very similar if the “spin-up” period 

is longer than around 60 months. Using the randomized experiment, we also demonstrate that it 

has a very limited effect on overshoot trend analysis. The posterior distribution of 𝜽! and other 

state-vector/matrices can be obtained from Eq. (16) and were saved for overshoot identification. 

 

Supplementary Text 2. Sensitivity analysis of drought and overshoot drought identification 

We set up seven different experiments to understand the sensitivities in the drought and 

overshoot drought identification. These seven experiments differ in DLM model structure and the 

parameters or thresholds used for drought or overshoot identification (Supplementary Table 1). 

The resultant overshoot patterns are shown in Supplementary Figs. 5-11.  

The “reduced model” does not include temperature as the climate driver in the DLM, in 

contrast to the original model (Extended data Fig. 1). This leads to very similar drought patterns, 

while the lower overshoot drought number increases in higher latitudes and decreases in lower 

latitudes. The “extended model” uses radiation in addition to precipitation and temperature in the 

DLM. The resulting overshoot drought patterns are also similar to the original model. The “discrete 

precipitation model” is similar to the “extended model” that considers all three climate variables, 

but instead of using the 3-month average precipitation, it uses the precipitation from currently 

month, previous 1 month and previous 2 month separately in the DLM. 

Experiment 1 and 2 use relaxed drought identification algorithms, with Experiment 1 allowing 

shorter drought lengths, and Experiment 2 allowing drought events with weaker impacts on 

vegetation (Supplementary Table 1). Experiment 1 shows an increase (21%) in drought numbers, 

and the increase for Experiment 2 is large (92%). This suggests that our current algorithm is 

conservative, and mainly focuses on the drought events with relatively larger impact. The number 

of overshoot drought, however, has relatively smaller increases (20% for Experiment 1 and 44% 

for Experiment 2). 

Experiment 3 uses a stricter drought identification threshold, which leads to a reduction of the 

drought numbers by 37% and a reduction of overshoot events by 35%. The Experiment 4 uses a 

relaxed threshold for overshoot component identification. In Experiment 3, the lagged adverse 



effect between past positive NDVI anomalies and current NDVI anomalies are less negative 

(P=0.25). This leads to a 52% increase in overshoot drought numbers. 

Although these different experiments yield differences in the number of droughts and number 

of overshoot droughts. The spatial patterns of these drought occurrences are very similar to our 

original method (correlation coefficient ranges from 0.83 to 1 for drought and 0.65 to 0.94 for 

overshoot drought). The differences in these numbers mostly reflect the severity of drought and 

overshoot drought. We also find that our major findings (large temperature differences, faster 

drought development and stronger impact) still hold under these experiments.  

 

Supplementary Text 3. Randomized experiments 

We use the randomized experiments to test the effectiveness of using the DLM to capture the 

lagged effect of past NDVI anomalies on current NDVI. For the known overshoot drought event 

that happened in the central US in 2012, we have demonstrated how DLM can help identify this 

overshoot drought event in Extended Data Fig. 2. We know that the 2012 drought is in part due to 

the warm spring that stimulate vegetation growth during March to May2. This positive anomaly in 

vegetation contribute to the decline of NDVI during the drought period in June, July and August. 

Using the DLM, we also see a negative contribution from the previous 2-3 months during the 

drought period (Extended data Fig. 2i). For the randomized DLM with a group size of two (see 

Methods), the most severe drought periods (July/August 2012) are swapped to July/August 1989, 

following May/June of 2007. This random swap breaks up the linkage between the NDVI 

anomalies in the past and current, therefore, it is no longer considered an overshoot drought event 

(Supplementary Fig. 14).  

At the regional scale, we identify almost no overshoot drought events in the randomized 

experiment with a group size of two months (Supplementary Fig. 15b), while the number of 

drought events do not change much. This is because droughts are identified based on concurrent 

NDVI, SPEI and climate anomalies, which are swapped together in the randomized experiment. If 

we use a larger group size, for example, 6 months, the lagged responses at sub-seasonal scale may 

be partially kept. The results confirm our assumption, with the patterns similar to that at sub-

seasonal scale (Extended Data Fig. 3). Using the window size of 24 months, most lagged effects 

at the sub-seasonal, seasonal, and intra-annual scale may be retained, and the number of overshoot 

patterns is more like what we obtained without randomization (Fig. 1b).  



However, we still see lower numbers of overshoot droughts in the randomized experiments, 

as compared to Fig. 1. This may be due to: 1) drought events or the lagged responses are separated 

by the random swap; 2) the propagation of sudden changes in DLM sensitivity (coefficients) at 

break points (where two swapped groups connect with each other), leading to inconsistent 

overshoot identification in each randomized run. This will also cause a decrease in model 

performance, especially for those with short group sizes (Supplementary Fig. 16). 

 

Supplementary Text 4. Synthetic data experiment 

To demonstrate the effectiveness of using the DLM to capture overshoot drought, we use 

synthetic data from different scenarios to test the model performance. The synthetic data is 

generated from a simple model that considers both environmental stress and vegetation dynamics. 

𝑁𝐷𝑉𝐼! = 𝑁𝐷𝑉𝐼6&7,! + 	𝛿𝑁𝐷𝑉𝐼!																																																(19) 

𝛿𝑁𝐷𝑉𝐼! = 𝜑𝛿𝑁𝐷𝑉𝐼!#$ + 𝜁𝑁𝐷𝑉𝐼!																																																(20) 

𝜁𝑁𝐷𝑉𝐼 = m × (min�𝑓(𝑇), 𝑓(𝑆𝑀)�
𝑁𝐷𝑉𝐼6&7,!#$ + 𝛿𝑁𝐷𝑉𝐼!#$

𝑁𝐷𝑉𝐼6&7,!#$
−min�𝑓(𝑇�), 𝑓(𝑆𝑀����)�)								(21) 

NDVI for time 𝑡 is considered as the summation of mean seasonal cycle (MSC) and anomaly 

(Eq. (19)); the anomaly term considers the legacy effect from previous month (𝜑𝛿𝑁𝐷𝑉𝐼!#$) and 

responses to the environment (𝜁𝑁𝐷𝑉𝐼! ); Eq. (21) indicates that the environmental response 

component is conditioned by the environmental limitation of the current month to multiyear 

average conditions, as well as the NDVI anomaly of the previous month. The coefficient m 

determines the sensitivity of NDVI to the environment. 

The temperature responses in this simple model are adapted from the Vegetation 

Photosynthesis Model (VPM3): 

𝑓(𝑇) =
(𝑇 − 𝑇689) × (𝑇 − 𝑇6.:)

(𝑇 − 𝑇689) × (𝑇 − 𝑇6.:) − (𝑇 − 𝑇;3!))
																																	(22) 

where 𝑇6.:, 𝑇689, and 𝑇;3! indicate minimum, maximum, and optimal temperature for vegetation 

growth. 

The soil moisture (SM) limitation is described as a sigmoid function: 

𝑓(𝑆𝑀) =
1

1 + 𝑒#8∙=>0? 																																																		(23) 

where 𝑎  and 𝑏 are both parameters that determine the shape of the function. Soil moisture is 

calculated from a simple water balance model: 



𝑆𝑀! = �
𝑆𝑀689 ,																								𝑖𝑓	𝑆𝑀!#$ + 𝑃! − 𝐸! > 𝑆𝑀689
𝑆𝑀!#$ + 𝑃! − 𝐸! ,						𝑖𝑓	0 < 𝑆𝑀!#$ + 𝑃! − 𝐸! < 𝑆𝑀689
0,																																			𝑖𝑓	𝑆𝑀!#$ + 𝑃! − 𝐸! < 0

		 																	(24) 

where 𝑆𝑀689  is the field capacity of the soil, and 𝑃!  and 𝐸!  indicate the precipitation and 

evapotranspiration for month 𝑡. We use very simple method to calculate 𝐸!, considering it as a 

function of total vegetation, temperature, and SM. 

𝐸! = 𝑘 × 𝑁𝐷𝑉𝐼! × 𝑓(𝑇) × 𝑓(𝑆𝑀)																																							(25) 

the coefficient 𝑘 is an empirical coefficient that convert the right side into the unit of mm/month. 

This model is set up to generate NDVI timeseries to test the DLM and overshoot identification, 

therefore, it is simplified and does not take radiation into consideration. The model is optimized 

with “SCEoptim” function in the R-package “Hydromat”. The optimized model can reasonably 

well capture the dynamic of NDVI, soil moisture, and evapotranspiration during the 2011 and 2012 

drought (Supplementary Fig. 17).  

We set up four scenarios to test if overshoot drought can be effectively captured by our 

algorithm. For Scenario 1, the NDVI is simulated using the observed climate for year 2012. For 

Scenario 2, spring temperature (February to June) is replaced by the multi-year mean temperature 

for the corresponding months. For Scenario 3, summer precipitation (May to September) is 

replaced by the multi-year mean precipitation for the corresponding months. For Scenario 4, 

summer precipitation is replaced by multi-year mean precipitation plus 30 mm/month, while the 

model simulated NDVI is replaced by the NDVI simulation from Scenario 1. This is to mimic an 

NDVI decline due to other types of disturbances instead of drought (e.g., harvest). Based on these 

modified climate conditions, we also calculated the SPEI values for each scenario using the R 

package “SPEI” with potential evapotranspiration calculated using the “thornthwaite” method. 

Three out of four scenarios show negative anomalies in the summer months, which is essential 

to be considered as overshoot drought (Supplementary Fig. 18). Based on our definition, Scenario 

1 is a typical overshoot drought. For Scenario 2 and 4, no lagged adverse effects contribute to any 

of the negative anomalies in summer months; for Scenario 3, summer months do not show an 

evident NDVI decline, therefore, none of these three are considered as overshoot droughts. These 

represents our prior knowledge. 

The DLM decomposes vegetation anomalies into different components, and correctly 

captures the positive NDVI anomalies induced by spring warming in Scenario 1, 3, and 4, as well 

as the negative NDVI due to summer precipitation decline in Scenario 1 and 2 (Supplementary 



Fig. 19). Out of these two drought events, the lagged adverse effect is only identified at sub-

seasonal and seasonal time scales for the Scenario 1, which is consistent with our prior knowledge. 

For Scenario 2, although the summer drought also induces NDVI decline, it is not attributed to the 

lagged effect from previous months, and therefore, not considered as overshoot drought. For 

Scenario 3, although spring warming also greatly stimulates vegetation growth, normal summer 

precipitation can support this increased water consumption and does not induce NDVI decline. For 

Scenario 4, the DLM also identifies adverse lagged effect at sub-seasonal and seasonal scales, 

however, this NDVI anomalies is not induced by drought, and it is not identified as an overshoot 

drought event.  

 

Supplementary Text 5. Test of spatial autocorrelation 

Spatial autocorrelation may potentially affect the correlation calculation between two spatial 

patterns, and if presents in our analysis could affect the statistical power of the results. To test this 

effect on our study, we first built a general linear model to model the relationship between the 

number of overshoot drought events and the number of droughts. If the model performance is 

affected by a positive spatial autocorrelation, the semivariance (in our case, residual) would 

increase as a function of increasing distance between observations. If a negative spatial 

autocorrelation exists, the semivariance would decrease along the distance. This can be tested 

using a semivariogram (Supplementary Fig. 2). The semivariogram shows that there is no obvious 

tendency of semivariance along the distance axis, indicating that the spatial autocorrelation has 

limited effects on the correlation presented in our study. 

  



Supplementary Table 1. Additional experiments for the sensitivity analysis. 
 Original 

model 

Reduced 

model 

Extended 

model 

Discrete 

precipitation 

model 

Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Climate 

variables in 

DLM 

3-month 

precipitation 

and 

temperature 

3-month 

precipitation 

3-month 

precipitation, 

temperature, 

and solar 

radiation 

precipitation from 

current month, 

previous 1-

month, previous 

2-month, 

temperature, and 

solar radiation 

    

Minimum 

drought length 

2 months    1 month    

Minimum 

NDVI anomaly 

during drought 

<−0.1×mea

n NDVI 

    <−0.05×

mean 

NDVI 

  

SPEI threshold 

for drought 

identification 

-0.5      -1  

Confidential 

interval for 

overshoot 

sensitivity 

90%       75% 

 
  



 
Supplementary Figure 1. Performance metrics for the DLM. Correlation coefficient (a) and 

relative root mean square error (b) between satellite retrieved NDVI time series and DLM 

predicted NDVI. After removing the trend and seasonal component (obtained from DLM) from 

satellite retrieved NDVI, correlation coefficient (c) and RRMSE (d) for the observed and DLM 

predicted de-seasonalized detrended anomalies. The observation of de-seasonalized detrended 

anomaly is calculated as the raw NDVI time series minus the trend and three seasonal components. 

The DLM predicted de-seasonalized detrended anomaly is calculated as the summation of 

precipitation, temperature, and all lagged NDVI components. 
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Supplementary Figure 2. A semivariogram showing the relationship between semivariance 

and distance. The y-axis shows the normalized variance of residuals and the x-axis shows the 

distance between the observations (in number of pixels). If a positive spatial autocorrelation affects 

the model performance, that is, the model performs better (low residual) in part because the 

samples are closer to each other (shorter distance). This will be shown as an increasing trend of 

semivariance of the residual along the distance axis. 
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Supplementary Figure 3. Spatial patterns of fractions of overshoot number, impacts for 

drought events. a Fraction of drought number that are related to overshoot. b fraction of NDVI 

decline during overshoot drought events that are induced by the lagged adverse effect. White 

regions indicate no overshoot drought detected during our study during 1981-2015. 
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Supplementary Figure 4. Response functions for the predicting overshoot drought number 

and lagged effects. a-m, response functions of number of overshoot droughts, and the adverse 

lagged effect. The numbers in the top-left and top-right corners indicate the order of importance 

for predicting the numbers fraction and impacts fraction of overshoot drought, respectively. p-q 

normalized variable importance for predicting numbers (p) and lagged effect (q) of overshoot 

drought events.  
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Supplementary Figure 5. Drought and overshoot drought patterns from the “reduced 

model”. Same as Fig. 1, but uses the “reduced model” that does not consider the temperature effect. 
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Supplementary Figure 6. Drought and overshoot drought patterns from the “extended 

model”. Same as Fig. 1, but uses the “extended model” that does consider the radiation effect on 

vegetation. 
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Supplementary Figure 7. Drought and overshoot drought patterns from the “discrete 

precipitation model”. Same as Fig. 1, but uses the “discrete precipitation model” that does 

consider the climate variables including temperature, radiation, and precipitation from current 

month and previous 2 months separately. 
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Supplementary Figure 8. Drought and overshoot drought patterns from the Experiment 1. 

Same as Fig. 1, but uses the drought length threshold of one month instead of two months. A 

drought should still have at least consecutive negative NDVI anomalies, however, the second 

negative value can be greater than 70% of the minimum (first). The drought period is only the first 

month in this case. 
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Supplementary Figure 9. Drought and overshoot drought patterns from the Experiment 2. 

Same as Fig. 1, but uses a relaxed drought identification threshold. In Fig. 1, the minimum of the 

de-seasonalized detrended NDVI anomaly during drought should be less (more negative) than -

0.1×mean NDVI, while in this experiment, it should be less than -0.05×mean NDVI. 
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Supplementary Figure 10. Drought and overshoot drought patterns from the Experiment 3. 

Same as Fig. 1, but uses a stricter drought identification threshold. In Fig. 1, the mean SPEI during 

drought should be less (more negative) than -0.5, while in this experiment, it should be less than -

1. 
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Supplementary Figure 11. Drought and overshoot drought patterns from the Experiment 4. 

Same as Fig. 1, but uses the 75% confidence interval of the DLM sensitivity instead of 90% for 

the overshoot component identification. The DLM sensitivity describes the linkage between 

previous positive NDVI anomalies and their lagged adverse effect on current NDVI. 
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Supplementary Figure 12. Drought and overshoot drought patterns during 2000-2018 based 

on MODIS NDVI. Same as Fig. 1, but uses MODIS MOD13C2 NDVI. The NDVI data quality is 

checked using associated VI Quality layer. The DLM recycles observations during 2000-2004 

twice as the spin-up period, and uses both precipitation and temperature as the environmental 

factors. 
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Supplementary Figure 13. An example of DLM decomposition of NDVI time series for one 

pixel in Texas (Lat=30.76, Lon=-98.93). Same as Extended Data Fig. 2, but for a grassland site 

in Texas focusing on the 2011 drought. This drought is caused by a long-term water deficit without 

much lagged effect, thus, not considered as an overshoot drought. The DLM correctly identifies 

this drought event and does not consider it as overshoot drought.  
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Supplementary Figure 14. An example of the DLM decomposition of one randomized NDVI 

time series for the same site in Extended Data Fig. 2. The experiment randomly swaps the two 

consecutive months across years, therefore breaking up the potential linkage of the lagged effect 

(see Methods and Supplementary Text 3). In this example, the two months of July/August in 2012 

were swapped to July/August in 1989, following May/June in 2007 which were swapped to 

May/June in 1989. Although July and August are still considered as a drought event, they are no 

longer identified as overshoot drought.  
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Supplementary Figure 15. Spatial patterns of events number and impact for overshoot 

related drought events from the randomized experiments. A drought or overshoot drought 

event is only valid when at least three out of five randomized experiments identify it as a drought 

or overshoot drought event. a,b drought numbers for the randomize experiment with group size of 

2 months; c,d for group size of 6 months; e,f for group size of 24 months. 

 

 

a
Number of droughts

0 3 6 9 12 15 18

b
Number of overshoot droughts

0 1 2 3 4 5 6

c
Number of droughts

0 3 6 9 12 15 18

d
Number of overshoot droughts

0 1 2 3 4 5 6

e
Number of droughts

0 3 6 9 12 15 18

f
Number of overshoot droughts

0 1 2 3 4 5 6



 
Supplementary Figure 16. Model performance for the randomized DLM. Same as 

Supplementary Fig. 1c,d, but for the average model performances of five randomized experiments. 

a,b DLM model performance for randomize experiment with group size of 2 months; c,d for group 

size of 6 months; e,f for group size of 24 months. 
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Supplementary Figure 17. Model prediction of NDVI for the Kansas site during 2010-2014 

(same as Extended Data Fig. 2). The red lines show the model prediction and the black lines 

indicate NDVI observation. a NDVI, b de-seasonalized NDVI anomaly, c soil water for the root 

zone, d evapotranspiration. 
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Supplementary Figure 18. Model simulated vegetation and water dynamics for the Kansas 

site for 2012 drought for the four scenarios. d. a NDVI, b de-seasonalized NDVI anomaly, c 

soil water for the root zone, d evapotranspiration. 
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Supplementary Figure 19. Overshoot drought identification for four experiments. a-d each 

column shows the decomposition of NDVI using the DLM. Black lines in the first two rows are 

NDVI simulated by the simple model. Red lines are the DLM predictions for each component. 

Red rectangles in the second row indicate drought events. Orange rectangles in the third to seventh 
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row indicate the drought is an overshoot drought. Hashed areas in a4 and a5 indicate the overshoot 

component. 
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