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A. Statistical analysis on patient-level prediction 

 The patient-level diagnosis was based on two strategies: cluster-based whole slide image (WSI) 

inference and positive sensitivity for patient inference. The main purpose of cluster-based WSI inference 

was to control the false positive rate (FPR) on each WSI, because the cancerous probability on each patch 

was not absolutely accurate, and multiple tests of many patches greatly increased false positives on one WSI.  

 Assuming the patch-level sensitivity and specificity were ! and ", there were k consecutive positive 

patches on one WSI, i.e. the positive cluster size was #. At the same time, we also assumed that these patches 

were mutually independent. Theoretically, the probability of correctly identifying the WSI with one positive 

cluster was !!, and the probability of falsely identifying one WSI of non-cancer was (1 − ")!. Assuming 

# = 3, "=0.95, we had a patch-level FPR=0.05, while the FPR≈0.0001 on the WSI.  

 In practice, adjacent patches on a WSI were highly correlated. Consequently, the above theoretical 

derivation was not precise enough. However, the experiments proved that the false positive control of one 

WSI can achieve high predictive power with a cluster of four positive contiguous patches [1]. Therefore, we 

used the clustering of 4 patches as the condition for positive WSI inference. Finally, as long as the patient 

had a positive WSI, he or she was diagnosed with CRC (positive sensitivity). 

 

 

 

  



 

Supplementary Table 1. Pathologist info full spelling here 

Pathologist ID Years in Clinic Job Title 
A 1 Resident physician 
B 3 Resident physician 
C 5 Physician-in-charge 
D 7 Physician-in-charge 
E 12 Physician-in-charge 
F 18 Associate chief physician 

 

 



Supplementary Table 2. List of area under the curve (AUC) of AI applied in CRC and other cancer types 

Study Patch-level test data Independent patch-level test data Slide-level test data Independent slide-level test data 
 Number (#) of patches AUC # of patches AUC # of slides AUC  # of datasets # of slides AUC 
Colorectal cancer 
Haj-Hassan et al.[2] NA Unsegmented~0.7923 

Segmented~0.9917 

NA NA NA NA NA NA NA 

Xu et al.[3] 717 0.969-0.980a NA NA NA NA NA NA NA 
Sari et al.[4] 1,592 0.994 NA NA NA NA NA NA NA 
Kainz et al.[5]  60 0.983a 20a 0.950a NA NA NA NA NA 
Kather et al.[6] 100,000 0.987 7,180 0.943 NA NA NA NA NA 
Ponzio et al.[7]  4500 0.9037-0.9682 NA NA NA NA NA NA NA 
Shaw et al.[8], c 7,180 0.9377 NA NA NA NA NA NA NA 
Model-10%-SSL 18,819 0.988-0.996 100,000 0.954-0.986 10,216d 0.984 11 1,967 0.946-0.990 
Model-70%-SL 18,819 0.987-0.998 100,000 0.972-0.985 10,216d 0.990-0.992 11 1,967 0.957-0.990 
Other cancers 
Coudray et al.[9] /lung 
cancer 

NA NA NA NA 244 0.990-0.993 3 340 LUAD~0.833-0.913 

LUSC~0.861-0.941 
Cruz-Roa et al.[10] / 
ductal carcinoma 

50,963 0.842b NA NA NA NA NA NA NA 

Araujo et al.[11] /breast 
cancer 

240 0.829a 192 0.693a 20 0.900a 1 16 0.750a 

Motlagh et 
al.[12]/breast cancer 

2,147 0.999 NA NA NA NA NA NA NA 

Campanella et al.[13], e NA NA NA NA 12,132 0.986-0.991 1 12,727 0.986-0.991 
Campanella et al.[13] NA NA NA NA 6,252 0.986-0.988 1 3,710 0.986-0.988 
Campanella et al.[13] NA NA NA NA 8,670 0.965-0.966 1 1,224 0.965-0.966 

Note: a: accuracy; b: balanced accuracy; c: semi-supervised learning, accuracy on training sets with 20% labeled data; d: XH-Dataset-PT and XH-Dataset-HAC.  

e: AUC for prostate cancer, basal cell carcinoma and breast cancer metastases 



Supplementary Table 3. Allocation (number) of Colorectal cancer (CRC) WSIs from 13 data centers 

Dataset PATT PAT PT HAC 

XH 842 0 10,216 213 

NCT-UMM 0 86 0 0 

TXH 0 0 135 135 

PCH 0 0 96 96 

HPH 0 0 99 99 

FUS 0 0 198 198 

GPH 0 0 185 185 

SWH 0 0 199 199 

AMU 0 0 205 205 

SYU 0 0 97 97 

ACL 0 0 207 207 

CGH 0 0 100 0 

TCGA-FFPE 0 0 446 0 

Total 842 86 12,183 1,634 

 

 

 

 

 

 

 

  



Supplementary Table 4. Hyper-parameters used in semi-supervised learning (SSL) and supervised learning (SL) 

of CRC 

SSL  
Hyper-parameters Value 
Learning rate 0.0001 
Optimizer  Adam 
Epochs 500 
Steps per epoch 100 
Batch size 128 
L2 decay  0.0001 
Pre trained epochs 50 
Early stopping True 
Patience 80 
smoothing coefficient 0.95 
  

SL 
Hyper-parameters Value 
Learning rate 0.001 
decay rate 0.99 
Optimizer  Adam 
Epochs 500 
Batch size 64 
Steps per epoch 100 
L2 decay  0.0001 
Early stopping True 
Patience 50 
  

 

 

 

 

 

 

 

  



Supplementary Table 5. Hyper-parameters used in SSL and SL of lung models 

SSL  
Hyper-parameters Value 
Learning rate 0.0001 
Optimizer  Adam 
Epochs 500 
Steps per epoch 100 
Batch size 32 
L2 decay  0.0001 
Pre trained epochs 150 
Early stopping True 
Patience 100 
smoothing coefficient 0.9 
  

SL 
Hyper-parameters Value 
Learning rate 0.001 
decay rate 0.99 
Optimizer  Adam 
Epochs 500 
Steps per epoch 100 
Batch size 64 
L2 decay  0.0001 
Early stopping True 
Patience 50 
  

 

 

 

 

 

 

 

 

  



Supplementary Table 6. Hyper-parameters used in SSL and SL of lymph node models 

SSL  
Hyper-parameters Value 
Learning rate 0.0001 
Optimizer  Adam 
Epochs 500 
Steps per epoch 200 
Batch size 32 
L2 decay  0.0001 
Pre trained epochs 80 
Early stopping True 
Patience 100 
smoothing coefficient 0.9 
  

SL 
Hyper-parameters Value 
Learning rate 0.001 
decay rate 0.99 
Optimizer  Adam 
Epochs 500 
Steps per epoch 300 
Batch size 64 
L2 decay  0.0001 
Early stopping True 
Patience 50 
  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Supplementary Figure 1. The flow chart of mean teacher. 
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Original image        Model-10%-SSL        Model-10%-SL          Model-70%-SL 

Supplementary Figure 2. Qualitative comparison of cancer locations in positive patches by visual inspection. 
The 50 positive patches (M=50) in the testing set were randomly selected. In the heatmaps, the pixels that 
had an important contribution to identifying cancers were shown with warm colors. The more important the 
pixel was for cancer recognition, the warmer the color (heatmap generated by [14]). Two senior and seasoned 
pathologists visually reviewed and accurately labeled the cancer location in the patches. If the pixels with 
warm color in generated heatmap included 70% of cancer locations labeled by pathologists, it was considered 
that the heatmap and the cancer locations were highly matched. This was because the heatmap roughly 
described the contribution of pixels to the recognition of cancer, rather than accurately segmenting the cancer.  

All heatmaps (n=50, n/M=100%) generated by Model-10%-SSL or Model-70%-SL respectively are matched 
the location labeled by the pathologists. However, only a few heatmaps (n=17, n/M=34%) generated by 
Model-10%-SL are matched with the location labeled by pathologists, which shows that although the Model-
10%-SL recognizes the patch as cancer, but it is not always based on the discovery of cancer locations. Four 



mismatched samples are shown here, it can be seen that the activated regions of Model-10%-SSL and Model-
70%-SL are very similar to each other. However, the heatmaps of Model-10%-SL are deviated from those 
of Model-10%-SSL and Model-70%-SL, both the size and location of regions with warm color in the patches.  

 

  



          

          

          

          

cropped from whole slide image  Model-10%-SSL       Model-10%-SL         Model-70%-SL 

Supplementary Figure 3. Qualitative comparison of cancer locations in whole slide image (WSI) by visual 
inspection. The 50 (M=50) positive WSIs and 50 (M=50) negative WSIs were randomly selected from 
Dataset-PT. Two senior and seasoned pathologists visually reviewed and accurately labeled the cancer 
location in the 50 positive WSIs. For each positive WSI, the sensitivity (the number of positive patches 
correctly predicted by model divided by the number of positive patches labeled by pathologists) was 
calculated. If the sensitivity was greater than 90%, it was considered that the cancer location labeled by 
pathologists can be accurately found by the model. The heatmaps for highlighting predicted cancer regions 
(as patches) are shown in white (column 2, 3, 4).  

In 50 positive WSIs, the sensitivity of all WSIs (n=50, n/M=100%) predicted by Model-10%-SSL or Model-
70%-SL is greater than 90%, but only part of the sensitivity of WSIs (n=46, n/M=92%) predicted by Model-
10%-SL is greater than 90%. In the heatmap of 50 negative WSIs predicted by Model-10%-SSL or Model-
70%-SL, there are no cluster including four positive patches, which shows these negative WSIs (n=50, 



n/M=100%) are correctly predicted. But in the heatmap of some negative WSIs (n=6, n/M=12%) predicted 
by Model-10%-SL, there are one or more clusters including four positive patches, which demonstrates these 
WSIs were incorrectly identified as positive.  

Four samples are shown here, and the white regions in the heatmaps of three models are similar to each other 
and highly overlapped with the regions given by pathologists (row 1 and 2). However, some heatmaps of 
Model-10%-SL are deviated from those of Model-10%-SSL and Model-70%-SL (row 3 and 4). Moreover, 
the prediction of the negative WSI by Model-10%-SL (row 4) is cancerous, because there are some clusters 
including four cancerous patches in the heatmap.  
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