

Figure S1. Inactivation of cytidylate kinase by an R41E amino acid substitution. The catalytic activity of wild-type and mutated cytidylate kinase (Cmk) was compared *in vitro* by using thin layer chromatography on PEI-cellulose to examine their ability to convert CMP + ATP into CDP + ADP. Nucleotides were detected by UV shadowing on a fluorescent TLC plate. CDP and ADP not treated with either form of the enzyme were included as markers. Lanes 3 and 4 are identical except that the phosphorylation of CMP by wild-type cytidylate kinase was allowed to proceed three times longer in lane 4.

Figure S2. Influence of cytidylate kinase on the phosphorylation state and decay rate of *ydfG* mRNA in *E. coli*.

A. Effect of cytidylate kinase on the percentage of *ydfG* 5' ends that were monophosphorylated, as determined by PABLO. Each value is the average of three biological replicates. Error bars correspond to standard deviations.

B. Effect of cytidylate kinase on the half-life of *ydfG* mRNA. The decay of *ydfG* mRNA was monitored as a function of time after inhibiting transcription with rifampicin, plotted semilogarithmically, and analyzed by linear regression. Representative experiments are shown.

Figure S3. Ability of cytidylate kinase to convert the 5' triphosphate of an A-initiated RNA to a diphosphate *in vitro*.

Triphosphorylated $AG(CU)_{13}$ bearing a single radiolabeled phosphate (*) between the first two nucleotides was synthesized by *in vitro* transcription, and the ability of cytidylate kinase (Cmk) to transfer the 5'-terminal γ -phosphate to CMP was analyzed *in vitro* by subsequent alkaline hydrolysis and thin layer chromatography on PEI-cellulose to examine the RNA reaction products. Radiolabeled nucleotides were detected by autoradiography. The alkaline hydrolysis products of triphosphorylated AG(CU)₁₃ (TriP) and diphosphorylated AG(CU)₁₃ (DiP) not treated with the enzyme were included as markers. p, phosphate. –, no enzyme added.

Figure S4. Inability of cytidylate kinase to phosphorylate the 5' end of a monophosphorylated C-initiated RNA *in vitro*.

Monophosphorylated $CG(A)_{26}$ bearing a single radiolabeled phosphate (*) between the first two nucleotides was synthesized by *in vitro* transcription, and the ability of cytidylate kinase (Cmk) to phosphorylate its 5' end in the presence of ATP was analyzed *in vitro* by subsequent alkaline hydrolysis and thin layer chromatography on PEI-cellulose to examine the RNA reaction products. Radiolabeled nucleotides were detected by autoradiography. The alkaline hydrolysis products of monophosphorylated $CG(A)_{26}$ (MonoP) and diphosphorylated $CG(A)_{26}$ (DiP) not treated with the enzyme were included as markers. p, phosphate. –, no enzyme added. #, radiolabeled pppGp released from a triphosphorylated $G(A)_{26}$ contaminant by alkaline hydrolysis.

	Monophosphorylated (%)					
	Wild-type	∆rppH	∆cmk	∆dapF		
yeiP	37.3 ± 8.6	4.5 ± 1.0	11.4 ± 2.0	13.6 ± 2.7		
rpsT P1	57.1 ± 2.9		37.3 ± 6.5			
trxB	40.6 ± 9.4		27.3 ± 9.0			
yajQ	67.5 ± 3.4		51.7 ± 3.9			
ydfG	20.9 ± 2.1		12.5 ± 2.2			
yfcZ	55.0 ± 8.0		36.0 ± 3.5			

Table S1A. Effect of $\triangle cmk$ on the 5' phosphorylation state of A-initiated transcripts.

Table S1B. Similar effect of *cmk*-R41E, *cmk* Δ 95-142, and Δ *cmk* on the 5' phosphorylation state of *yeiP* mRNA.

Monophosphorylated (%)						
	<i>cmk</i> -R41E + <i>cmk</i> ∆95-142					
Wild-type	Δcmk	<i>cmk</i> -R41E	WT cmk	<i>cmk</i> ∆95-142	+ WT <i>cmk</i>	
35.6 ± 3.1	13.0 ± 3.7	15.5 ± 4.2	37.3 ± 8.0	16.0 ± 4.3	37.8 ± 7.4	

Table S1C. Epistatic effect of *cmk* and *dapF* mutations on the 5' phosphorylation state of A-initiated transcripts.

Monophosphorylated (%)						
Wild-type cmk-R41E ∆dapF ∆dapF						
yeiP	46.1 ± 7.0	20.2 ± 2.5	22.7 ± 0.9	20.7 ± 2.9		
ydfG	33.0 ± 2.7	14.8 ± 1.5	16.5 ± 3.6	14.2 ± 2.5		

Table S1D. Effect of *cmk*-R41E on the 5' phosphorylation state of C-initiated transcripts.

	Monophosphorylated (%)					
	Wild-type ∆ <i>rppH</i> cmk-R41E					
rpsT P2	14.6 ± 2.1	3.3 ± 0.5	45.5 ± 6.5			
efp	16.5 ± 1.3	4.5 ± 0.4	27.9 ± 2.7			
efp-C1A	33.7 ± 9.3	4.4 ± 1.8	14.8 ± 1.6			

Table S1E.	Cmk-inde	pendent p	bhosp	horylation	state of	processed R1.3-	yeiP mRNA.
------------	----------	-----------	-------	------------	----------	-----------------	------------

Monophosphorylated (%)						
	cmk-R41E					
Wild-type	∆ <i>rppH</i>	<i>cmk</i> -R41E	∆ rppH			
99.6 ± 6.0	100.0 ± 5.4	100.6 ± 6.9	102.8 ± 8.0			

Table S1F. Effect of *cmk*-R41E on the 5' phosphorylation state of *efp* and *efp*-C1A mRNA in cells lacking RppH.

	Monophosphorylated (%)				
		<i>cmk</i> -R41E			
	Wild-type	∆ rppH	<i>cmk</i> -R41E	∆ rppH	
efp	19.8 ± 4.2	4.8 ± 1.4	32.1 ± 4.5	11.9 ± 0.9	
efp-C1A	35.3 ± 1.0	5.5 ± 0.4	18.7 ± 3.2	5.4 ± 0.1	

Table S2. mRNA half-lives.

	Half-life (min)						
	Wild-type	∆rppH	∆cmk	cmk-R41E	<i>cmk</i> ∆95-142	<i>стк</i> -R41Е ∆rppH	
yeiP	1.4 ± 0.1	14.8 ± 2.5	2.9 ± 0.2	3.3 ± 0.2	2.9 ± 0.1		
ydfG	2.4 ± 0.2	12.1 ± 2.6		3.6 ± 0.5			
rpsT P2	1.8 ± 0.2	9.0 ± 0.6		2.8 ± 0.2			
efp	1.4 ± 0.1	5.1 ± 0.6		2.0 ± 0.1			
efp monoP						1.1 ± 0.1	
<i>efp</i> triP/diP						12.2 ± 2.3	

Table S3A. Measurements used to calculate the capping efficiencies of *yeiP* standards synthesized by *in vitro* transcription.

Measured values				5' homo	geneity
Y _{TS}	Y _{DS}	Y _{MS}	E _{LS}	D _S	Ms
0.106 ±	0.625	0.000	0.751	0.930	0.978
0.041	± 0.120	± 0.000	± 0.057		

 Y_{TS} , Y_{DS} , and Y_{MS} are the fractional PACO ligation yields obtained for the triphosphorylated, diphosphorylated, and monophosphorylated standards, respectively. E_{LS} is the PABLO ligation efficiency of fully monophosphorylated RNA. The Y and E values correspond to the mean and standard deviation of 2-3 independent measurements. D_S and M_S are the calculated fractions of those standards that are diphosphorylated and monophosphorylated, respectively.

Table S3B. Calculated capping efficiencies of <i>yeiP</i> standards synthesized by <i>in vitr</i>	Ο
transcription.	

	Capping efficiencies			
	ET	E _D	E _M	
Monte Carlo	+ 0.056 0.140 - 0.057	+ 0.192 0.870 - 0.189	+ 0.001 - 0.003 - 0.001	
Direct calculation	0.142	0.890	- 0.003	

 E_T , E_D , and E_M are the fractional capping efficiencies calculated for triphosphorylated, diphosphorylated, and monophosphorylated RNA, respectively, with 0 being no capping and 1 being complete capping. Each efficiency determined by Monte Carlo simulation corresponds to the peak of an asymmetric distribution, and the error range (±) corresponds to a confidence level of 68.3%, equivalent to one standard deviation. For comparison, the capping efficiencies were also calculated directly; these values agree well with the peak values obtained by Monte Carlo simulation, but only the simulation allowed error ranges to be determined. A minor discrepancy versus the theoretical minimum (0.000) resulted from the small mathematical correction factors that were used.

	PA	CO	PABLO		
	Y _D	E _{LD}	Y _M	E _{LM}	
Wild type	0.349	0.623	0.240	0.673	
vviid-type	± 0.028	± 0.022	± 0.025	± 0.013	
∆rppH	0.653	0.706	0.029	0.652	
	± 0.009	± 0.009	± 0.009	± 0.050	
omk P41E	0.551	0.617	0.105	0.673	
CIIIA-1241E	± 0.042	± 0.010	± 0.030	± 0.013	

Table S3C. Measurements used to calculate the phosphorylation state of *yeiP* mRNA in *E. coli*.

The phosphorylation state of *yeiP* mRNA was compared in wild-type, $\Delta rppH$, and *cmk*-R41E *E. coli* cells by PACO and PABLO. Y_D and Y_M are the fractional PACO and PABLO ligation yields. E_{LD} and E_{LM} are the PABLO ligation efficiencies of fully monophosphorylated RNA. The values listed correspond to the mean and standard deviation of measurements on three biological replicates.

		DiP	MonoP
Wild-type	Monte Carlo	+ 0.187 0.582 – 0.149	+ 0.041 0.311 - 0.039
	Direct calculation	0.661	0.312
∆rppH	Monte Carlo	+ 0.301 0.969 – 0.219	+ 0.021 - 0.024 - 0.026
	Direct calculation	1.110	- 0.032
cmk-R41E	Monte Carlo	+ 0.321 0.943 - 0.219	+ 0.049 0.085 - 0.049
	Direct calculation	1.090	0.083

Table S3D. Phosphorylation state of yeiP mRNA in E. coli.

The phosphorylation state of *yeiP* mRNA was compared in wild-type, $\Delta rppH$, and *cmk*-R41E *E. coli* cells. Each fractional value determined by Monte Carlo simulation corresponds to the peak of an asymmetric distribution, and the error range (±) corresponds to a confidence level of 68.3%, equivalent to one standard deviation. For comparison, the fractional amounts of diphosphorylated and monophosphorylated *yeiP* mRNA were also calculated directly; these values agree well with the peak values obtained by Monte Carlo simulation, but only the simulation allowed error ranges to be determined. Minor discrepancies versus the theoretical maximum (1.000) or minimum (0.000) resulted from the small mathematical correction factors that were used and are either within the margin of error or close to it.

Table S4. Strains used in this study

Strain	Genotype	Source
BW25113	rrnB3 ∆lacZ4787 hsdR514 ∆(araBAD)567 ∆(rhaBAD)568 rph-1	Datsenko and Wanner, 2000
MH5	BW25113 <i>∆rppH</i>	Deana et al., 2008
MH410	BL21(DE3) <i>∆rna rne</i> -131	Foley et al., 2015
MH314	BW25113	This study
MH379	BW25113 <i>∆cmk</i>	This study
MH453	BW25113 <i>cmk</i> ∆95-142	This study
MH454	BW25113 <i>cmk</i> -R41E	This study
MH515	BW25113 dapF-FLAG	This study
MH507	BW25113 ∆ <i>rppH dapF</i> -FLAG	This study
MH508	BW25113 cmkR41E dapF-FLAG	This study
MH161	BW25113 <i>rppH</i> -FH	Luciano et al., 2012
MH511	BW25113 ∆ <i>dapF rppH</i> -FH	This study
MH512	BW25113 cmkR41E rppH-FH	This study
MH514	BW25113 ∆ <i>dapF cmk</i> -R41E	This study
MH476	BW25113 mc-105	This study
MH487	BW25113 ∆ <i>rppH cmk</i> -R41E	This study
MH471	BW25113 ∆ <i>efp</i>	This study
MH489	BW25113 ∆ <i>efp</i> ∆ <i>rppH</i>	This study
MH488	BW25113 <i>∆efp cmk</i> -R41E	This study
MH506	BW25113 ∆ <i>efp</i> ∆ <i>rppH cmk</i> -R41E	This study

Table S5. Plasmids used in this study

Plasmid	Description	Source
pYeiP-GFP	pCM128 derivative expressing the 5' UTR and first 20 amino acids of <i>yeiP</i> fused in- frame to superfolder GFP	This study
pPM30 cmk	<i>cmk</i> cloned between the <i>EcoR</i> I and <i>BamH</i> I sites of pPM30	This study
pYeiP1	<i>yeiP</i> cloned between the <i>EcoR</i> I and <i>Pst</i> I sites of pBR322fd	Richards et al., 2012
pYdfG1	<i>ydfG</i> cloned between the <i>EcoR</i> I and <i>Pst</i> I sites of pBR322fd	Luciano et al., 2012
pTrxB1	<i>trxB</i> cloned between the <i>EcoR</i> I and <i>Pst</i> I sites of pBR322fd	Richards et al., 2012
pYajQ1	<i>yaj</i> Q cloned between the <i>EcoR</i> I and <i>Pst</i> I sites of pBR322fd	This study
pYfcZ1	<i>yfcZ</i> cloned between the <i>EcoR</i> I and <i>Pst</i> I sites of pBR322fd	Luciano et al., 2012
pEfp1	<i>efp</i> cloned between the <i>Cla</i> I and <i>Pst</i> I sites of pBR322fd	This study
pEfp1-C1A	pEfp1 with A substituted for the original C at the +1 transcription start site	This study
pR1.3-yeiP	T7 Φ gene R1.3 stem-loop fused to the <i>yeiP</i> 5' UTR of pYeiP1	This study
pRE112 rppH-FH	Allelic exchange vector for adding a C- terminal FLAG-His ₆ tag to chromosomally encoded RppH	Luciano et al., 2012
pRE112 dapFFLAG	Allelic exchange vector for adding a C- terminal FLAG tag to chromosomally encoded DapF	This study
pRE112 cmk∆95- 142	Allelic exchange vector for making the chromosomal mutant <i>cmk</i> Δ95-142	This study
pRE112 cmkR41E	Allelic exchange vector for making the chromosomal mutant <i>cmk-R41E</i>	This study
pPlacHis6-cmk	pACYC177 derivative expressing N-terminally His_6 -tagged Cmk under P_{lac} control	This study
pPlacHis6-cmkR41E	pACYC177 derivative expressing N-terminally His ₆ -tagged Cmk-R41E under P _{lac} control	This study

Name	Sequence	Purpose
DZyeiP69	GTA ATT CAG TAG GCT AGC TAC AAC GAC ATA CCT TTT	10-23 DNAzyme for cutting 69 nucleotides from the 5' end of <i>yeiP</i> and <i>yeiP</i> -U2G, and 137 nucleotides from the 5' end of R1.3- <i>yeiP</i>
DZtrxB95	GCC GCG TAG AGG CTA GCT ACA ACG AAG CAG CGG TG	10-23 DNAzyme for cutting 95 nucleotides from the 5' end of <i>trxB</i>
DZyfcZ106	GGA GTT GTC CAG GCT AGC TAC AAC GAA ATG GTG CCA	10-23 DNAzyme for cutting 106 nucleotides from the 5' end of <i>yfcZ</i>
DZydfG87	CCC TTG TTG AAG GCT AGC TAC AAC GAA AAA CGA CGA	10-23 DNAzyme for cutting 87 nucleotides from the 5' end of <i>ydfG</i>
DZyajQ96	ACT CCA CTT CGG GCT AGC TAC AAC GAG GCT CGC GTT	10-23 DNAzyme for cutting 96 nucleotides from the 5' end of <i>yajQ</i>
DZefp87	TCT AAC ATG AGG CTA GCT ACA ACG ATT TAA GAC CA	10-23 DNAzyme for cutting 87 nucleotides from the 5' end of <i>efp</i> and <i>efp</i> -C1A
DZrpsT152	TCA GAC TGA AGG CTA GCT ACA ACG AGG CGC GCT TC	10-23 DNAzyme for cutting 152 nucleotides from the 5' end of <i>rpsT</i> P1 and 63 nt from the 5' end of <i>rpsT</i> P2
X22	GAA CAA TAT GAA TGA TAA CTT G	X oligo for PACO/PABLO analysis
X91	CCC CCC CCC CCC CCC CCC CCC CCC CCC ACC CCC C	X oligo for PACO/PABLO analysis of R1.3- <i>yeiP</i>
Y-yeiP	AGT CGA AAA TGT CAA AAA TAT CAA GTT ATC ATT CAT ATT GTT C	Y oligo for PABLO analysis of <i>yeiP</i>
Y-yeiP-U2G	AGT CGA AAA TGT CAA AAA TCT CAA GTT ATC ATT CAT ATT GTT C	Y oligo for PABLO analysis of <i>yeiP</i> -U2G
Y-yeiP-R1.3L	TGT AGA TCT ATT GGT TAA ATG CAA GTT ATC ATT CAT ATT GTT C	Y oligo for PABLO analysis of R1.3- <i>yeiP</i>
Y-trxB	AGT TAT CAT TCA TAT TGT TC	Y oligo for PABLO analysis of <i>trxB</i>
yfcZ Y1	GGT GCC AGA TAA ACG TTC AAG TTA TCA TTC ATA TTG TTC	Y oligo for PABLO analysis of <i>yfcZ</i>
ydfG Y1	CCT CAA CGC TTT TGT GTC AAG TTA TCA TTC ATA TTG TTC	Y oligo for PABLO analysis of <i>ydfG</i>
yajQ Y1	CTC TCC CTT CAT TTT TGA TCA AGT TAT CAT TCA TAT TGT TC	Y oligo for PABLO analysis of <i>yajQ</i>

Y-efp	TGG TAG CTA AGC CAC AAA ATG CAA GTT ATC ATT CAT ATT GTT C	Y oligo for PABLO analysis of <i>efp</i>
Y-efp-C1A	TGG TAG CTA AGC CAC AAA ATT CAA GTT ATC ATT CAT ATT GTT C	Y oligo for PABLO analysis of <i>efp</i> -C1A
Y-P1	ACT CGT TAC GTA GTG ATC AAG TTA TCA TTC ATA TTG TTC	Y oligo for PABLO analysis of <i>rpsT</i> P1
Y-P2	TCT ATA TGG ACA ATT CAA AGC AAG TTA TCA TTC ATA TTG TTC	Y oligo for PABLO analysis of <i>rpsT</i> P2
yeiP probe	TTC GTT CGC TCT TGG CAT CG	Northern blot probe for <i>yeiP</i> , <i>yeiP</i> -U2G, and R1.3- <i>yeiP</i>
ydfG probe	CAC CAA AAC CTG CCG TTG CTC CAG T	Northern blot probe for ydfG
trxB probe	GTG TTT GGT CGT GCC CAT GAG	Northern blot probe for <i>trxB</i>
yfcZ probe	CAC CAA AAC CTG CCG TTG CTC CAG T	Northern blot probe for <i>yfcZ</i>
yajQ probe	CAG AGA CAA TAT CGA AAG ATG GC	Northern blot probe for <i>yajQ</i>
efp probe	ACG TTG CCA TAA GGC CCT CT	Northern blot probe for <i>efp</i> and <i>efp</i> -C1A
rpsT probe	GTC CAA CTC CCA AAT GTG TTC	Northern blot probe for <i>rpsT</i> P1 and <i>rpsT</i> P2
RACE-1	CGA CTG GAG CAC GAG GAC ACT GAC ATG GAC TGA AGG AGT AGrA rArA	RNA oligonucleotide for 5' RACE
RACE+	CGA CTG GAG CAC GAG GAC ACT GA	Forward primer for 5' RACE
RACEnest	GGA CAC TGA CAT GGA CTG AAG GAG TA	Forward nested primer for 5' RACE
efp rev	GAC CAT TCC ACA GAG TTA CG	<i>efp</i> -specific primer for 5′ RACE
rpsTP2 rev	ATC TGT GCA GTC AGG TTA GC	<i>rpsT</i> P2-specific primer for 5' RACE
CGAA sense	AAA AAA GAT CTC GCG GAA TTC AAA TTA ATA CGA CTC ACT ATT CGA	Sense template for CG(A) ₂₆ synthesis by in vitro transcription
CGAA antisense	TTT TTT TTT TTT TTT TTT TTT TTT GAA TAG TGA GTC GTA TTA ATT TGA ATT CCG CGA GAT CTT TTT T	Antisense template for CG(A) ₂₆ synthesis by in vitro transcription
AGCU sense	AAA AAA GAT CTC GCG GAA TTC AAA TTA ATA CGA CTC ACT ATT AGC	Sense template for AG(CU) ₁₃ synthesis by in vitro transcription