
 

Materials and Methods 

 

Ethical statement 

This study was conducted following the guidelines for the Ethical Treatment of Non-

Human Primates and was approved by the Institutional Animal Care and Use 

Committee of the Institute of Zoology (Chinese Academy of Sciences).  

 

Experiment models and biological samples 

All cynomolgus monkeys (Macaca fascicularis) were of Southeast Asian origin, and 

raised at around 25℃ on a 12-hour (h) light, 12-h dark schedule at Xieerxin Biology 

Resource, an accredited primate research facility in Beijing. All animal experiment 

procedures were performed by certified veterinarians, complying with laws governing 

animal research. All animals were given commercial monkey diet twice a day and 

vegetables and fruits once a day with tap water ad libitum (Li et al., 2020; Wang et al., 

2020; Zhang et al., 2020). None of the animals had a clinical or experimental history 

potentially affecting the physiological aging process. Retinal and choroidal tissues for 

scRNA-seq analysis were obtained from 8 young (4-6 years old) and 8 aged 

cynomolgus monkeys (18-21 years old). 

  

Single cell isolation and collection 

To ensure tissue quality, animals were sampled on different days. In brief, the animal 

was anesthetized and perfused with physiological saline, and the peripheral retinal and 

choroidal tissues were isolated. The neural retina layer and RPE-choroid layer were 

dissected and processed separately. Samples were minced and then transferred into 1.5 

mL tubes and subjected to 1 mL of digestion buffer containing 1 mg/mL Collagenase, 

Type IV (Gibco 17104-019) and 1 mg/mL dispase II. After incubation at 37℃ for 15 

min on a shaking thermomixer (1000 rpm), tubes were briefly spun at 500 x g for 8 min 

at 4℃, and the supernatant was then gently removed. Pellets were resuspended in 1 mL 

PBS containing 10 % FBS and gently pipetted on ice for 50-100 times to dissociate the 

cells and the resulting supernatant immediately filtered through 100-μm mesh filters to 

remove undigested tissues. Debris was removed by fluorescence-activated cell sorting 

(FACS) (BD FACSAria™ II) and samples were subjected to single-cell collection. The 

purified cell suspension was then transferred into a 3.5 cm dish and cells were randomly 

picked by mouth pipette under a dissection microscope. For each animal, approximately 

384 cells were picked for the neural retina layer, and 48-96 cells for the RPE-choroid 

layer. Each cell was picked into an individual PCR tube with lysis buffer and stored at 

-80℃ for subsequent experiments. 

 

Single-cell RNA-seq library preparation and sequencing 

Single cell transcriptome amplification was performed with a modified STRT-seq 

protocol, as previously described (Dong et al., 2018; Islam et al., 2012). Briefly, single 

cells were randomly collected by a month pipette and transferred to lysis buffer. After 

cell lysis, released mRNAs were reverse transcribed into cDNA by barcode-reverse 

transcription primers with 8 bp unique molecular identifiers (UMIs). Then, the second-

strand cDNAs were synthesized, followed by cDNA pre-amplification. The amplified 

cDNAs were pooled together and purified for fragmentation after which 3’ ends of 

fragmented cDNAs were collected for library construction with Kapa Hyper Prep Kit. 

Then, sequencing was performed on HiSeq 4000 platform with 150 bp paired-end reads. 

 



Hematoxylin and Eosin (H&E) staining 

H&E staining was performed according to previous studies (Nichols et al., 2005; Wang 

et al., 2020; Zhang et al., 2020). The density of RPE cells was calculated by the number 

of RPE cells divided by the volume analyzed. 

 

Large-scale three-dimensional retina reconstruction 

Tissues were fixed with 2.5% (vol/vol) glutaraldehyde with Phosphate Buffer (PB) (0.1 

M, pH 7.4), washed four times in PB. Then the samples were immersed in 1% (wt/vol) 

OsO4 and 1.5% (wt/vol) potassium ferricyanide aqueous solution at 4℃ for 1 h. After 

several washes, the samples were incubated in filtered 1% thiocarbohydrazide aqueous 

solution (Sigma-Aldrich) at room temperature (RT) for 30 min, 1% unbuffered OsO4 

aqueous solution at 4℃ for 1 h and 1% UA aqueous solution at 4℃ overnight following 

four rinses in ddH2O for 10 min each between each step. Next, the samples were 

dehydrated through graded alcohol (30%, 50%, 70%, 80%, 90%, 100%, 100%, 10 min 

each step) at 4℃ into pure acetone (3×10 min). Samples were infiltrated in a graded 

mixture (3:1, 1:1, 1:3) of acetone and SPI-PON812 resin (19.6 mL SPI-PON812, 6.6 

mL DDSA and 13.8 mL NMA, 1.5% BDMA), then changed with pure resin. The 

samples were finally embedded in pure resin with 1.5% BDMA and polymerized for 

12 h at 45°C, 48 h at 60°C.  

Automatic collector of ultrathin sections scanning electron microscopy (AutoCUTS-

SEM) was performed as previously described (Li et al., 2017; Zhang et al., 2020). In 

brief, about 2000 sections were collected by the ultramicrotome (UC7, Leica, Germany) 

with the AutoCUTS device for each sample. Next, high throughput serial sections were 

automatically acquired by a Helios Nanolab 600i dual-beam SEM (Scanning Electron 

Microscope, FEI) with an automated software (AutoSEE), and an image reconstruction 

program was conducted. The image parameters including accelerating voltage of 2 kV, 

beam current of 0.69 nA, CBS detector, pixel size of 58.6 nm and dwell time of 5 μs. 

About 988 and 1121 sections were collected for young and old samples, respectively. 

 

Tissue immunostaining 

Immunostaining was performed following the previously published studies (Ma et al., 

2020; Wang et al., 2020; Zhang et al., 2020). First, monkey retinal and choroidal tissues 

were fixed with 4% paraformaldehyde (PFA) at 4℃ overnight, soaked in 30% sucrose, 

embedded in Tissue-Tek® O.C.T.™ Compound (Sakura Finetek, 4583) and frozen. 

Frozen sections (10 m) were obtained and stored at -80°C prior to use. Antigen 

retrieval was performed by microwaving the sections at 98°C in 10 mM sodium citrate 

buffer (pH 6.0) for three times (5 min each time). After cooling down, the slides were 

washed three times with PBS, permeabilized with Triton X-100 (0.4% in PBS) for 25 

min, blocked with 10% donkey serum in PBS for 1 h at RT, and stained with primary 

antibodies at 4°C overnight. Then, after washes with PBS, sections were incubated with 

secondary antibodies for 1 h at RT. Nuclear DNA was stained by Hoechst 33342 

(Thermo Fisher Scientific). Next, sections were mounted with VECTASHIELD® 

Antifade Mounting Medium (Vector Laboratories, H-1000), and fluorescent images 

were obtained using a confocal microscope (Leica TCS SP5 Ⅱ). The antibodies used 

in this study are shown in Supplementary material, Table S6. The density of Cone was 

calculated by the number of ARR3-positive Cone divided by the volume analyzed. 

 

Lipofuscin fluorescence imaging 

Lipofuscin fluorescence imaging was performed as previously described with minor 

modification (Dorey et al., 1989). The paraffin section was deparaffinized and 



permeabilized with Triton X-100 (0.4% in PBS) for 25 min, stained with Hoechst 33342 

and mounted with VECTASHIELD® Antifade Mounting Medium. Next, the 

fluorescence imaging was performed by using a confocal microscope (Leica TCS SP5 

Ⅱ). 

 

Single-cell RNA-seq data processing 

Raw paired scRNA-seq data in each library was split into single cells based on barcode 

sequences. To obtain clean reads for each cell, the scRNA-seq data was first processed 

by trimming the template switch oligo (TSO) and poly(A) tail sequences, and then 

removing the reads with adapters and low-quality bases. Next, clean reads were mapped 

to the Macaca fascicularis reference genome (Ensembl version: 

Macaca_fascicularis_5.0) using Tophat (version: 2.0.12) (Trapnell et al., 2009). UMIs 

within the uniquely mapped reads were counted for each gene using HTSeq (Anders et 

al., 2015), in which process the same UMI sequences were only counted once. 

We quantified the gene expression level with transcripts per million (TPM) which was 

calculated as the number of UMIs of a given gene in a given cell divided by the total 

number of UMIs of this given cell and then multiplied by 1,000,000. Gene expression 

levels were then transformed into log2(TPM/10 + 1) since the scRNA-seq library 

complexity was estimated to be ~100,000 transcripts.  
To obtain high-quality single cells for the downstream analysis, cells that met the 

following three criteria were retained: the rate of uniquely mapped reads aligned to the 

reference genome was greater than 10%, the number of detected genes was greater than 

800, and the number of detected UMIs was greater than 5,000 (Fig. S1C; Table S1). 

After this quality filtering process, 6,410 out of 7,461 cells were retained for further 

analysis. In high-quality single cells, the median rate of mapped reads was 41.8%, and 

the median number of detected genes and UMIs was 2,439 and 29,869, respectively. 

 

Identification of cell types and cell-type-specific marker genes 

Based on the transformed TPM data, 1,126 highly variable genes (HVGs) were 

identified using R package Seurat (Satija et al., 2015) with parameters ‘x.low.cutoff = 

1, x.high.cutoff = 10, y.cutoff = 1’ according to the average expression and dispersion, 

and then these selected HVGs were used to perform principle component analysis 

(PCA). To exclude the principal components (PCs) which explained very little of 

variance and improve the signal-to-noise ratio as described in the previous study (Haber 

et al., 2017), ‘significant’ components were chosen using function JackStraw in Seurat 

based on the permutation test, and 30 significant components (PC1~PC30) were used 

for t-distributed stochastic neighborhood embedding (t-SNE) analysis. Unsupervised 

clustering analysis was performed using function FindClusters in Seurat with the 

parameter ‘resolution = 2’, and different clusters were labeled by the expression levels 

of known marker genes. 

A standard area under the curve (AUC) classifier was utilized to identify cell-type-

specific markers (differentially expressed genes (DEGs) among different cell types) 

with function FindAllMarkers in Seurat. Marker genes were chosen only if the average 

difference of the log2-transformed TPM was greater than 1 with a statistical significance 

power greater than 0.25. Gene ontology (GO) analysis of cell-type-specific marker 

genes was performed using website tool Toppgene with default parameters (Chen et al., 

2009).  

 

Pseudotime trajectory analysis of the subpopulation of Müller glial cells 

Based on scRNA-seq data in which gene expression levels were quantified with raw 



UMI count data, pseudotime trajectory analysis was performed using R package 

monocle (version: 2.10.1) (Qiu et al., 2017; Trapnell et al., 2014). To exclude effects 

from other cells, only specific retinal cell types were considered, including Müller, Rod, 

Cone, Bipolar and RGC, comprising 4,946 cells in total. HVGs were computed based 

on the average expression and dispersion using function dispersionTable in monocle 

with default parameters, and 3,057 HVGs were selected with filtering condition 

‘mean_expression >= 0.01 & dispersion_empirical >= 1.5 * dispersion_fit’. To ensure 

reproducibility, the random seed was set as ‘19961109’ in this analysis, and functions 

reduceDimension and orderCells were used to compute a projection of cells into a lower 

dimensional space and order cells according to pseudotime, respectively. 

 

Cross-species comparison analysis 

The scRNA-seq data of human and mouse retina was collected from two published 

studies (Heng et al., 2019; Lukowski et al., 2019). For comparison analysis between 

human being and other species, only six cell types were used, including Rod, Cone, 

Bipolar, Müller, MG and RGC. The cell type information was directly collected from 

the corresponding studies. Then, 19,450 and 12,832 single cells in human and mouse 

were obtained for the downstream analysis, respectively. Only the homologous genes 

between human and mouse was used, and genes with one to many correspondences 

were also discarded. Gene expression level was quantified with TPM in these three 

datasets (monkey, human and mouse), and was transformed into log2(TPM/10 + 1). 

Cross-species comparison analysis was performed with the method as same as previous 

studies (Cui et al., 2019; La Manno et al., 2016). We firstly identified DEGs among 

selected cell types in human and mouse with function FindAllMarkers (a standard AUC 

classifier was used) in R package Seurat, and DEGs were chosen only if the average 

difference of the log2-transformed TPM was greater than 0.5 with a statistical 

significance power greater than 0.25. Then, 774, 945 and 1,791 DEGs were selected in 

human, mouse, and monkey scRNA-seq. We calculated the average expression level of 

these DEGs in each cell type of each species, which was utilized in the downstream 

analysis. We then labelled each gene based on the coefficient of variation (CV) value, 

in which gene was labelled with 1 if the CV ranged from the 25th percentile to the 75th 

percentile and otherwise gene was labelled with 0. And therefore, we can exclude the 

influence of housekeeping genes and ‘noisy’ genes. These labeled genes make up a new 

sample as a control, and we calculated the coefficient of correlation between each 

average sample and control, and then normalized each dataset with that coefficient of 

correlation. Finally, we obtained the correlation result between any two average 

samples. 

 

Aging-associated transcriptional variation analysis 

For cells in a given cell type, aging-associated CV was defined to measure the 

consistency of gene expression patterns between cells collected from young monkeys 

and cells from aged monkeys, and this definition reflected the extent of influence on 

the transcriptome driven by aging, which was described similarly as in previous studies 

(Salzer et al., 2018; Wang et al., 2020). 

As we identified cell types in all filtered cells, 1,126 HVGs were firstly selected based 

on the average expression and dispersion, and these HVGs were used for the 

downstream aging-associated transcriptional variation analysis. For each HVG g in a 

given cell type c (including numy cells collected from young monkeys and numo cells 

from aged monkeys), gy and go were donated as the expression level in young and aged 

monkeys, respectively; and cell pairwise distance dg was defined as: 



𝑑𝑔 = |𝑔𝑦 − 𝑔𝑜|, where 𝑦 ∈ {1,2, … , 𝑛𝑢𝑚𝑦}, 𝑜 ∈ {1,2, … , 𝑛𝑢𝑚𝑜} . 

Arithmetic mean of dg was denoted as μg and standard deviation of dg was denoted as 

σg, and therefore aging-associated CV was calculated as standard deviation divided by 

arithmetic mean for each HVG. 

 

Identification of aging-associated differentially expressed genes 

To identify aging-associated DEGs between cells collected from young monkeys and 

cells from aged monkeys in each cell type, based on the log2-transformed TPM data, 

we performed the reproducibility optimized test statistic (ROTS) algorithm using R 

package ROTS (Elo et al., 2008; Seyednasrollah et al., 2016). Aging-associated DEGs 

were chosen only if the average difference of the log2-transformed TPM was greater 

than 0.5 with a statistical significance P value less than 0.05. GO analysis of aging-

associated DEGs was performed using website tool Metascape with default parameters 

(Zhou et al., 2019). 

 

Potentially core transcriptional regulator analysis 

Based on scRNA-seq data in which gene expression levels were quantified with raw 

UMI, co-regulation transcriptional network analysis was performed to identify the 

potentially core transcriptional regulators in a given cell type with given genes. To 

construct the upregulated network between aging transcriptional regulators and aging 

targets of a given cell type, upregulated aging-associated DEGs were used as input for 

R package SCENIC (Aibar et al., 2017; Elo et al., 2008). Since there is no well-

established transcriptional regulator database for Macaca fascicularis, whose genome 

highly similar to that of humans, we used the human transcriptional regulator database. 

Of 1,839 transcriptional regulators in the human database, we detected 1,579 regulators 

in the Macaca fascicularis gene set. The regulator network was then established using 

function runGenie3 in SCENIC based on log2-tranforrmed UMI data. Only the 

transcriptional regulator-target connected with a high weight (weight > 0.1) was 

retained for the downstream analysis. The same process was executed for the 

downregulated DEG network. 

For visualization of the network, the node size indicates the number of connections and 

the line size indicates the weight of a connection; and nodes are ranked based on node 

size. 

 

Cell-cell interaction analysis 

Based on scRNA-seq data in which gene expression levels were quantified with raw 

TPM instead of log2-transformed TPM, the cell-cell interaction analysis was performed 

using CellPhoneDB (version: 2.0.0) (Ma et al., 2020; Vento-Tormo et al., 2018; Zheng 

et al., 2020). For a given cell type, only the ligand and receptor interacting pair 

satisfying the following three criteria was considered in the downstream analysis: (1) 

at least 10% cells expressed that pair (set the parameter as ‘--threshold 0.1’), (2) the 

average expression level was greater than 5, and (3) compared between different cell 

types, the enrichment of the pair was statistically significant (P < 0.05). A ligand-

receptor pair detected only in cells collected from young monkeys was considered as a 

young-specific interaction pair; a ligand-receptor pair detected only in cells from aged 

monkeys was considered as an aged-specific interaction pair; the rest were considered 

as common interaction pairs. GO analysis of newborn or disappeared interactions was 

performed using website tool Metascape with default parameters. 

 

Network visualization of high-risk aging-associated differentially expressed genes 



The eye disease-associated gene set was collected from two previous studies (Elo et al., 

2008; Orozco et al., 2020). Given that several of the same eye diseases were included 

in these two studies, such as ‘retinitis pigmentosa’, ‘age-related macular degeneration’, 

‘macular degeneration’ and ‘congenital stationary night blindness’, we merged genes 

in the same eye diseases in our downstream analysis. GenAge gene set of 

aging/longevity-related genes was collected from public website (Magalhães et al., 

2009): https://www.genomics.senescence.info/. 

 

Statistical analysis 

All data were statistically analyzed using PRISM software (GraphPad 6 Software). 

Results were presented as mean ± SEM. Comparisons were conducted using the one-

tailed or two-tailed Student’s t-test as indicated in figure legend.  

The bioinformatics data were statistically analyzed using a two-tailed Student’s t-test 

with R language, and P values are indicated in each figure. 

 

Data availability 

All RNA-seq raw sequencing data and processed data have been deposited in the NCBI 

Gene Expression Omnibus (GEO) under the accession number GSE113917.  
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Supplementary Figure Legends 

Figure S1. Quality control information of single-cell RNA-seq data. 

(A) Table showing basic information about the cynomolgus monkey cohort. 

(B) Representative immunofluorescence images of ARR3-positive Cone in young and 

old monkeys. Scale bar, 50 m. 

(C) Representative H&E stained images of RPE in young and old monkeys. Scale bar, 

50 m. 

(D) Histograms showing the cell distribution with different mapping rate (the ratio of 

uniquely mapped reads) (left) or different number of genes (right) detected in each 

single cell. 

(E) t-SNE plots showing the single cell distribution in individual monkeys (left) and 

age groups (right). 

(F) Bar plots showing the expression level of representative known and novel marker 

genes for various cell types. All expression levels are measured using the same scale. 

Data are shown as mean ± SEM. 

 

Figure S2. Subtype identification of Müller glial cells and cross-species 

comparisons. 

(A) t-SNE plot showing the two subtypes of Müller glial cells. 

(B) Left, heatmap showing the gene expression signatures of each Müller glial cell 

subtype, and the number of DEGs is shown on the left of the heatmap. Right, 

representative GO terms of the DEGs in each cell subtype. Values in each row are z-

score scaled. The color key from blue to red indicates low to high gene expression levels.  

(C) Trajectory analysis showing the pseudotime of Müller glial subtype cells and other 

cells. Arrow indicates the pseudotime from early ones to late ones. 

(D) Bar plots showing gene expression signatures of representative retinal progenitor 

cell markers in two Müller subtypes. Two-tailed Student’s t-test P values are indicated. 

(E) Heatmaps showing cross-species comparison correlation between human and 

human (left), between human and mouse (middle), and between human and monkey 

(right) cells. The value in each diagonal indicates the correlation coefficient. 

 

Figure S3. Cell identity and transcriptional noise analysis during aging process. 

(A) Dot plot showing the expression level of representative marker genes across 

different cell types in both young (red dots) and old (blue dots) monkeys. Dot color 

indicates the scaled gene expression levels, and dot size indicates the percentage of 

expressed cells. 

(B) Coefficient of variation (CV) analysis showing the transcriptional noise of different 

cell types. 

 

Figure S4. Transcriptional signatures of genes in the GenAge gene set and retinal 

disease gene sets. 

Heatmaps showing the expression level of genes in the GenAge gene set and retinal 

disease gene sets in different cell types. Values in each row are z-score scaled. The color 

key from blue to red indicates low to high gene expression levels.  

 

Figure S5. Age-related transcriptional alterations in various cell types. 

(A) Box plots showing SASP score in different cell types from the neural retina layer 

or choroid layer. Two-tailed Student’s t-test P values are indicated. SASP score is 

calculated as the average expression level of SASP-related genes in each single cell. 

(B) Dot plot showing the log2-transformed fold change of SASP-related genes between 



cells from aged monkeys and cells from young monkeys. Only genes with statistically 

significant difference between cells from aged monkeys and cells from young monkeys 

are shown. Dot color indicates the log2-transformed fold change. Genes which are only 

upregulated in given cell types are shown in the left (red shadow), and genes which are 

only downregulated in given cell types are shown in the right (blue shadow). 

 

Figure S6. Integrative analysis of aging-associated differentially expressed genes 

with genes from GenAge gene set. 

Heatmaps showing the overlapping genes between aging-associated DEGs and genes 

in the GenAge gene set. Left, upregulated aging-associated DEGs; right, downregulated 

aging-associated DEGs. 

 

Figure S7. Integrative analysis of aging-associated differentially expressed genes 

with genes from retinal disease gene sets. 

(A) Heatmaps showing the overlapping genes between aging-associated DEGs and 

genes in different retinal disease gene sets. Each panel corresponds to different diseases. 

Left, upregulated aging-associated DEGs; right, downregulated aging-associated DEGs. 

(B) Heatmaps showing the overlapping genes between aging-associated DEGs and 

genes in the retinal disease gene set. This gene set is the union set of all different retinal 

diseases corresponding to Figure S7A. Top, upregulated aging-associated DEGs; 

bottom, downregulated aging-associated DEGs. 

 

Figure S8. Age-related cell-cell interaction alterations between monkey RPE cells 

and other cells in neural retina or choroid. 

Dot plots showing newborn (only existed in aged monkeys, left) and disappeared (only 

existed in young monkeys, right) ligand-receptor gene pairs in a given cell pair. For a 

given cell pair, a given gene pair is either a newborn one or a disappeared one in this 

figure. The dot color and size indicate the average expression level and the statistical 

significance of gene pairs, respectively. In each row, pink and blue words correspond 

to ligands and receptors, respectively; in each column, pink words correspond to cell 

types expressing ligands and blue words correspond to cell types expressing receptors. 

 

Figure S9. Potentially core transcriptional regulators during aging process across 

different cell types. 

(A) Regulatory network showing potentially core transcriptional regulators in 

upregulated aging-associated DEGs of RPE cells. The line thickness indicates the 

weight of a connection, and the dot size indicates the number of connections. Top-

ranked 4 nodes (ranked by the number of connections) are colored with red. Only 

connections with high weights are kept. 

(B) Dot plots showing potentially core transcriptional regulators in aging-associated 

DEGs across different cell types. The dot size indicates the number of connections. 

Only connections with high weights are kept. 

 

  



Supplementary Table Legends 

Table S1. Basic quality control information of single-cell RNA-seq dataset. 

Table S2. Cell clustering, cell-type-specific marker genes and DEGs between two 

Müller glial subtype cells. 

Table S3. SASP-related genes, the GenAge gene set and retinal disease gene sets. 

Table S4. Aging-associated DEGs and corresponding GO terms in each cell type. 

Table S5. Cell-cell interaction information between any two cell types. 

Table S6. Antibodies used in this study. 
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