Materials and Methods

Ethical statement

This study was conducted following the guidelines for the Ethical Treatment of Non-
Human Primates and was approved by the Institutional Animal Care and Use
Committee of the Institute of Zoology (Chinese Academy of Sciences).

Experiment models and biological samples

All cynomolgus monkeys (Macaca fascicularis) were of Southeast Asian origin, and
raised at around 25°C on a 12-hour (h) light, 12-h dark schedule at Xieerxin Biology
Resource, an accredited primate research facility in Beijing. All animal experiment
procedures were performed by certified veterinarians, complying with laws governing
animal research. All animals were given commercial monkey diet twice a day and
vegetables and fruits once a day with tap water ad libitum (Li et al., 2020; Wang et al.,
2020; Zhang et al., 2020). None of the animals had a clinical or experimental history
potentially affecting the physiological aging process. Retinal and choroidal tissues for
scRNA-seq analysis were obtained from 8 young (4-6 years old) and 8 aged
cynomolgus monkeys (18-21 years old).

Single cell isolation and collection

To ensure tissue quality, animals were sampled on different days. In brief, the animal
was anesthetized and perfused with physiological saline, and the peripheral retinal and
choroidal tissues were isolated. The neural retina layer and RPE-choroid layer were
dissected and processed separately. Samples were minced and then transferred into 1.5
mL tubes and subjected to 1 mL of digestion buffer containing 1 mg/mL Collagenase,
Type IV (Gibco 17104-019) and 1 mg/mL dispase II. After incubation at 37°C for 15
min on a shaking thermomixer (1000 rpm), tubes were briefly spun at 500 x g for 8 min
at 4°C, and the supernatant was then gently removed. Pellets were resuspended in 1 mL
PBS containing 10 % FBS and gently pipetted on ice for 50-100 times to dissociate the
cells and the resulting supernatant immediately filtered through 100-um mesh filters to
remove undigested tissues. Debris was removed by fluorescence-activated cell sorting
(FACS) (BD FACSAria™ II) and samples were subjected to single-cell collection. The
purified cell suspension was then transferred into a 3.5 cm dish and cells were randomly
picked by mouth pipette under a dissection microscope. For each animal, approximately
384 cells were picked for the neural retina layer, and 48-96 cells for the RPE-choroid
layer. Each cell was picked into an individual PCR tube with lysis buffer and stored at
-80°C for subsequent experiments.

Single-cell RNA-seq library preparation and sequencing

Single cell transcriptome amplification was performed with a modified STRT-seq
protocol, as previously described (Dong et al., 2018; Islam et al., 2012). Briefly, single
cells were randomly collected by a month pipette and transferred to lysis buffer. After
cell lysis, released mRNASs were reverse transcribed into cDNA by barcode-reverse
transcription primers with 8 bp unique molecular identifiers (UMIs). Then, the second-
strand cDNAs were synthesized, followed by cDNA pre-amplification. The amplified
cDNAs were pooled together and purified for fragmentation after which 3’ ends of
fragmented cDNAs were collected for library construction with Kapa Hyper Prep Kit.
Then, sequencing was performed on HiSeq 4000 platform with 150 bp paired-end reads.



Hematoxylin and Eosin (H&E) staining

H&E staining was performed according to previous studies (Nichols et al., 2005; Wang
et al., 2020; Zhang et al., 2020). The density of RPE cells was calculated by the number
of RPE cells divided by the volume analyzed.

Large-scale three-dimensional retina reconstruction

Tissues were fixed with 2.5% (vol/vol) glutaraldehyde with Phosphate Buffer (PB) (0.1
M, pH 7.4), washed four times in PB. Then the samples were immersed in 1% (wt/vol)
0s04 and 1.5% (wt/vol) potassium ferricyanide aqueous solution at 4°C for 1 h. After
several washes, the samples were incubated in filtered 1% thiocarbohydrazide aqueous
solution (Sigma-Aldrich) at room temperature (RT) for 30 min, 1% unbuffered OsO4
aqueous solution at 4°C for 1 h and 1% UA aqueous solution at 4°C overnight following
four rinses in ddH2O for 10 min each between each step. Next, the samples were
dehydrated through graded alcohol (30%, 50%, 70%, 80%, 90%, 100%, 100%, 10 min
each step) at 4°C into pure acetone (310 min). Samples were infiltrated in a graded
mixture (3:1, 1:1, 1:3) of acetone and SPI-PON812 resin (19.6 mL SPI-PON812, 6.6
mL DDSA and 13.8 mL NMA, 1.5% BDMA), then changed with pure resin. The
samples were finally embedded in pure resin with 1.5% BDMA and polymerized for
12hat45<C, 48 hat 60<C.

Automatic collector of ultrathin sections scanning electron microscopy (AutoCUTS-
SEM) was performed as previously described (Li et al., 2017; Zhang et al., 2020). In
brief, about 2000 sections were collected by the ultramicrotome (UC7, Leica, Germany)
with the AutoCUTS device for each sample. Next, high throughput serial sections were
automatically acquired by a Helios Nanolab 600i dual-beam SEM (Scanning Electron
Microscope, FEI) with an automated software (AutoSEE), and an image reconstruction
program was conducted. The image parameters including accelerating voltage of 2 kV,
beam current of 0.69 nA, CBS detector, pixel size of 58.6 nm and dwell time of 5 ps.
About 988 and 1121 sections were collected for young and old samples, respectively.

Tissue immunostaining

Immunostaining was performed following the previously published studies (Ma et al.,
2020; Wang et al., 2020; Zhang et al., 2020). First, monkey retinal and choroidal tissues
were fixed with 4% paraformaldehyde (PFA) at 4°C overnight, soaked in 30% sucrose,
embedded in Tissue-Tek® O.C.T.™ Compound (Sakura Finetek, 4583) and frozen.
Frozen sections (10 um) were obtained and stored at -80<C prior to use. Antigen
retrieval was performed by microwaving the sections at 98 <C in 10 mM sodium citrate
buffer (pH 6.0) for three times (5 min each time). After cooling down, the slides were
washed three times with PBS, permeabilized with Triton X-100 (0.4% in PBS) for 25
min, blocked with 10% donkey serum in PBS for 1 h at RT, and stained with primary
antibodies at 4 <C overnight. Then, after washes with PBS, sections were incubated with
secondary antibodies for 1 h at RT. Nuclear DNA was stained by Hoechst 33342
(Thermo Fisher Scientific). Next, sections were mounted with VECTASHIELD®
Antifade Mounting Medium (Vector Laboratories, H-1000), and fluorescent images
were obtained using a confocal microscope (Leica TCS SP5 II). The antibodies used
in this study are shown in Supplementary material, Table S6. The density of Cone was
calculated by the number of ARR3-positive Cone divided by the volume analyzed.

Lipofuscin fluorescence imaging
Lipofuscin fluorescence imaging was performed as previously described with minor
modification (Dorey et al., 1989). The paraffin section was deparaffinized and



permeabilized with Triton X-100 (0.4% in PBS) for 25 min, stained with Hoechst 33342
and mounted with VECTASHIELD® Antifade Mounting Medium. Next, the
fluorescence imaging was performed by using a confocal microscope (Leica TCS SP5
II).

Single-cell RNA-seq data processing

Raw paired scRNA-seq data in each library was split into single cells based on barcode
sequences. To obtain clean reads for each cell, the SCRNA-seq data was first processed
by trimming the template switch oligo (TSO) and poly(A) tail sequences, and then
removing the reads with adapters and low-quality bases. Next, clean reads were mapped
to the Macaca  fascicularis  reference  genome  (Ensembl  version:
Macaca fascicularis 5.0) using Tophat (version: 2.0.12) (Trapnell et al., 2009). UMIs
within the uniquely mapped reads were counted for each gene using H7Seq (Anders et
al., 2015), in which process the same UMI sequences were only counted once.

We quantified the gene expression level with transcripts per million (TPM) which was
calculated as the number of UMIs of a given gene in a given cell divided by the total
number of UMIs of this given cell and then multiplied by 1,000,000. Gene expression
levels were then transformed into log2(TPM/10 + 1) since the scRNA-seq library
complexity was estimated to be ~100,000 transcripts.

To obtain high-quality single cells for the downstream analysis, cells that met the
following three criteria were retained: the rate of uniquely mapped reads aligned to the
reference genome was greater than 10%, the number of detected genes was greater than
800, and the number of detected UMIs was greater than 5,000 (Fig. S1C; Table S1).
After this quality filtering process, 6,410 out of 7,461 cells were retained for further
analysis. In high-quality single cells, the median rate of mapped reads was 41.8%, and
the median number of detected genes and UMIs was 2,439 and 29,869, respectively.

Identification of cell types and cell-type-specific marker genes

Based on the transformed TPM data, 1,126 highly variable genes (HVGs) were
identified using R package Seurat (Satija et al., 2015) with parameters ‘x./low.cutoff =
1, x.high.cutoff = 10, y.cutoff = 1’ according to the average expression and dispersion,
and then these selected HVGs were used to perform principle component analysis
(PCA). To exclude the principal components (PCs) which explained very little of
variance and improve the signal-to-noise ratio as described in the previous study (Haber
et al., 2017), ‘significant’ components were chosen using function JackStraw in Seurat
based on the permutation test, and 30 significant components (PC1~PC30) were used
for #-distributed stochastic neighborhood embedding (-SNE) analysis. Unsupervised
clustering analysis was performed using function FindClusters in Seurat with the
parameter ‘resolution = 2°, and different clusters were labeled by the expression levels
of known marker genes.

A standard area under the curve (AUC) classifier was utilized to identify cell-type-
specific markers (differentially expressed genes (DEGs) among different cell types)
with function FindAlIMarkers in Seurat. Marker genes were chosen only if the average
difference of the log>-transformed TPM was greater than 1 with a statistical significance
power greater than 0.25. Gene ontology (GO) analysis of cell-type-specific marker
genes was performed using website tool Toppgene with default parameters (Chen et al.,
2009).

Pseudotime trajectory analysis of the subpopulation of Miiller glial cells
Based on scRNA-seq data in which gene expression levels were quantified with raw



UMI count data, pseudotime trajectory analysis was performed using R package
monocle (version: 2.10.1) (Qiu et al., 2017; Trapnell et al., 2014). To exclude effects
from other cells, only specific retinal cell types were considered, including Miiller, Rod,
Cone, Bipolar and RGC, comprising 4,946 cells in total. HVGs were computed based
on the average expression and dispersion using function dispersionTable in monocle
with default parameters, and 3,057 HVGs were selected with filtering condition
‘mean_expression >= 0.01 & dispersion_empirical >= 1.5 * dispersion_fit’. To ensure
reproducibility, the random seed was set as ‘719961109’ in this analysis, and functions
reduceDimension and orderCells were used to compute a projection of cells into a lower
dimensional space and order cells according to pseudotime, respectively.

Cross-species comparison analysis

The scRNA-seq data of human and mouse retina was collected from two published
studies (Heng et al., 2019; Lukowski et al., 2019). For comparison analysis between
human being and other species, only six cell types were used, including Rod, Cone,
Bipolar, Miiller, MG and RGC. The cell type information was directly collected from
the corresponding studies. Then, 19,450 and 12,832 single cells in human and mouse
were obtained for the downstream analysis, respectively. Only the homologous genes
between human and mouse was used, and genes with one to many correspondences
were also discarded. Gene expression level was quantified with TPM in these three
datasets (monkey, human and mouse), and was transformed into log2(TPM/10 + 1).
Cross-species comparison analysis was performed with the method as same as previous
studies (Cui et al., 2019; La Manno et al., 2016). We firstly identified DEGs among
selected cell types in human and mouse with function FindAlIMarkers (a standard AUC
classifier was used) in R package Seurat, and DEGs were chosen only if the average
difference of the logz-transformed TPM was greater than 0.5 with a statistical
significance power greater than 0.25. Then, 774, 945 and 1,791 DEGs were selected in
human, mouse, and monkey scRNA-seq. We calculated the average expression level of
these DEGs in each cell type of each species, which was utilized in the downstream
analysis. We then labelled each gene based on the coefficient of variation (CV) value,
in which gene was labelled with 1 if the CV ranged from the 25" percentile to the 75™
percentile and otherwise gene was labelled with 0. And therefore, we can exclude the
influence of housekeeping genes and ‘noisy’ genes. These labeled genes make up a new
sample as a control, and we calculated the coefficient of correlation between each
average sample and control, and then normalized each dataset with that coefficient of
correlation. Finally, we obtained the correlation result between any two average
samples.

Aging-associated transcriptional variation analysis

For cells in a given cell type, aging-associated CV was defined to measure the
consistency of gene expression patterns between cells collected from young monkeys
and cells from aged monkeys, and this definition reflected the extent of influence on
the transcriptome driven by aging, which was described similarly as in previous studies
(Salzer et al., 2018; Wang et al., 2020).

As we identified cell types in all filtered cells, 1,126 HVGs were firstly selected based
on the average expression and dispersion, and these HVGs were used for the
downstream aging-associated transcriptional variation analysis. For each HVG g in a
given cell type ¢ (including num, cells collected from young monkeys and num, cells
from aged monkeys), g, and g, were donated as the expression level in young and aged
monkeys, respectively; and cell pairwise distance d; was defined as:



dg = |gy — go|,where y € {1,2, ...,numy},o € {1,2,..,num,}.
Arithmetic mean of d, was denoted as y, and standard deviation of d, was denoted as
og, and therefore aging-associated CV was calculated as standard deviation divided by
arithmetic mean for each HVG.

Identification of aging-associated differentially expressed genes

To identify aging-associated DEGs between cells collected from young monkeys and
cells from aged monkeys in each cell type, based on the log>-transformed TPM data,
we performed the reproducibility optimized test statistic (ROTS) algorithm using R
package ROTS (Elo et al., 2008; Seyednasrollah et al., 2016). Aging-associated DEGs
were chosen only if the average difference of the logx-transformed TPM was greater
than 0.5 with a statistical significance P value less than 0.05. GO analysis of aging-
associated DEGs was performed using website tool Metascape with default parameters
(Zhou et al., 2019).

Potentially core transcriptional regulator analysis

Based on scRNA-seq data in which gene expression levels were quantified with raw
UMI, co-regulation transcriptional network analysis was performed to identify the
potentially core transcriptional regulators in a given cell type with given genes. To
construct the upregulated network between aging transcriptional regulators and aging
targets of a given cell type, upregulated aging-associated DEGs were used as input for
R package SCENIC (Aibar et al., 2017; Elo et al., 2008). Since there is no well-
established transcriptional regulator database for Macaca fascicularis, whose genome
highly similar to that of humans, we used the human transcriptional regulator database.
Of 1,839 transcriptional regulators in the human database, we detected 1,579 regulators
in the Macaca fascicularis gene set. The regulator network was then established using
function runGenie3 in SCENIC based on logy-tranforrmed UMI data. Only the
transcriptional regulator-target connected with a high weight (weight > 0.1) was
retained for the downstream analysis. The same process was executed for the
downregulated DEG network.

For visualization of the network, the node size indicates the number of connections and
the line size indicates the weight of a connection; and nodes are ranked based on node
size.

Cell-cell interaction analysis

Based on scRNA-seq data in which gene expression levels were quantified with raw
TPM instead of log>-transformed TPM, the cell-cell interaction analysis was performed
using CellPhoneDB (version: 2.0.0) (Ma et al., 2020; Vento-Tormo et al., 2018; Zheng
et al., 2020). For a given cell type, only the ligand and receptor interacting pair
satisfying the following three criteria was considered in the downstream analysis: (1)
at least 10% cells expressed that pair (set the parameter as ‘--threshold 0.17), (2) the
average expression level was greater than 5, and (3) compared between different cell
types, the enrichment of the pair was statistically significant (P < 0.05). A ligand-
receptor pair detected only in cells collected from young monkeys was considered as a
young-specific interaction pair; a ligand-receptor pair detected only in cells from aged
monkeys was considered as an aged-specific interaction pair; the rest were considered
as common interaction pairs. GO analysis of newborn or disappeared interactions was
performed using website tool Metascape with default parameters.

Network visualization of high-risk aging-associated differentially expressed genes



The eye disease-associated gene set was collected from two previous studies (Elo et al.,
2008; Orozco et al., 2020). Given that several of the same eye diseases were included
in these two studies, such as ‘retinitis pigmentosa’, ‘age-related macular degeneration’,
‘macular degeneration’ and ‘congenital stationary night blindness’, we merged genes
in the same eye diseases in our downstream analysis. GenAge gene set of
aging/longevity-related genes was collected from public website (Magalhaes et al.,
2009): https://www.genomics.senescence.info/.

Statistical analysis

All data were statistically analyzed using PRISM software (GraphPad 6 Software).
Results were presented as mean ==SEM. Comparisons were conducted using the one-
tailed or two-tailed Student’s t-test as indicated in figure legend.

The bioinformatics data were statistically analyzed using a two-tailed Student’s t-test
with R language, and P values are indicated in each figure.

Data availability
All RNA-seq raw sequencing data and processed data have been deposited in the NCBI
Gene Expression Omnibus (GEO) under the accession number GSE113917.
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Supplementary Figure Legends

Figure S1. Quality control information of single-cell RNA-seq data.

(A) Table showing basic information about the cynomolgus monkey cohort.

(B) Representative immunofluorescence images of ARR3-positive Cone in young and
old monkeys. Scale bar, 50 um.

(C) Representative H&E stained images of RPE in young and old monkeys. Scale bar,
50 pum.

(D) Histograms showing the cell distribution with different mapping rate (the ratio of
uniquely mapped reads) (left) or different number of genes (right) detected in each
single cell.

(E) t-SNE plots showing the single cell distribution in individual monkeys (left) and
age groups (right).

(F) Bar plots showing the expression level of representative known and novel marker
genes for various cell types. All expression levels are measured using the same scale.
Data are shown as mean + SEM.

Figure S2. Subtype identification of Mduler glial cells and cross-species
comparisons.

(A) t-SNE plot showing the two subtypes of MUler glial cells.

(B) Left, heatmap showing the gene expression signatures of each MUler glial cell
subtype, and the number of DEGs is shown on the left of the heatmap. Right,
representative GO terms of the DEGs in each cell subtype. Values in each row are z-
score scaled. The color key from blue to red indicates low to high gene expression levels.
(C) Trajectory analysis showing the pseudotime of MUler glial subtype cells and other
cells. Arrow indicates the pseudotime from early ones to late ones.

(D) Bar plots showing gene expression signatures of representative retinal progenitor
cell markers in two MUler subtypes. Two-tailed Student’s t-test P values are indicated.
(E) Heatmaps showing cross-species comparison correlation between human and
human (left), between human and mouse (middle), and between human and monkey
(right) cells. The value in each diagonal indicates the correlation coefficient.

Figure S3. Cell identity and transcriptional noise analysis during aging process.
(A) Dot plot showing the expression level of representative marker genes across
different cell types in both young (red dots) and old (blue dots) monkeys. Dot color
indicates the scaled gene expression levels, and dot size indicates the percentage of
expressed cells.

(B) Coefficient of variation (CV) analysis showing the transcriptional noise of different
cell types.

Figure S4. Transcriptional signatures of genes in the GenAge gene set and retinal
disease gene sets.

Heatmaps showing the expression level of genes in the GenAge gene set and retinal
disease gene sets in different cell types. Values in each row are z-score scaled. The color
key from blue to red indicates low to high gene expression levels.

Figure S5. Age-related transcriptional alterations in various cell types.

(A) Box plots showing SASP score in different cell types from the neural retina layer
or choroid layer. Two-tailed Student’s #-test P values are indicated. SASP score is
calculated as the average expression level of SASP-related genes in each single cell.
(B) Dot plot showing the log>-transformed fold change of SASP-related genes between



cells from aged monkeys and cells from young monkeys. Only genes with statistically
significant difference between cells from aged monkeys and cells from young monkeys
are shown. Dot color indicates the log>-transformed fold change. Genes which are only
upregulated in given cell types are shown in the left (red shadow), and genes which are
only downregulated in given cell types are shown in the right (blue shadow).

Figure S6. Integrative analysis of aging-associated differentially expressed genes
with genes from GenAge gene set.

Heatmaps showing the overlapping genes between aging-associated DEGs and genes
in the GenAge gene set. Left, upregulated aging-associated DEGs; right, downregulated
aging-associated DEGs.

Figure S7. Integrative analysis of aging-associated differentially expressed genes
with genes from retinal disease gene sets.

(A) Heatmaps showing the overlapping genes between aging-associated DEGs and
genes in different retinal disease gene sets. Each panel corresponds to different diseases.
Left, upregulated aging-associated DEGs; right, downregulated aging-associated DEGs.
(B) Heatmaps showing the overlapping genes between aging-associated DEGs and
genes in the retinal disease gene set. This gene set is the union set of all different retinal
diseases corresponding to Figure S7A. Top, upregulated aging-associated DEGs;
bottom, downregulated aging-associated DEGs.

Figure S8. Age-related cell-cell interaction alterations between monkey RPE cells
and other cells in neural retina or choroid.

Dot plots showing newborn (only existed in aged monkeys, left) and disappeared (only
existed in young monkeys, right) ligand-receptor gene pairs in a given cell pair. For a
given cell pair, a given gene pair is either a newborn one or a disappeared one in this
figure. The dot color and size indicate the average expression level and the statistical
significance of gene pairs, respectively. In each row, pink and blue words correspond
to ligands and receptors, respectively; in each column, pink words correspond to cell
types expressing ligands and blue words correspond to cell types expressing receptors.

Figure S9. Potentially core transcriptional regulators during aging process across
different cell types.

(A) Regulatory network showing potentially core transcriptional regulators in
upregulated aging-associated DEGs of RPE cells. The line thickness indicates the
weight of a connection, and the dot size indicates the number of connections. Top-
ranked 4 nodes (ranked by the number of connections) are colored with red. Only
connections with high weights are kept.

(B) Dot plots showing potentially core transcriptional regulators in aging-associated
DEGs across different cell types. The dot size indicates the number of connections.
Only connections with high weights are kept.



Supplementary Table Legends

Table S1. Basic quality control information of single-cell RNA-seq dataset.

Table S2. Cell clustering, cell-type-specific marker genes and DEGs between two
Miiller glial subtype cells.

Table S3. SASP-related genes, the GenAge gene set and retinal disease gene sets.
Table S4. Aging-associated DEGs and corresponding GO terms in each cell type.
Table S5. Cell-cell interaction information between any two cell types.

Table S6. Antibodies used in this study.
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Figure S4
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Figure S8
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Figure S9
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