Parihar et al. Supplemental Figure S1



**Supplemental Figure S1. Efficient RA signaling robustness at the transcriptomic level. (A,B)** Principal Component Analysis of six clutches over time for **(A)** PC1/PC8, and **(B)** PC1/PC10. **(C)** Heatmap of gene expression of the top-100 positive and top-100 negative loadings corresponding to PC8 and PC10. A subset of the genes is highlighted based on the relevance to early RA metabolism.

## Parihar et al. Supplemental Figure S2



Supplemental Figure S2. Dose response of *hoxb1* and *hoxb4* to increased retinoic acid levels. Embryos were treated with increased retinoic acid concentrations (10 nM - 1  $\mu$ M) until mid gastrula (st. 11) and then processed for *in situ* hybridization with probes specific for *hoxb1* (A-C) or *hoxb4* (E-G). (D,H) The changes in the expression pattern for both genes was scored as an increase in signal intensity from the control group (vs. control) or the previous lower concentration (vs. previous).







Supplemental Figure S3 - Transcriptome overlap between RA manipulation and controls. (A) Genes were grouped into the 27 possible discretized expression patterns based on up-regulation (vellow), down-regulation (blue), and no change (grey) above the 2-fold change threshold at each of the three recovery time points compared to the t=0 sample. The ten dynamic patterns that contained at least one gene are shown. The numbers below each graph exemplify the discretized pattern as a numeric vector (+1, 0, -1). The counts next to the patterns indicate the number of genes that show the corresponding expression pattern in each of the two treatment groups and the controls. (B) The Gene Ontology biological processes statistically enriched in the control group are indicated alongside the pattern counts. Details of statistical analysis results are available in Supplemental Table S1. (C) Venn diagrams to compare the overlap between the two treatments and control, illustrated for three differential gene expression patterns. The number of genes that showed similar differential expression patterns in one or more experimental groups are indicated in the corresponding overlapping regions. black - control; orange - DEAB; blue - RA.



**Supplemental Figure S4. Temporal expression pattern of the main RA network components studied.** To determine the temporal pattern of expression of the RA network components, RNA samples from embryos from midblastula (st. 8) to advanced neurula stages (st. 19) were collected. Relative expression was determined by qPCR for: (A) *rdh10.L, rdh10.S*; (B) *sdr16c5*; (C) *aldh1a2.L, aldh1a2.S*; (D) *aldh1a3.L, aldh1a3.S*; (E) *dhrs3.L, dhrs3.S*; (F) *adhFe1, rdh14*; (G) *cyp26a1.L, cyp26a1.S*; (H) *cyp26c1.L*.

Parihar et al. Supplemental Figure S5



Supplemental Figure S5. Kinetics of the recovery from RA manipulation. Embryos were transiently treated with either 10 nM RA (A,B), or 50  $\mu$ M DEAB (C,D). Treatments were initiated during late blastula (st. 9.5), and washed by early gastrula (st. 10.25). RNA samples were collected at different time points during the recovery period. The response of genes, RA target, and RA metabolic enzymes was studied by qPCR. Statistical significance (Student's t-test) was calculated compared to the expression at the end of the treatment (t0). \*, p<0.05; \*\*, p<0.01; \*\*\*\*, p<0.001; \*\*\*\*, p<0.001; ns, not significant.





Supplemental Figure S6. Principal Component Analysis suggests clutch-to-clutch variation. Labeling of the different clutches reveals clustering of all samples of the same clutch at all time points analyzed.

Parihar et al. Supplemental Figure S7



**Supplemental Figure S7. HT-qPCR analysis of RA network components.** Principal Component Analysis of the HT-qPCR data revealed heterogeneity across developmental stages and treatments. **(A)** Distribution of samples along PC1 and PC2 axes. **(B)** Distribution of samples along PC1 and PC10 axes. **(C)** Heatmap of time series differential expression of RA network genes.

## Parihar et al. Supplemental Figure S8



Supplemental Figure S8. Clutch-wise heterogeneity in the response of RA network genes following RA manipulation. Clutch-wise differential expression dynamics of RA network genes based on the RNAseq and HT-qPCR data. The clutches are ordered left to right according to the time taken for recovery of *hoxa1.L* expression.

D

G

В

 $\sim$ 



**Supplemental Figure S9. Trajectory analysis to compare the extent of individual clutch robustness based on RA network component expression. (A)** 3-dimensional principal curve for the RA network genes, showing projections of the sample points on the curve for **(A, top)** RA and **(A, bottom)** DEAB treatments. Principal curves for clutches C, J, and E are shown. The black star indicates the beginning of the curve for the distance measurement along the trajectory. Ranking of clutches is based on the net (absolute) normalized distance of treatment samples from the corresponding Control sample for each time point. **(B)** Normalized expression shift profile calculated from the principal curve as the arc distance between the treatment and the corresponding control. Clutches are rank-ordered from lowest to highest net expression shift for *hox* genes in the RA group. Clutches A-F data from RNA-seq, clutches G-L data from HT-qPCR. **(C)** Distribution of clutches based on the trajectory determined robustness to RA and DEAB treatments relative to each other based on the RA network genes. The letters indicate the distinct clutches.

**Supplemental Table S1.** List of Gene Ontology annotations with corresponding genes and statistical significance corresponding to Supplemental Figure S3.

| Control<br>Pattern | ID         | Description                                                  | Total<br>Genes | Pathway<br>Genes | p value  | adjusted<br>q value |
|--------------------|------------|--------------------------------------------------------------|----------------|------------------|----------|---------------------|
| 000-1              | GO:0046626 | regulation of insulin receptor signaling                     | 426            | 5                | 2 90F-06 | 3 99E-03            |
|                    | 00.0040020 | pathway                                                      | 420            | 5                | 2.901 00 | 5.77E 05            |
|                    | GO:0006914 | autophagy                                                    | 426            | 14               | 7.65E-05 | 1.50E-02            |
|                    | GO:0006631 | fatty acid metabolic process                                 | 426            | 11               | 1.45E-04 | 2.24E-02            |
|                    | GO:0006096 | glycolytic process                                           |                | 7                | 5.28E-04 | 3.80E-02            |
|                    | GO:0008354 | germ cell migration                                          |                | 3                | 7.55E-04 | 4.02E-02            |
|                    | GO:0009799 | specification of symmetry                                    |                | 5                | 1.04E-03 | 4.74E-02            |
|                    | GO:0010876 | lipid localization                                           |                | 13               | 1.07E-03 | 4.74E-02            |
|                    | GO:0006518 | peptide metabolic process                                    | 302            | 44               | 5.82E-13 | 2.24E-10            |
|                    | GO:0001708 | cell fate specification                                      |                | 4                | 2.34E-03 | 2.11E-01            |
| 0001               | GO:0060485 | mesenchyme development                                       | 302            | 7                | 3.95E-03 | 2.68E-01            |
|                    | GO:0090130 | tissue migration                                             | 302            | 3                | 8.10E-03 | 4.42E-01            |
|                    | GO:0010631 | epithelial cell migration                                    | 302            | 2                | 8.83E-03 | 4.42E-01            |
|                    | GO:0048513 | animal organ development                                     | 320            | 35               | 2.34E-08 | 1.95E-05            |
| 0011               | GO:0007155 | cell adhesion                                                | 320            | 26               | 3.21E-07 | 7.75E-05            |
| 0011               | GO:0030334 | regulation of cell migration                                 | 320            | 5                | 6.53E-03 | 7.35E-02            |
|                    | GO:1905209 | positive regulation of cardiocyte differentiation            | 320            | 2                | 9.88E-03 | 8.84E-02            |
|                    | GO:0007020 | microtubule nucleation                                       | 250            | 3                | 3.01E-03 | 4.81E-01            |
| 00-1-1             | GO:0009967 | positive regulation of signal transduction                   | 250            | 9                | 5.54E-03 | 4.81E-01            |
|                    | GO:0098927 | vesicle-mediated transport between endosomal compartments    | 250            | 2                | 6.11E-03 | 4.81E-01            |
|                    | GO:0010256 | endomembrane system organization                             | 250            | 7                | 6.13E-03 | 4.81E-01            |
|                    | GO:0048513 | animal organ development                                     | 83             | 15               | 5.49E-07 | 1.25E-04            |
|                    | GO:0048732 | gland development                                            | 83             | 5                | 1.42E-06 | 1.25E-04            |
| 0111               | GO:0010557 | positive regulation of macromolecule<br>biosynthetic process | 83             | 11               | 3.29E-06 | 1.97E-04            |
|                    | GO:0031328 | positive regulation of cellular biosynthetic process         | 83             | 11               | 4.39E-06 | 1.97E-04            |
|                    | GO:0016055 | Wnt signaling pathway                                        | 83             | 8                | 2.71E-04 | 4.57E-03            |
|                    | GO:0044344 | cellular response to fibroblast growth factor<br>stimulus    | 83             | 4                | 4.94E-04 | 6.21E-03            |
|                    | GO:0010817 | regulation of hormone levels                                 | 83             | 4                | 1.92E-03 | 1.84E-02            |
|                    | GO:0042572 | retinol metabolic process                                    | 83             | 2                | 2.43E-03 | 2.28E-02            |
| 0 -1 -1 -1         | GO:0008285 | negative regulation of cell population<br>proliferation      | 15             | 3                | 7.57E-05 | 6.61E-03            |
|                    | GO:0007369 | gastrulation                                                 | 15             | 2                | 5.21E-03 | 9.93E-02            |
|                    | GO:0007100 | mitotic centrosome separation                                | 14             | 2                | 1.87E-05 | 2.16E-03            |
| 00-10              | GO:0140014 | mitotic nuclear division                                     | 14             | 2                | 5.71E-03 | 8.00E-02            |
|                    | GO:0051128 | regulation of cellular component organization                | 14             | 3                | 8.47E-03 | 8.00E-02            |
|                    | GO:0031338 | regulation of vesicle fusion                                 | 14             | 1                | 8.51E-03 | 8.00E-02            |
|                    | GO:0032418 | lysosome localization                                        | 14             | 1                | 9.92E-03 | 8.00E-02            |
| 0010               | GO:0045663 | positive regulation of myoblast differentiation              | 4              | 1                | 2.84E-03 | 1.71E-02            |
|                    | GO:0045445 | myoblast differentiation                                     | 4              | 1                | 3.25E-03 | 1.71E-02            |

| Gene ID                | Gene Names     | Module<br>Numbers | Module<br>Colors | RA-CTRL<br>pattern | DEAB-CTRL<br>pattern |
|------------------------|----------------|-------------------|------------------|--------------------|----------------------|
| Xelaev18001038         | LOC108703560   | 5                 | green            | 1_1_1_1            | 0_011                |
| Xelaev18002824         | sema3f.L       | 5                 | green            | 0_0_1_1            | 0_0_01               |
| Xelaev18006802         | nfib.L         | 5                 | green            | 0_0_1_1            | 0_0_01               |
| Xelaev18007035         | cmtm5.L        | 5                 | green            | 1_1_1_0            | 0_011                |
| Xelaev18010181         | tdgf1.2.S      | 5                 | green            | 0_1_1_0            | 0_0_01               |
| Xelaev18012533         | LOC108708243   | 5                 | green            | 0_0_0_1            | 0_0_01               |
| Xelaev18013332         | prph.L         | 5                 | green            | 1_1_1_1            | 0_0_01               |
| Xelaev18014991         | hnf1b.S        | 5                 | green            | 0_1_1_0            | 0_011                |
| Xelaev18015206         | LOC108709115   | 5                 | green            | 0_0_1_0            | 0_0_01               |
| Xelaev18024402         | pax6.S         | 5                 | green            | 0_0_1_0            | 0_0_01               |
| Xelaev18024482         | LOC108715248   | 5                 | green            | 0_1_1_0            | 0_0_01               |
| Xelaev18025805         | abhd14a.S      | 5                 | green            | 0_1_0_0            | 0_01_0               |
| Xelaev18030578         | LOC108718689   | 5                 | green            | 0_1_1_0            | 0_011                |
| Xelaev18030982         | hoxa1.L        | 5                 | green            | 1_1_1_0            | -1111                |
| Xelaev18031638         | gcnt2.L        | 5                 | green            | 0_0_0_1            | 0_01_0               |
| Xelaev18033067         | hoxa1.S        | 5                 | green            | 1_1_1_0            | -1111                |
| Xelaev18033068         | hoxa2.S        | 5                 | green            | 1_1_0_0            | 0111                 |
| Xelaev18033069         | hoxa3.S        | 5                 | green            | 1_0_0_0            | 0_0_01               |
| Xelaev18033072         | hoxa5.S        | 5                 | green            | 0_0_1_0            | 0_0_01               |
| Xelaev18034595         | cyp26c1.L      | 5                 | green            | 0_1_1_1            | 0111                 |
| Xelaev18035730         | dhrs3.L        | 5                 | green            | 1_1_1_0            | -1_0_01              |
| Xelaev18036884         | cyp26a1.S      | 5                 | green            | 1_1_1_0            | -11_0_0              |
| Xelaev18036885         | cyp26c1.S      | 5                 | green            | 1_1_1_1            | 0_011                |
| Xelaev18037155         | neurog3.S      | 5                 | green            | 0_1_0_0            | 0_0_01               |
| Xelaev18037556         | LOC108697667   | 5                 | green            | 1_1_1_0            | 01_0_0               |
| Xelaev18038437         |                | 5                 | green            | 0_0_1_0            | 0_0_01               |
| Xelaev18039368_meis3.L | meis3.L        | 5                 | green            | 0_1_0_0            | -11_0_0              |
| Xelaev18041724         | LOC108699981   | 5                 | green            | 0_1_1_0            | 0_011                |
| Xelaev18044027         | LOC108701808   | 5                 | green            | 0_1_1_0            | 01_0_0               |
| Xelaev18044028         |                | 5                 | green            | 1_1_1_0            | 0_0_01               |
| Xelaev18044734         | hoxd1.L        | 5                 | green            | 0_1_0_0            | -1_0_0_0             |
| Xelaev18045501         | LOC100489456.L | 5                 | green            | 0_0_1_0            | 0_011                |
| Xelaev18045983         | hoxb1.S        | 5                 | green            | 0_1_0_0            | 0111                 |
| Xelaev18047280         | gbx2.1.L       | 5                 | green            | 0_1_1_1            | 0111                 |

## Supplemental Table S2. Weighted Gene Correlation Network Analysis (WGCNA)

| Gene name | Gene ID   | aa position | aa1 | aa2 |   |
|-----------|-----------|-------------|-----|-----|---|
| aldh1a2   | 18020673m | 240         | Р   | S   | _ |
| cyp26c1   | 18034595m | 388         | F   | Ι   |   |
| rbp1      | 18027898m | 26          | Т   | Ι   |   |
| rbp1      | 18027898m | 149         | Е   | Κ   |   |
| rbp1      | 18027898m | 27          | Н   | R   |   |
| rdh10     | 18033799m | 133         | Н   | R   |   |
| rdh13     | 18026677m | 14          | С   | F   |   |
| sdr16c5   | 18032037m | 35          | А   | Т   |   |
| stra6     | 18018036m | 610         | S   | Ν   |   |
|           | 100100000 | 010         | ~   |     |   |

Supplemental Table S3. RA network component polymorphisms between Xenopus strains<sup>1</sup>

<sup>1</sup>based on (Savova et al., 2017)