

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Systematic review: the Androgens In Men Study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-048013
Article Type:	Original research
Date Submitted by the Author:	11-Jan-2021
Complete List of Authors:	Marriott, Ross; The University of Western Australia, School of Population and Global Health Harse, Janis; The University of Western Australia, School of Population and Global Health Murray, Kevin; The University of Western Australia, School of Population and Global Health Yeap, Bu; The University of Western Australia, Medical School; Harry Perkins Institute of Medical Research
Keywords:	EPIDEMIOLOGY, Sex steroids & HRT < DIABETES & ENDOCRINOLOGY, STATISTICS & RESEARCH METHODS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	1	Systematic review: the Androgens In Men Study.
5 6	2	
7 8 9	3	Corresponding author:
10 11	4	Ross J. Marriott PhD, School of Population and Global Health, Faculty of Health and
12 13	5	Medical Sciences, The University of Western Australia, Clifton Street Building, Clifton
14 15 16	6	Street, Nedlands 6009, Western Australia, Australia.
17 18	7	Email: ross.marriott@uwa.edu.au; Telephone: +61 8 6488 1299
19 20	8	
21 22 22	9	Authors:
23 24 25	10	Ross J. Marriott, School of Population and Global Health, The University of Western
26 27	11	Australia, Nedlands 6009, Australia.
28 29 20	12	Janis Harse, School of Population and Global Health, The University of Western Australia,
30 31 32	13	Nedlands 6009, Australia.
33 34	14	Kevin Murray, School of Population and Global Health, The University of Western Australia,
35 36	15	Nedlands 6009, Australia.
37 38 39	16	Bu B Yeap, Medical School, The University of Western Australia, Perth 6009, Australia.
40 41	17	
42 43	18	Short title:
44 45 46	19	Systematic review: Androgens In Men Study
46 47 48	20	
49 50	21	Keywords:
51 52	22	Testosterone, Individual Participant Data, Cardiovascular Disease, Cancer, Mortality,
53 54 55	23	Dementia, Meta-analysis.
55 56 57 58 59 60	24	

1					
2 3	25	Word count, excluding title page, abstract, strengths and limitations, references,			
4 5	20				
6	26	acknowledgements, contributions, figures and tables: 2,724 words.			
7 8 27 9					
10 11	28	ABSTRACT			
12 13	29	Objectives			
14 15 16	30	The overall study aim is to clarify the relation of endogenous sex hormones (primarily			
17 18	31	testosterone) with major health outcomes in men.			
19 20	32	Setting			
21 22 23	33	Community-dwelling men.			
23 24 34 Participants 25					
26 27	35	20,180 adult males participated in the final set of studies identified and selected from a			
28 29	36	systematic review. Eligible studies included prospective cohort studies with plasma or serum			
30 31 32	37	testosterone concentrations measured for adult males using mass spectrometry with at least 5			
 33 38 years of follow-up data, with incident cardiovascular, cancer, mortality, dementia c 34 					
35 36	 35 39 cognitive events recorded. Only published or grey literature items written in English 				
37 38 39	40	considered.			
40 41	41	Primary and secondary outcome measures			
42 43	42	Planned prospective outcome measures: cardiovascular disease (CVD) events, CVD deaths,			
44 45 46	43	all-cause mortality, cancer deaths, cancer diagnoses, cognitive decline, dementia. Outcome			
47 48	44	measures analysed in this paper were of the published estimates most frequently reported in			
49 50	45	selected studies: CVD deaths, all-cause mortality. All planned outcomes will be investigated			
51 52	46	for the selected studies as a separate series of individual participant data (IPD) meta-analyses.			
53 54 55	47	Results			
56 57	48	Screening of 1,994 de-duplicated items identified 9 suitable studies, with an additional two			
58 59 60	49	identified by colleagues (11 in total). Summary estimates of mean testosterone concentration			

and age at recruitment for 20,180 adult males were 15.4±0.7nmol/L and 64.9±3.3yr. Despite considerable variation in mean testosterone, a meta-regression estimated no significant dependence on mean age at recruitment among studies (Slope = -0.03, 95% CI -0.11 - 0.06). Meta-analyses demonstrated no significant effect of a 5 nmol/L increase in testosterone on the risk of all-cause mortality (hazard ratio, HR = 0.96, 95% CI 0.89 – 1.03) or death from CVD (HR = 0.95, 95% CI 0.83 – 1.08). Conclusions Analyses of published estimates did not demonstrate associations of endogenous testosterone with CVD deaths or with all-cause mortality. Suggested further research includes the planned IPD meta-analyses for selected studies, including scope for investigating non-linear effects. Registration PROSPERO: CRD42019139668. STRENGTHS AND LIMITATIONS OF THIS STUDY This is the first systematic review on this topic to restrict selections to prospective cohort studies of community-dwelling men with testosterone measured using mass spectrometry: the "gold standard" method. Systematic searches were made of both the published and grey literature using online search tools. Meta-analyses used estimates obtained from studies with at least five years of follow-up data and from fitted models which controlled for (at least) the age, smoking status, and body mass index or waist circumference of participants. Meta-analyses of published estimates were limited to assuming linear relationships, however subsequent IPD meta-analyses planned to arise from this work will look to explore non-linear associations.

BMJ Open

Analyses are of observational data, and so summary estimates will not fully eliminate the
 possibility of confounding arising from unadjusted effects.

78 1. INTRODUCTION

What does a low testosterone level mean for a man's health? In men, levels of testosterone, the key male sex hormone (androgen), decline with increasing age, yet the basis for and health consequences of this phenomenon remain unclear.[1-5] Many middle- and older-aged men are told their levels are "too low", explaining the 12-fold increase in global testosterone prescriptions over 2000-2011, costing \$1.8 billion.[6] The Androgens In Men Study (AIMS) will seek to clarify the associations of androgens (primarily testosterone) with key health outcomes in men (mortality, cardiovascular disease, cancer, cognitive decline and dementia). The AIMS will conduct a systematic review and a series of individual participant data meta-analyses to address these questions. In this paper we present the systematic review and meta-analyses using published estimates from prospective cohort studies with at least 5 years of follow-up data and testosterone measured using only mass spectrometry, the most reliable method.[7]

2. METHODS

This systematic review, conducted 14 June—31 December 2019, was of "etiology and/or risk type" studies.[8, 9] The pre-specified purpose of the systematic review was to identify studies with suitable individual participant-level data (IPD) for collaborating with on a series of IPD meta-analyses. The PEO (Population, Exposure, Outcomes) characteristics included: adult men in the general community; endogenous circulating sex hormone concentration (primarily testosterone); incident cardiovascular disease (CVD), mortality, cancers, cognitive decline, dementia. Subgroup IPD meta-analyses are also planned for heart failure, myocardial

infarction, stroke; colorectal cancer, lung cancer, prostate cancer. A protocol was submitted

to PROSPERO on 23 July 2019 and registered on 20 November 2019 (registration number

2	
3 4	100
5 6	101
7 8	102
9 10 11	103
12 13	104
14 15	105
16 17	106
18 19 20	107
20 21 22	108
23 24	109
25 26	110
27 28 29	111
30 31	112
32 33	113
34 35	114
36 37	115
38 39 40	115
41 42	117
43 44	
45 46	118
47 48 49	119
50 51	120
52 53	121
54 55	122
56 57 58	123
58 59 60	124

1

103

CRD42019139668) and a protocol article has been published.[10]

104 2.1. Literature search and screening Four online search tools were used to identify available published (MEDLINE, EMBASE) 105 106 and grey literature (OpenGrey, Mednar) items (journal articles, reports, theses, webpage 107 articles) reporting on suitable prospective cohort studies (the underlying unique sources of 108 data). Two reviewers (RJM, JH) independently screened the de-duplicated items against pre-109 specified criteria using Rayyan.[11] To optimise efficiency, title and abstract screenings were 110 initially conducted (Step 1), followed by full text screenings of the selected abstracts (Step 2). 111 Disagreements were resolved through subsequent discussions between reviewers and 112 agreement quantified using Cohen's Kappa and percent agreement. Only items reporting on 113 prospective population-based cohort studies of adults (combined sexes or of men alone) with 114 mass spectrometry measurements of testosterone and at least five years of subsequent follow-115 up data on incident CVD events, cancer or dementia diagnoses, cognition assessments, or on 116 all-cause, CVD, or cancer deaths were selected. The Newcastle-Ottawa Quality Assessment 117 Scale for Cohort Studies (NOS) was used to assess quality of the selected items.[12] The 118 terms and full criteria used for the MEDLINE search, PRISMA checklist, NOS star ratings 119 and additional methods details are included in Supplementary Material. 120

121

2.2. Meta-analyses of published estimates

122 Published estimates (author names, publication year, cohort study name, number of 123 participants analysed, model covariates, testosterone statistics (overall and for individual 124 exposure levels), participant age statistics, numbers of outcome events, follow-up time,

Page 7 of 56

1

BMJ Open

2	
2	
4	
3 5 6 7 8 9 10	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
21	
20 21 22 23 24 25 26 27 28 29	
23	
∠_) \^/	
24	
25	
26	
27	
28	
29	
29 30	
20	
31	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
<u> </u>	

125	hazard ratios (HRs) and 95% CIs of the most fully-adjusted model) were extracted from
126	selected articles by the first author (RJM). Testosterone statistics were converted into
127	standard units (nmol/L) and values representing categorical ranges were determined
128	following Wang et al.[13] If not reported, the numbers of participants and events within
129	categories of testosterone, and the means of participant ages and testosterone concentrations
130	at baseline, were calculated. The numbers of participants within quartile or quintile categories
131	were calculated by dividing the total sample size by four or five. The numbers of events
132	within categories were solved using Newton's method by applying the algorithm of
133	Greenland and Longnecker.[14] Means and standard deviations for testosterone and age were
134	calculated from presented quartile estimates using the Box-Cox method of McGrath et al.,
135	which does not make distributional assumptions.[15]
136	
137	A random effects meta-regression of mean baseline testosterone concentration on the mean
138	participant age at baseline was conducted using published estimates from: (i) only those items
139	identified in systematic searches; and (ii) all suitable articles, including those found outside of
140	systematic searches. A t-test of the meta-regression slope coefficient's departure from zero
141	was done after applying the Knapp and Hartung adjustment.

142

60

Dose-response random effects meta-analyses (DR-MAs) were conducted to summarise published HR estimates for the associations of baseline testosterone concentrations with incident all-cause deaths and with CVD cause-specific deaths. Estimates from an additional article that had not been selected from systematic searches (Yeap et al[16]) were also used because it reported suitable estimates from one of the selected studies, and had been published within the literature search period. Contour-enhanced funnel plots were inspected for publication bias and patterns in heterogeneity and Cochran Q tests for heterogeneity (I²),

2		
3 4	150	as well as regression tests for funnel plot asymmetry,[17] were done.
5 6	151	
7 8 9	152	The "metafor" package was used for meta-regressions, forest plots and funnel plots, the
9 10 11	153	"doseresmeta" package for DR-MAs, and the "estmeansd" package for calculating study
12 13	154	means and standard deviations from published quartile statistics in R version 4.0.2.[18-21]
14 15 16	155	
17 18	156	2.3. Patient and public involvement
19 20	157	This work uses existing published data. Patients and public were not involved in the design,
21 22	158	conduct, reporting, or dissemination plans of the systematic review or meta-analyses.
23 24 25	159	
25 26 27	160	3. RESULTS
28 29	161	
30 31 32	162	3.1. Literature search and study selection
32 33 34	163	The literature search returned 2,177 items (1,738 published and 439 from grey literature),
35 36	164	with 1,994 items remaining after duplicates had been removed, and after excluding two
37 38	165	Mednar items that had insufficient information available to review (Fig. 1). These included
39 40 41	166	1,764 journal articles, 111 webpage articles, 81 theses, and 38 unpublished reports/other
42 43	167	documents. Systematic screening of the returned, deduplicated items excluded 1,968,
44 45	168	classified five as "Maybe", and selected 20 as suitable. Most (92.1%) items were excluded
46 47 48	169	from screening titles and abstracts at Step 1, with a much smaller percentage (6.6%) excluded
49 50	170	from screening the 157 full text items in Step 2. One item could not be screened in Step 2
51 52	171	because the full text was not available. Inter-reviewer agreement was a Cohen's Kappa
53 54	172	$\kappa = 0.69$ (or 96.0 percent agreement) for Step 1 and $\kappa = 0.82$ (or 98.1 percent agreement) for
55 56 57	173	Step 2.
58 59 60	174	
00		

1

Page 9 of 56

BMJ Open

The 20 selected items collectively reported on eight prospective cohort studies: three from Australia (Busselton Health Study BHS, The Concord Health and Ageing in Men Project CHAMP, The Health In Men Study HIMS); three from Europe (European Male Ageing Study EMAS, The MrOS Osteoporotic Fractures in Men study in Sweden, Study of Health in Pomerania SHIP); and two from the USA (Atherosclerosis Risk in Communities ARIC, Cardiovascular Health Study CHS). Two of the five items classified as "Maybe" reported on the MrOS USA study, which were found, after further investigation, to be suitable for selection. Two additional studies were identified as suitable based on information external to the systematic searches and screenings: one from Australia (The Men Androgen Inflammation Lifestyle Environment and Stress study MAILES); and one from the USA (the Framingham Heart Study FHS. This is 11 cohort studies identified, in total. Additional details on returned and screened items, and selected article attributes are provided in Supplementary Material.

3.2. Meta-analysis and summary of selected articles.

The quality of selected articles ranged from six to nine (out of nine) stars on the Newcastle-Ottawa Scale. Relatively high scores reflected that all articles: were of population-based studies; accurately measured the exposure (baseline testosterone concentration); included multivariable models adjusting for participant age and other risk factors; had outcomes measured or collected from record linkage, with or without expert adjudication; and had sufficient follow-up (Tables S5-S7, Supplementary Material). Relevant outcomes included CVD deaths (n=7 articles); all-cause deaths (n=6); strokes or cerebrovascular disease (n=6); cognitive function or cognitive decline (n=5); coronary heart disease (n=4); CVD events (n=4); cancer diagnoses (n=3); myocardial infarction (n=2); heart failure (n=1); and dementia

(n=1). All were published between 2010 and 2018, reflecting the relatively recent adoption of

mass spectrometry as the "gold standard" for measuring endogenous testosterone levels.[7]

Page 10 of 56

200	mass spectrometry as the gold standard for measuring endogenous testosterone revers.[7]
201	
202	The mean age of men at baseline ranged from middle-aged (49-54yr: BHS, FHS, MAILES,
203	SHIP)[22-27] to elderly (72-77yr: CHAMP, CHS, HIMS, MrOS Sweden, MrOS USA).[28-
204	36] Across the 11 studies, summary estimates for 20,180 adult males at baseline were
205	64.9±3.3yr for mean age and 15.4±0.7nmol/L for mean testosterone. Although there appeared
206	to be a slight declining trend in mean testosterone with mean age among studies (Meta-
207	regression Slope= -0.07, 95% CI -0.21 – 0.07), this estimate was not significantly different
208	from zero (P=0.27; Fig. 2a). However, the distribution of model residuals demonstrated
209	significant heterogeneity (P<0.001) and funnel plot asymmetry (P=0.02). Additional
210	diagnostics highlighted a relatively high mean testosterone estimate from Pencina et al.[37]
211	(FHS) and a low mean testosterone estimate (relative to mean age) from Chan et al.[24]
212	(BHS), as compared to the other studies (Supplementary Material). When restricted to
213	systematically selected items (reporting on ARIC, BHS, CHAMP, CHS, EMAS, HIMS,
214	MAILES, MrOS Sweden, SHIP studies), tests of residual heterogeneity were significant
215	(P<0.001), funnel plot asymmetry (P=0.91) was non-significant, and the slope estimate
216	(Meta-regression Slope= -0.03 , 95% CI $-0.11 - 0.06$) was not significantly different from
217	zero (P=0.50; Fig. 2b). These results demonstrate that varying distributions of participant age
218	(likely reflecting differences in study-specific objectives and recruitment methods) did not
219	explain the observed heterogeneity in published estimates of testosterone among the studies.
220	
221	Hazard ratios (HRs) for all-cause mortality were calculated from values in four of the
222	selected articles (ARIC[38], BHS[24], CHS[39], EMAS[40]) and from one that was not
223	selected, but had reported on the HIMS study during the literature search period.[16] All HRs

-9-

Page 11 of 56

BMJ Open

224	were adjusted for the age, smoking status, and body mass index (BMI) or waist
225	circumference of participants. A DR-MA estimated a summary HR of 0.96 (95% CI 0.89-
226	1.03) per 5nmol/L increase in testosterone (Fig. 3). The summary estimate was similar when
227	calculated using an alternative estimate from Yeap et al[16] (HR=0.97, 95% CI 0.92-1.03).
228	For both analyses, tests for residual heterogeneity (I ² =23.6%, P=0.26; I ² =0.0%, P=0.76) and
229	funnel plot asymmetry (P=0.09; P=0.39) were non-significant. A comparable HR was
230	calculated from a CHAMP study article[30] for inclusion in the forest plot but not in the DR-
231	MA, because a corresponding estimate of variance per 5nmol/L increase in testosterone could
232	not be calculated. Additional funnel plots, which included HR estimates from this CHAMP
233	article[30] (per 1 standard deviation decrease in testosterone, as reported in that article), also
234	demonstrated no significant asymmetry (Fig. S2c,d, Supplementary Material). These results
235	demonstrate no overall effect of baseline testosterone concentration on the relative hazard of
236	death from any cause after adjusting for factors including age, smoking status, and BMI or
237	waist circumference.
238	
239	HRs for death caused by CVD demonstrated similar findings A DR-MA using estimates

HRs for death caused by CVD demonstrated similar findings. A DR-MA using estimates from the same five articles estimated a summary HR of 0.95 (95% CI 0.83-1.08) per 5nmol/L increase in testosterone, with no significant residual heterogeneity ($I^2=28.3\%$, P=0.23) or funnel plot asymmetry (P=0.20; Fig. 4). Again, all HRs were adjusted for the age, smoking status, and BMI or waist circumference. The DR-MA repeated using an alternative estimate from Chasland et al.[25] for the BHS gave similar results (summary HR=0.93, 95% CI 0.83-1.03; heterogeneity I²=17.5%, P=0.30; funnel plot asymmetry P=0.17). These results demonstrate no overall effect of baseline testosterone concentration on the relative hazard of death from CVD after adjusting for factors including age, smoking status, and BMI or waist circumference.

4. **DISCUSSION** The systematic review identified nine studies, and when combined with an additional two identified by colleagues, comprises 11 in total, with data for over 20,000 men from Australia, Europe, USA and the United Kingdom. Meta-regressions revealed significant heterogeneity in testosterone measurements at baseline, which was not explained by the mean age of participants among studies. However, DR-MA summary estimates demonstrated no significant effects of baseline testosterone on the relative hazard of death from any cause or from CVD, with negligible heterogeneity present. The DR-MAs, which suitably accounted for correlations between estimates for different exposure categories within studies, were of published estimates that had been adjusted for age, smoking status, and BMI or waist circumference. Furthermore, only published estimates from prospective cohort studies of community-dwelling men that had measured testosterone accurately using mass spectrometry and had observed at least five years of follow-up data were used. Despite some of these studies having reported an association between testosterone and mortality, [16, 30] the collective body of evidence demonstrated no overall associations of endogenous testosterone concentration with mortality or CVD mortality. Previous meta-analyses investigating associations of endogenous testosterone with the health outcomes of interest looked at CVD outcomes[41-43], all-cause mortality[41], and prostate cancer[44]. Boyle et al. [44] and Holmegard et al. [42] both reported negligible heterogeneity in their estimates. Boyle et al. found no significant association of a 5nmol/L increase in testosterone with prostate cancer and Holmegard et al. estimated a 43% increase in risk of ischemic stroke for men with testosterone levels below the 10th percentile, as compared to men in the 11th-90th percentile range, from a meta-analysis of four articles.[42, 44] Ruige et

BMJ Open

al. estimated an 11% decrease in risk of a CVD event from a standard deviation increase in testosterone, and reported that significant heterogeneity was explained by larger effect sizes estimated for studies that recruited older men and for more recent articles.[43] Araujo et al estimated a 35% increase in risk of all-cause mortality and a non-significant effect on CVD mortality from a 2.18 standard deviation decrease in testosterone, although reported significant heterogeneity, and suggested that effects were driven by differences between the cohorts, such as underlying health status.[41] Two of these meta-analyses did not restrict selections to prospective cohort studies[41, 44] and none restricted selections based on testosterone assay method, although Ruige et al.[43] did find that assay method did not explain heterogeneity in that study.

The presented meta-analyses are the first to restrict selections to items of prospective cohort studies of community-dwelling men with testosterone measured using mass spectrometry, which is widely regarded as the reference method, [7] and with at least five years of follow-up data. Accordingly, the presented summary estimates could arguably be viewed as the most reliable to date. However, summary estimates represented associations that were assumed to be linear at the scale of log hazards, which was a key limitation of the analyses and likely to result in an oversimplification of true effects. For instance, although the 95% CI for the Pye et al[40] study (calculated from HR estimates for quintile categories of testosterone) overlapped one, an alternative set of estimates in that article (which could not be included in the DR-MAs) reported a two-fold increase in the risk of all-cause mortality for men with very low testosterone (<8nmol/L), as compared to "eugonadal" men (>11nmol/L). Pye et al[40] postulated that their reported differences in estimates might be reflective of a nonlinear association that emerges only when endogenous testosterone declines into the lower part of the range (<8nmol/L). Furthermore, Yeap et al.[16] estimated an "U"-shaped association

- 12 -

between endogenous testosterone and all-cause mortality, as consistent with a lower relative
risk of health impacts for adult males with mid-range levels of testosterone. However, Shores
et al.[39] also used non-linear modelling but did not find any significant associations of
testosterone with all-cause or CVD mortality. Clearly, the investigation of non-linear
associations is required to more comprehensively investigate the associations of testosterone
concentrations with health outcomes in men.

Individual participant data (IPD) meta-analyses that incorporate flexible non-linear modelling techniques will provide improved scope to clarify the nature of such associations. The ability to apply a consistent statistical model to all studies, incorporate a more extended set of covariates than may have been included at the individual study level, and to estimate effects with increased statistical power, should result in more reliable summary estimates with reduced bias. Furthermore, other hitherto unpublished variables may be available for sharing by the collaborating studies to use in IPD meta-analyses, which could be useful for constructing analysis covariates or outcome variables. For instance, articles from the ARIC study that were identified from the systematic review reported on incident CVD event and death outcomes, but documentation on the ARIC study website shows that data on other prospective health outcomes, including cause-specific deaths and dementia diagnoses, are also available upon request.[45] Although there have been recent advances with non-linear modelling methods for the meta-analyses of published estimates, [18, 46] sufficient information in the published articles, as is required for implementing these methods, was not available. In future work, estimates from analyses of the IPD-level data will be used to estimate and plot non-linear summary effects, and so will provide further improvements to estimates of associations between androgen levels and health outcomes in men.

1 2		
2 3 4	324	ACKNOWLEDGEMENTS
5 6	325	We thank Terena Solomons for valuable advice and guidance with conducting the literature
7 8 9	326	search and screening steps of the systematic review.
10 11 12	327	
13 14	328	AUTHORS' CONTRIBUTIONS
15 16 17	329	BBY, KM, RJM, JH contributed to the design of the systematic review. RJM conducted the
18 19	330	literature search and RJM, JH independently screened the returned items. RJM, KM
20 21	331	conducted the statistical analyses. All authors were involved in manuscript preparation and
22 23 24	332	subsequent revisions, and approved this submission.
25 26	333	
27 28	334	COMPETING INTERESTS
29 30	335	None declared.
31 32 33	336	
34 35	337	FUNDING
36 37	338	This work was supported by: (i) Western Australian Health Translation Network Medical
38 39 40	339	Research Future Fund Rapid Applied Translation Grant (2018), Grant number N/A; (ii)
41 42	340	Lawley Pharmaceuticals, Western Australia, Grant number N/A.
43 44	341	
45 46 47	342	DATA SHARING STATEMENT
47 48 49	343	No additional data available.
50 51 52 53 54 55 56 57 58 59 60	344	
50		

3 4	345	PATIENT CONSENT
5 6	346	This manuscript does not contain patient personal data.
7 8	347	
9 10 11	348	ETHICS APPROVAL
12 13	349	The AIMS study has been assessed as exempt from ethics review by the Human Ethics office
14 15	350	at the University of Western Australia (file reference number RA/4/20/5014).
16 17 18	351	
19 20	352	PROVENANCE AND PEER REVIEW
21 22 23	353	Not commissioned; externally peer reviewed.
23 24 25		
26 27		
28 29		
30		
31 32		
33		
34 35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
49 50		
51		
52 53		
54		
55 56		
50 57		
58		
59 60		
		- 15 -

354	REFERENCES	CITED
-----	------------	-------

- 355
 356
 1. Ahern T, Swiecicka A, Eendebak RJAH, et al. Natural history, risk factors and clinical features of
 primary hypogonadism in ageing men: Longitudinal Data from the European Male Ageing Study. *Clin Endocrinol (Oxf)* 2016;85:891-901. doi: 10.1111/cen.13152
 2. Foldman HA, Longsono C, Darby CA, et al. Age Transfer in the Loval of Serum Testastorena and
 - Feldman HA, Longcope C, Derby CA, et al. Age Trends in the Level of Serum Testosterone and
 Other Hormones in Middle-Aged Men: Longitudinal Results from the Massachusetts Male Aging
 Study. J Clin Endocrinol Metab 2002;87(2):589-98.
 - 362 3. Handelsman DJ, Yeap BB, Flicker L, et al. Age-specific population centiles for androgen status in
 363 men. *Eur J Endocrinol* 2015;173:809-17. doi: 10.1530/EJE-15-0380
- 4. Hsu B, Cumming RG, Hirani V, et al. Temporal Trend in Androgen Status and Androgen-Sensitive
 Outcomes in Older Men. J Clin Endocrinol Metab 2016;101(4):1836-46. doi: 10.1210/jc.2015-3810
- 5. Yeap BB, Manning L, Chubb SAP, et al. Progressive impairment of testicular endocrine function in ageing men: Testosterone and dihydrotestosterone decrease, and luteinizing hormone increases, in men transitioning from the 8th to 9th decades of life. *Clin Endocrinol (Oxf)* 2018;88:88-95. doi: 10.1111/cen.13484
 - 6. Handelsman DJ. Global trends in testosterone prescribing, 2000–2011: expanding the spectrum of
 prescription drug misuse. *Med J Aust* 2013;199(8):548-51. doi: 10.5694/mja13.10111
 - 372 7. Handelsman DJ, Wartofsky L. Requirement for mass spectrometry sex steriod assays in the Journal
 373 of Clinical Endocrinology and Metabolism. *J Clin Endocrinol Metab* 2013;98(10):3971-73.
 - 8. Munn Z, Stern C, Aromataris E, et al. What kind of systematic review should I conduct? A proposed
 typology and guidance for systematic reviewers in the medical and health sciences. *BMC Med Res Methodol* 2018; 18.
 - 377 9. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A
 378 proposal for reporting. *JAMA* 2000;283(15):2008-12.
 - 10. Yeap BB, Marriott RJ, Adams RJ, et al. Androgens In Men Study (AIMS): protocol for metaanalyses of individual participant data investigating associations of androgens with health
 outcomes in men. *BMJ Open* 2020; 10. <u>https://bmjopen.bmj.com/content/10/5/e034777</u>
 (accessed 19 Nov 2020).
 - 383 11. Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan a web and mobile app for systematic
 384 reviews. Syst Rev 2016; 5.
 - 385
 12. Wells GA, Shea B, O'Connell DO, et al. The Newcastle-Ottawa Scale (NOS) for assessing the
 386
 quality of nonrandomised studies in meta-analyses 2020.
 - 387 <u>http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp</u> (accessed 10 Nov 2020).
- 388
 388
 43
 389
 44
 389
 45
 390
 46
 391
 13. Wang X, Ouyang Y, Liu J, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. *BMJ* 2014; 349. <u>https://doi.org/10.1136/bmj.g4490</u> (accessed 19 Nov 2020).
 - 392 14. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response
 393 data, with applications to meta-analysis. *Am J Epidemiol* 1992;135(11):1301-09.
- 394
 395
 395
 396
 15. McGrath S, Zhao X, Steele R, et al. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. *Stat Methods Med Res* 2020;29(9):2520-37. doi: 10.1177/0962280219889080
- 397
 397
 398
 398
 398
 398
 398
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 399
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
 301
- 401
 402
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403
 403

3 4	404	18. Crippa A, Orsini N. Multivariate dose-response meta-analysis: The dosresmeta R package. J Stat
5	405	Softw 2016; 72.
6	406	19. estmeansd: Estimating the Sample Mean and Standard Deviation from Commonly Reported
7	407	Quantiles in Meta-Analysis. R package version 0.2.1, 2020
8	408	20. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for
9	409	Statistical Computing, 2020. <u>https://www.R-project.org/</u>
10	410	21. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw
11	411	2010;36(3):1-48.
12	412	22. Bhasin S, Pencina MJ, Kaur Jasuja G, et al. Reference ranges for testosterone in men generated
13	413	using liquid chromatography tandem mass spectrometry in a community-base sample of healthy
14 15	414	nonobese young men in the Framingham Heart Study and applied to three geographically distinct
16	415	cohorts. J Clin Endocrinol Metab 2011;96(8):2430-39.
17	416	23. Chan YX, Knuiman MW, Divitini ML, et al. Lower Circulating Androgens Are Associated with
18	417	Overall Cancer Risk and Prostate Cancer Risk in Men Aged 25-84 Years from the Busselton Health
19	418	Study. Horm Cancer 2018;9(6):391-98. doi: <u>https://dx.doi.org/10.1007/s12672-018-0346-5</u>
20	419	24. Chan YX, Knuiman MW, Hung J, et al. Neutral associations of testosterone, dihydrotestosterone
21	420	and estradiol with fatal and non-fatal cardiovascular events, and mortality in men aged 17-97
22	421	years. Clin Endocrinol (Oxf) 2016;85(4):575-82. doi: https://dx.doi.org/10.1111/cen.13089
23	422	25. Chasland LC, Knuiman MW, Divitini ML, et al. Greater physical activity and higher androgen
24	423	concentrations are independently associated with lower cardiometabolic risk in men. <i>Clin</i>
25	424	Endocrinol (Oxf) 2017;87(5):466-74. doi: https://dx.doi.org/10.1111/cen.13407
26	425	26. Kische H, Gross S, Wallaschofski H, et al. Associations of androgens with depressive symptoms
27 28	426	and cognitive status in the general population. <i>PLoS ONE</i> 2017;12(5):e0177272. doi:
28 29	420	
29 30	427	https://dx.doi.org/10.1371/journal.pone.0177272
31		27. Li JJ, Wittert GA, Vincent A, et al. Muscle grip strength predicts incident type 2 diabetes:
32	429	population-based cohort study. <i>Metab Clin Exp</i> 2016;65:883-92.
33	430	28. Chan YX, Alfonso H, Chubb SA, et al. Higher Dihydrotestosterone Is Associated with the Incidence
34	431	of Lung Cancer in Older Men. <i>Horm Cancer</i> 2017;8(2):119-26. doi:
35	432	https://dx.doi.org/10.1007/s12672-017-0287-4
36	433	29. Hsu B, Cumming RG, Blyth FM, et al. Evaluating Calculated Free Testosterone as a Predictor of
37	434	Morbidity and Mortality Independent of Testosterone for Cross-sectional and 5-Year Longitudinal
38	435	Health Outcomes in Older Men: The Concord Health and Ageing in Men Project. J Gerontol A Biol
39	436	Sci Med Sci 2018;73(6):729-36. doi: <u>https://dx.doi.org/10.1093/gerona/glx170</u>
40	437	30. Hsu B, Cumming RG, Naganathan V, et al. Temporal Changes in Androgens and Estrogens Are
41 42	438	Associated With All-Cause and Cause-Specific Mortality in Older Men. J Clin Endocrinol Metab
42 43	439	2016;101(5):2201-10. doi: <u>https://dx.doi.org/10.1210/jc.2016-1025</u>
44	440	31. Ohlsson C, Barrett-Connor E, Bhasin S, et al. High serum testosterone is associated with reduced
45	441	risk of cardiovascular events in elderly men. The MrOS (Osteoporotic Fractures in Men) study in
46	442	Sweden. <i>J Am Coll Cardiol</i> 2011;58(16):1674-81. doi:
47	443	https://dx.doi.org/10.1016/j.jacc.2011.07.019
48	444	32. Ohlsson C, Labrie F, Barrett-Connor E, et al. Low serum levels of dehydroepiandrosterone sulfate
49	445	predict all-cause and cardiovascular mortality in elderly Swedish men. J Clin Endocrinol Metab
50	446	2010;95(9):4406-14. doi: <u>https://dx.doi.org/10.1210/jc.2010-0760</u>
51	447	33. Rosenberg MA, Shores MM, Matsumoto AM, et al. Serum androgens and risk of atrial fibrillation
52	448	in older men: The Cardiovascular Health Study. <i>Clin Cardiol</i> 2018;41(6):830-36. doi:
53	449	https://dx.doi.org/10.1002/clc.22965
54 57	450	34. Shores MM, Arnold AM, Biggs ML, et al. Testosterone and dihydrotestosterone and incident
55 56	451	ischaemic stroke in men in the Cardiovascular Health Study. <i>Clin Endocrinol (Oxf)</i> 2014;81(5):746-
56 57	452	53. doi: <u>https://dx.doi.org/10.1111/cen.12452</u>
57 58	432	33. uoi. <u>IIII.ps.//ux.uoi.org/10.1111/tell.12432</u>
58 59		
60		

1		
2		
3	453	35. Sueoka KT, Ewing MS, Ensrud KE, et al. Higher endogenous testosterone levels associated with
4	454	increased risk of coronary heart disease in elderly men: a prospective study. Endocr Rev
5 6	455	2010;31(3):S858.
7	456	36. Tivesten Å, Vandenput L, Carlzon D, et al. Dehydroepiandrosterone and its sulfate predict the 5-
8	457	year risk of coronary heart disease events in elderly men. J Am Coll Cardiol 2014;64(17):1801-10.
9	458	doi: https://dx.doi.org/10.1016/j.jacc.2014.05.076
10	459	37. Pencina KM, Travison TG, Bhasin S, et al. Endogenous circulating testosterone and sex hormone-
11	460	binding globulin levels and measures of myocardial structure and function: the Framingham
12	461	Heart Study. Andrology 2019;7:307-14.
13	462	38. Srinath R, Hill Golden S, Carson KA. Endogenous Testosterone and its Relationship to Preclinical
14	463	and Clinical Measures of Cardiovascular Disease in the Atherosclerosis Risk in Communities Study.
15	464	<i>J Clin Endocrinol Metab</i> 2015;100(4):1602-02. doi: 10.1210/jc.2014-3934
16	465	39. Shores MM, Biggs ML, Arnold AM, et al. Testosterone, dihydrotestosterone, and incident
17	465	
18		cardiovascular disease and mortality in the cardiovascular health study. J Clin Endocrinol Metab
19 20	467	2014;99(6):2061-8. doi: <u>https://dx.doi.org/10.1210/jc.2013-3576</u>
20 21	468	40. Pye SR, Huhtaniemi IT, Finn JD, et al. Late-onset hypogonadism and mortality in aging men. J Clin
21	469	Endocrinol Metab 2014;99(4):1357-66. doi: https://dx.doi.org/10.1210/jc.2013-2052
23	470	41. Araujo AB, Dixon JM, Suarez EA, et al. Endogenous testosterone and mortality in men: a
24	471	systematic review and meta-analysis. J Clin Endocrinol Metab 2011;96(10):3007-19.
25	472	42. Holmegard HN, Nordestgaard BG, Jensen GB, et al. Sex hormones and ischemic stroke: a
26	473	prospective cohort study and meta-analyses. J Clin Endocrinol Metab 2016;101(1):69-78.
27	474	43. Ruige JB, Mahmoud AM, De Bacquer D, et al. Endogenous testosterone and cardiovascular
28	475	disease in healthy men: a meta-analysis. <i>Heart</i> 2011;97:870-75.
29	476	44. Boyle P, Koechlin A, Bota M, et al. Endogenous and exogenous testosterone and the risk of
30	477	prostate cancer and increased prostate-specific antigent (PSA) level: a meta-analysis. BJU Int
31	478	2016;118:731-41.
32	479	45. Surveillence Dictionaries Atherosclerosis Risk In Communities 2020.
33	480	https://sites.cscc.unc.edu/aric/surveillance-dictionaries (accessed 6 July 2020).
34 35	481	46. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized
35 36	482	dose-response data. <i>Stata J</i> 2006;6(1):40-57.
37	483	47. Lee DM, Pye SR, Tajar A, et al. Cohort profile: the European Male Ageing Study. Int J Epidemiol
38	484	2013;42(2):391-401. doi: <u>https://dx.doi.org/10.1093/ije/dyr234</u>
39		
40	485	
41	10.0	
42	486	
43		
44		
45		
46		
47		
48 49		
49 50		
50		
52		
53		
54		
55		
56		
57		
58		
59		
60		

487 FIGURE LEGENDS

5 488

Figure 1. Studies returned from systematic review of the published and grey literature. Step 1 involved screening of titles and abstracts only and Step 2 the screening of full text items not excluded at Step 1 (see Tables 1, 2). "Items" are individual articles or reports, with multiple items returned for some studies (the purpose was to identify studies with suitable IPD-level data). * = Mednar items with insufficient information available to review; ** = Additional studies identified through known contacts; *** = Screening criteria for five items selected as "Maybe" in Step 2 were further investigated using information external to systematic searches and screenings, resulting in the identification of one additional study with suitable IPD-level data. Figure 2. Meta-regression of mean testosterone on mean age for (a) all 11 cohort studies and (b) 9 studies with articles that were selected by systematic literature searches and screening. The size of plotted points refers are proportional to the inverse of the corresponding standard errors (indicative of relative weightings), with lines demonstrating the fitted model and 95% CIs. Plotted estimates are numbered as from the following articles (cohort studies):

504 1= Srinath et al.[38] (ARIC); 2= Chan et al.[24] (BHS); 3= Hsu et al.[30] (CHAMP); 4=

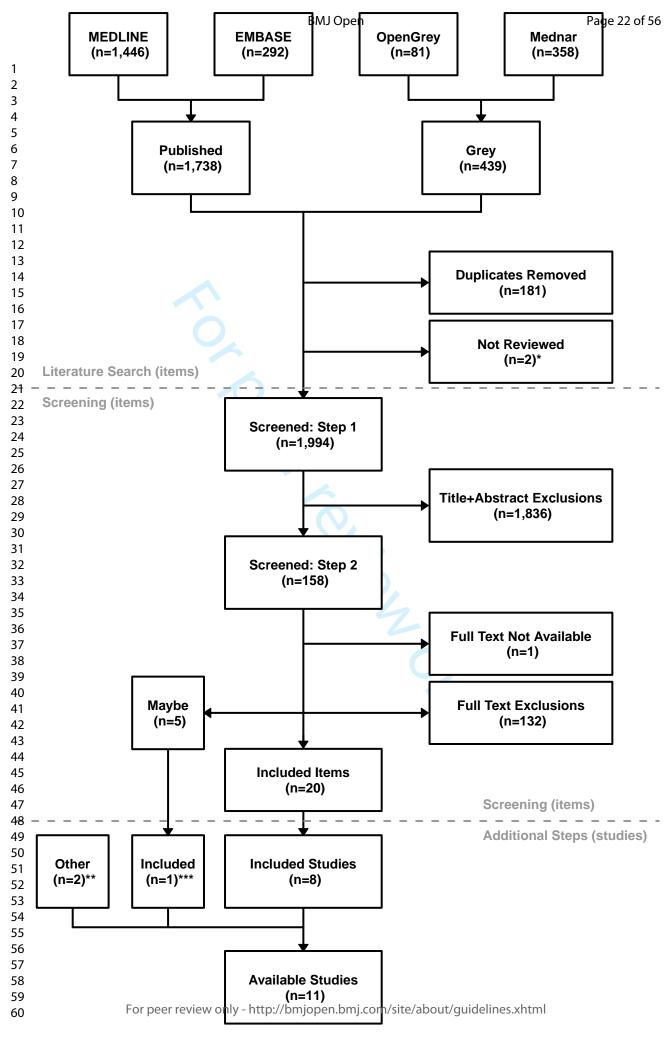
505 Shores et al.[34] (CHS); 5= Lee et al.[47] (EMAS); 6= Chan et al.[28] (HIMS); 7= Ohlsson

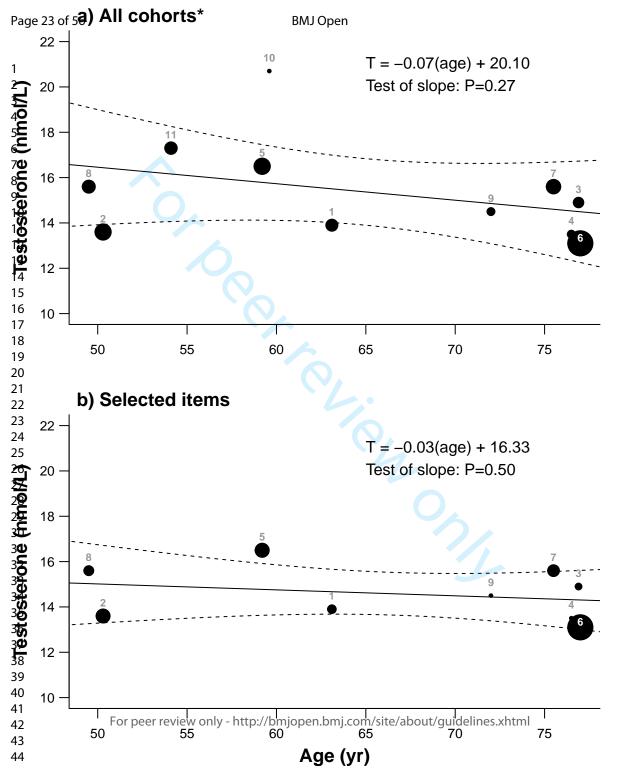
506 et al.[32] (MrOS Sweden); 8= Kische et al.[26] (SHIP); 9= Sueoka et al.[35] (MrOS USA);

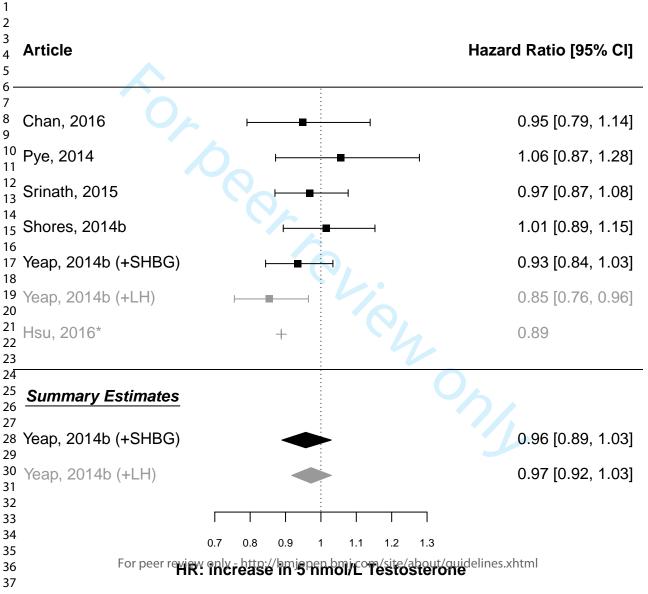
507 10= Pencina et al.[37] (FHS); 11= Li et al.[27] (MAILES). * = includes articles from two

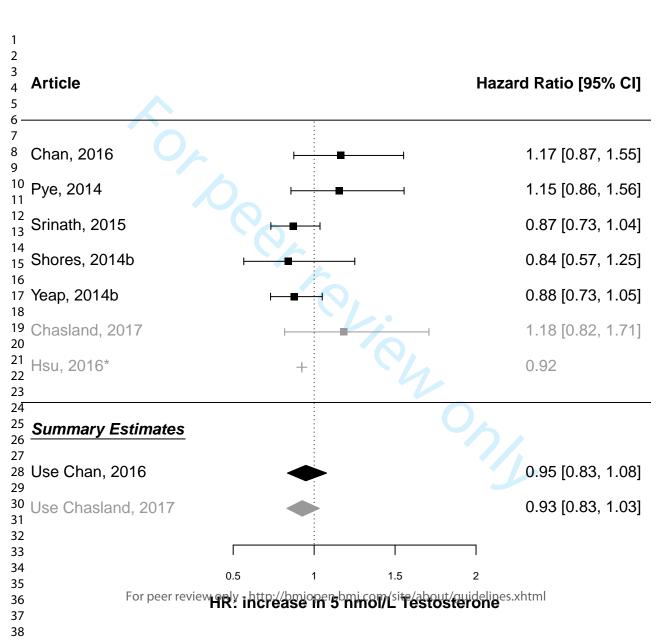
additional studies (FHS, MAILES) that were not identified from systematic searches but bycolleagues.

55 510


⁵⁷ 511 Figure 3. Forest plot of a meta-analysis of published estimates: association of testosterone
⁵⁹ 512 with all-cause mortality. Plotted values are the estimated hazard ratios (HR) for death from


- 19 -


Page 21 of 56


BMJ Open

any cause, as attributed to an increase in endogenous testosterone concentration by 5 nmol/L. The vertical reference line is HR=1. Study-specific estimates are presented for six of the selected studies: BHS (Chan, 2016)[24]; EMAS (Pye, 2014)[40]; ARIC (Srinath, 2015)[38]; CHS (Shores, 2014b)[39]; HIMS (Yeap, 2014b)[16]; CHAMP (Hsu, 2016).[30] Summary estimates are colour-coded as calculated using either the estimates from Yeap et al.[16] calculated from the model including SHBG (black) or from the model including LH (grey). * This estimate from Hsu et al.[30] could not be used to calculate the summary estimate because a variance estimate was not calculable for a 5nmol/L change in testosterone using the published information. Figure 4. Forest plot of a meta-analysis of published estimates: association of testosterone with mortality caused by cardiovascular disease. Plotted values are the estimated hazard ratios (HR) for death from any cause, as attributed to an increase in endogenous testosterone concentration by 5 nmol/L. The vertical reference line is HR=1. Study-specific estimates are presented for six of the selected studies: BHS (Chan, 2016; Chasland, 2017)[24, 25]; EMAS (Pye, 2014)[40]; ARIC (Srinath, 2015)[38]; CHS (Shores, 2014b)[39]; HIMS (Yeap, 2014b)[16]; CHAMP (Hsu, 2016).[30] Summary estimates are colour-coded as calculated using either the estimates from Chan et al.[24] (black) or Chasland et al.[25] (grey) for the BHS. * This estimate from Hsu et al.[30] could not be used to calculate the summary estimate because a variance estimate was not calculable for a 5nmol/L change in testosterone using the published information.

Supplementary Material: Systematic Review for the Androgens In Men Study.

1	Table of Contents			
2	Supplementary Material: Additional details on systematic searches and screening2			
3	Supplementary Material: Tables	7		
4	Table S1. Full electronic search strategy used for MEDLINE database.	7		
5	Table S2: Selection criteria for screening items returned from the literature search	8		
6 7	Table S3: Adaptation of screening rules for different types of published and unpublished items.			
8	Table S4. Words mentioned in the titles or abstracts of reviewed items	10		
9	Table S5. Attributes of selected items	11		
10	Table S6. Exposure levels, outcome assessment, covariates.	15		
11 12	Table S7. Newcastle-Ottawa Quality Assessment Scale for Cohort Studies: selected articles.	18		
13	Table S8. PRISMA Checklist for Systematic Review: the Androgens In Men Study	19		
14	Table S9. Extracted hazard ratio data for dose-response meta-analyses (DR-MAs)	22		
15	Supplementary Material: Figures	24		
16	Figure S1. Meta-regression diagnostics	24		
17	Figure S2. Funnel plots for dose-response meta-analyses.	26		
18	References cited	27		
19 20				
21	References cited.			

BMJ Open

Supplementary Material: Systematic Review for the Androgens In Men Study.

Supplementary Material: Additional details on systematic searches and screening We used online search tools to identify available published (MEDLINE, EMBASE) and grey literature (OpenGrey, Mednar) *items* (journal articles, reports, theses, webpage articles) reporting on suitable prospective cohort *studies* (the underlying unique sources of data). We used OpenGrey and Mednar because both were free search tools that we considered likely to identify additional grey literature items and studies in an expanded search beyond the mainstream publications. Mednar is a medically-focussed search engine of public and deep web resources, excluding subscription services.[1] OpenGrey is a searchable database containing citations for items including technical or research reports, theses, conference papers, and other types of grey literature.[2] Literature searches were conducted on 18-22 July 2019, with no date restrictions set. Where possible (as functionality varied among the different tools), we placed the following restrictions on the search: items reporting on the results of a research study, longitudinal or prospective cohort studies, not of hormone therapy or deprivation treatments. Due to study timeframe and language translation limitations, we opted to search for only those items that were reported in the English language. The terms and full criteria used for the MEDLINE search are provided in Table S1, and the PRISMA checklist as Table S8. Selection criteria were set as applicable to the planned sets of IPD meta-analyses

(Table S2).[3] Only items reporting on prospective population-based cohort studies, adults of
combined sexes or of men alone, with individuals free of the disease at baseline, were sought.
Items reporting a different design for the analysis of longitudinal data, such as nested casecontrol or case-cohort design, were also considered acceptable. A minimum of five years
follow-up was selected, to ensure a sufficient number of incident events for statistical

- 2 -

Supplementary Material: Systematic Review for the Androgens In Men Study.

modelling. We excluded items that did not measure testosterone using mass spectrometry, which is regarded to be the 'gold standard' method, [4] although testosterone was not required to be mentioned in the title or abstract, nor modelled as the primary exposure variable. Selected items were to be studies of humans, reported in English, and reporting on analyses of at least one of the AIMS outcomes. Two reviewers (RJM, JH) independently screened the de-duplicated items against these prespecified criteria. To optimise efficiency, the selection of items proceeded in two steps. Title and abstract screenings (Step 1) were followed by full text screening of items selected in Step 1 (Step 2). If an item was selected for exclusion, then the main reason for that decision was recorded. If there was uncertainty in the decision to exclude, in Step 1 the reviewer selected "include" (in Step 1) or "maybe" (in Step 2). At the end of each step, the two reviewers sought to achieve consensus, through discussion, for each item that did not achieve agreement. Exclusion reasons were used to inform discussions for achieving consensus. Items with a consensus decision of "maybe" were further investigated by Reviewer 1 (RJM) using information external to the systematic searches and screenings (reading further details of methods used in cited articles, and from correspondence with authors or other researchers currently working on the research study).

This screening procedure was adjusted to accommodate the different types of items reviewed (published articles, theses, webpage articles, unpublished reports; Table S3). A pilot set of title-only screenings for 30 randomly chosen articles suggested that sufficient information was contained within the titles alone for the purpose of Step 1 screenings.^a Therefore, in cases

^a 30 titles were initially screened at random. 18 were flagged as not suitable, leaving 12 as potentially suitable. Subsequent Step 1 screening of titles with abstracts selected 25 of these articles for exclusion, with 5 retained for Step 2 (full text screening). All 5 were flagged as being potentially suitable in the pilot set of title-only screenings.

Page 29 of 56

BMJ Open

Supplementary Material: Systematic Review for the Androgens In Men Study.

when an abstract was not available, only the titles were screened. Website items identified by
the Mednar search tool were the type of item that most often did not have abstract or
summary text, and in these cases the webpage text was reviewed in place of an abstract
(Table S3).

Endnote X8[5] was used for collating and storing the citations returned from literature
searches, and for de-duplicating and storing the selected references. The full citations,
including abstracts, were exported from Endnote for uploading into Rayyan[6], which is a
free web tool that was used for screening, recording exclusion decisions, and downloading
selection results.

The literature search identified 2,177 items (1,738 published and 439 from grey literature), with 1,994 items remaining after duplicates had been removed, and after excluding two Mednar items that had insufficient information available to review (Fig. 1). Table S4 shows the frequencies of returned items by search terms present in the titles and abstracts. Most (72.7%) had the word "cancer", and 1,107 (55.5%) of these had the word "prostate cancer", in the title or abstract. This, combined with frequent mentions of "androgen deprivation" (29.2%), "radiotherapy" (18.6%), and "brachytherapy" (8.3%), show that items reporting aspects of testosterone deprivation or suppression for treating prostate cancer were a predominant feature of the returned items. Different types of returned items included 1,764 published articles, 111 webpage articles, 81 theses, and 38 unpublished reports/other documents, and the percentages without abstract or webpage text screened in Step 1 were 2.6%, 1.8%, 24.7%, 65.8%, respectively (i.e., 4.7% overall).

Supplementary Material: Systematic Review for the Androgens In Men Study.

One thousand nine hundred sixty-eight items were excluded, five items were classified as "Maybe", and one item could not be screened because the full text version was not available, leaving n = 20 suitable items selected (Fig. 1). Most (92.1%) of the exclusions were made from reviewing titles and abstracts at Step 1, with a further 6.6% excluded from screening of the 157 full text items in Step 2. Inter-reader agreement was a Cohen's Kappa $\kappa = 0.69$ (or 96.0 percent agreement) for Step 1 and $\kappa = 0.82$ (or 98.1 percent agreement) for Step 2. Percentages of items with search terms (AIMS outcomes) in the title or abstract increased after Step 1 in most cases except for "cancer" and "prostate cancer" (Table S4). This reflects many exclusions in Step 1 that were of items reporting research on testosterone deprivation or suppression treatments for prostate cancer.

The systematic approach to literature searching and screening is widely held to be beneficial to identifying studies that otherwise may not have been considered for inclusion, and thus to minimise the prospect for reviewer biases affecting study selections and summary results.[7] This process is not perfect though, and in our case it did not identify two prospective cohort studies that were known to be suitable, prior to commencing this review (FHS, MAILES).[3] In the case of MAILES, this was one of the more recently commenced of the selected studies, with its cohort profile article published in 2014,[8] and accordingly has had a comparatively short timeframe within which to analyse and publish suitable findings. In the case of FHS, associations of endogenous testosterone with male health outcomes had previously been investigated and published, but not using mass spectrometry for measuring testosterone.[9, 10] Those articles were identified in the literature search but had been excluded on account of assay method. Only relatively recently have testosterone measures been re-assayed for FHS participants using mass spectrometry methods.[11] One article by Pencina et al[12] was possibly within scope but not identified because it had not been entered into the MEDLINE

BMJ Open

Supplementary Material: Systematic Review for the Androgens In Men Study.

1 2		
3 4	120	database prior to the literature search (article entry date = 14 May 2020). Furthermore, an
5 6	121	article that presented suitable estimates from one of the selected studies by Yeap et al[13]
7 8 9	122	was not identified from the literature search because it did not have "prospective", "follow-
10 11	123	up", "cohort study" or "longitudinal study" terms in its title or abstract, nor any of the
12 13	124	corresponding MeSH terms listed (refer to Table S1 for search terms used).
14 15	125	
 16 17 18 19 20 21 22 23 24 25 	126	In expanding our literature search to unpublished grey literature, it successfully located one
	127	suitable item, which was a link to a Web MD webpage article, with further details published
	128	in a conference abstract by Sueoka et al[14] that would otherwise have not been returned
	129	from searching only the MEDLINE and EMBASE databases.
26 27	130	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 56 57 58 9 60		from searching only the MEDLINE and EMBASE databases.

Supplementary Material: Systematic Review for the Androgens In Men Study.

1	Supprementary material. Systematic review for the material of the stary						
2							
3	131 Supplementary Material: Tables						
4							
5 6	132	Table S1. Full electronic search strategy used for MEDLINE database.					
7	133						
8	134	The following is the search that was conducted on 18 July 2019 using MEDLINE.					
9	135	The following is the search that was conducted on 10 July 2017 using MEDLINE.					
10	136	1. Testosterone/ or Androgens/					
11	137	2. (testosterone or androgen* or sex hormone* or sex steroid*).ti.					
12	137	3. (testosterone or androgen*).ab.					
13	130	4. cardiovascular diseases/ or heart diseases/ or heart failure/ or vascular diseases/ or stroke/					
14	140	or myocardial infarction/ or coronary disease/ or cerebrovascular disorders/					
15 16	140	5. (cardiovascular or stroke or myocardial infarction or heart failure).ti.					
10	141						
18	142	6. neoplasms/ or colorectal neoplasms/ or lung neoplasms/ or prostatic neoplasms/					
19		7. cancer.ti.					
20	144	8. mortality/ or mortality.ti.					
21	145	9. dementia/ or cognition/ or dementia.ti. or cognit*.ti.					
22	146	10. Aging/psychology or Neuropsychological Tests/					
23	147	11. 1 or 2 or 3					
24	148	12. 4 or 5 or 6 or 7 or 8 or 9 or 10					
25 26	149	13. 11 and 12					
20 27	150	14. longitudinal studies/ or prospective studies/ or follow-up studies/ or cohort studies/					
28	151	15. (prospective or follow-up or cohort study or longitudinal study).ti,ab.					
29	152	16. 14 or 15					
30	153	17. 13 and 16					
31	154	18. (exogenous or replacement or therapy or hormone treatment).ti.					
32	155	19. Hormone Replacement Therapy/					
33	156	20. 18 or 19					
34 35	157	21. 17 not 20					
35 36	158	22. limit 21 to humans					
37	159	23. limit 22 to english language					
38	160	24. limit 23 to (adaptive clinical trial or address or autobiography or bibliography or					
39	161	biography or case reports or clinical trial, all or clinical trial, phase i or clinical trial, phase ii					
40	162	or clinical trial, phase iii or clinical trial, phase iv or clinical trial, veterinary or clinical trials,					
41	163	veterinary as topic or clinical trial protocol or clinical trial or comment or controlled clinical					
42	164	trial or dictionary or editorial or lecture or legislation or meta analysis or practice guideline or					
43 44	165	pragmatic clinical trial or published erratum or randomized controlled trial or retracted					
44 45	166	publication or "retraction of publication" or "review" or "scientific integrity review" or					
46	167	"systematic review")					
47	168	25. Retrospective Studies/ or Case-Control Studies/ or (retrospective analysis or case-					
48	169	control).ti.					
49	170	26. 24 or 25					
50	171	27. 23 not 26					
51	172						
52 53	173	Notes:					
53 54	174						
55	175	Terms with a trailing "/" are MeSH terms and those with a trailing "*" are truncated search					
56	176	strings. Beforehand, a search of PROSPERO was conducted for another suitable strategy but					
57	177	none were found. However, the above strategy is based upon one that has been used for a					
58	177	similar study.[15] This search strategy is also published in the protocol article for the					
59	178	Androgens In Men Study.[3]					
60	1//	Androgons in then Study.[3]					

Page	33	of	56
------	----	----	----

BMJ Open

Supplementary Material: Systematic Review for the Androgens In Men Study.

Table S2: Selection criteria for screening items returned from the literature search. If neither Include nor Exclude could be selected for Step 1, then 1 - - + - - 1 " T - - - 1 - - 1 - ? .

	Exclude	Include	Rationale	Used in Step 1 Title & Abstract		Used in Step
						Full-text
				Title only (no abstract)	Title & Abstract	
Article type:	Reviews, comments/opinion pieces, systematic reviews, dictionary, fact sheet, website information about diseases, fact sheets, etc.	Research study article / report, or an article that specifically refers to the results of one (e.g., a webpage referring to unpublished data).	These searches were of both published and unpublished scientific literature for the purpose of identifying prospective cohort studies that are likely to have the relevant data for planned IPD meta-analyses	Yes	Yes	Yes
Study type:	Retrospective or cross-sectional designs, case studies, case-control, surveys, RCTs or other trials, experiments, evaluation of androgen / testosterone therapy / deprivation / HRT or the effectiveness of any other type of intervention / surgery / treatment, genetics, etc.	Prospective cohort study.	A prospective cohort study design is of incident health outcomes for investigating etiology or disease risk for a cohort free of disease at baseline, and ideally should be representative of the local population, but may or may not be some demographic subset: e.g., age range, sex, ethnicity type. Further details in Table 2.	Yes	Yes	Yes
Population (at baseline/date of recruitment to study)	Studies of juveniles only Studies of females only Individuals with some specific health condition/characteristic or following surgery / other medical treatment for specific illness	Adults (18 yr or older) Not females only Community-dwelling men	The study is of community-dwelling men.	Yes	Yes	Yes
Exposure (at baseline)	Do not exclude studies that do not model testosterone as the exposure: although it should be shown that it was measured for participants. If not mentioned in Step 2 then Exclude.	Endogenous testosterone	This will be the focal exposure for all IPD meta- analyses. However, as we are focussing on the identification of only those studies who have suitable androgen measurements available in IPD data, then testosterone does not necessarily need to be modelled as	Only if available	Only if available	Yes
	Testosterone not measured using mass spectrometry	Testosterone assay of serum or plasma sample using mass spectrometry (lc-ms or gc-ms)	the focal exposure in included items. It is likely that details on the methods will be available only from full- text review.	Only if available	Only if available	Yes
Outcome (at follow-up)	Incident outcome not one of those type of events specified for inclusion.	Diagnosis/event of: cardiovascular disease (any); cancer (any); dementia. Deaths (any cause); deaths due to any type of cardiovascular disease; deaths due to any type of cancer. Cognition change / outcome	These are the outcomes for the planned IPD meta- analyses so it is important to seek IPD datasets from those studies who have already modelled these outcomes. We refer to these as the "AIMS outcomes".	Yes	Yes	Yes
	Less than 5 years of follow-up data	Five or more years of follow-up data, with outcomes identified using systematic follow-up or data linkage.	As consistent across all included studies for IPD meta- analyses and set <i>a priori</i> . Likely that this will be available only from full-text review so not included Step 1.	No	No	Yes
Language	Title and/or abstract of article not in English	Title and/or abstract of article in English	As limited by the timeframe of this study and the native language of reviewers (a practicality).	Yes	Yes	Yes
Species	Studies not of humans	Studies of humans	We are studying humans.	Yes	Yes	Yes

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Material: Systematic Review for the Androgens In Men Study.

3 4 5	183 184 185	Table S3: Adaptation of screening rules for different types of published and unpublished items.				
6 7		Item Type	Step 1	Step 2		
8		Published article	Screen title (and abstract ^a)	Screen full text article		
9		Thesis	Screen title (and abstract ^a)	Screen full thesis		
10 11 12		Unpublished report / other document	Screen title (and abstract ^{a,b})	Screen full document		
12 13 14 15 16 17 18 19		Webpage	Screen title and webpage ^c	Screen full text article/document as identified from the webpage, or from a google search of information provided about the article, from the webpage.		
20 21 22	186			weepuge		
23 24	187	^a = when an abstract was available, otherwise title-only decisions were made (see Table 1).				
25 26	188	^b = or, if not an abstract, other suitable document summary, as returned by the search tool.				
27 28 29	189	^c = for webpage articles, the webpage text served as the proxy for an abstract, with the				
30 31	190					
32 33 34	191					
24 25						

c . 1 0 .

Supplementary Material: Systematic Review for the Androgens In Men Study.

192 <u>Table S4. Words mentioned in the titles or abstracts of reviewed items.</u>^a

	Stan 1 itama	Stop 2 itoms	Selected items
$\mathbf{W}_{\mathbf{z}}$	Step 1 items	Step 2 items	
Word(s)	(n=1,994)	(n=158)	(n=20)
Search terms (AIMS outcomes)			
cancer	1,449 (72.7)	72 (45.6)	6 (30.0)
colorectal cancer	9 (0.5)	4 (2.5)	2 (10.0)
lung cancer	10 (0.5)	6 (3.8)	2 (10.0)
prostate cancer	1,107 (55.5)	40 (25.3)	2 (10.0)
cardiovascular	219 (11.0)	49 (31)	15 (75.0)
heart failure	29 (1.5)	2 (1.3)	1 (5.0)
stroke	31 (1.6)	12 (7.6)	4 (20.0)
myocardial infarction	33 (1.7)	7 (4.4)	1 (5.0)
mortality	232 (11.6)	45 (28.5)	9 (45.0)
dementia	22 (1.1)	8 (5.1)	2 (10.0)
cognit*	87 (4.4)	20 (12.7)	4 (20.0)
Other frequently observed (not search terms)			
androgen deprivation	583 (29.2)	2 (1.3)	0 (0.0)
androgen receptor	235 (11.8)	10 (6.3)	0 (0.0)
brachytherapy	165 (8.3)	0 (0.0)	0 (0.0)
breast cancer	153 (7.7)	9 (5.7)	0 (0.0)
radiotherapy	371 (18.6)	0 (0.0)	0 (0.0)

^a = Items summarised as numbers (percentages); *= wildcard character designating truncation

Supplementary Material: Systematic Review for the Androgens In Men Study.

Table S5. Attributes of selected items.

					Bas	seline**		Fo	llow-up (relevant outcomes)
Item	Article	Country	Study name [§]	No. adult males	Baseline period	Age (yr) Mean (sd)	T (nmol/L) Mean (sd)	Length of follow-up (yr) (person-years) [¶]	AIMS Longitudinal Outcomes (no. of events analysed)
Selected	l from systematic re	eview							
1	Srinath, 2015[16]	USA	ARIC	1,558	1996-98	63.1 (5.6)	13.9 (5.7)	Md=12.8 (CHD); Md=13.1 (HF) (25,374; HF)	Coronary Heart Disease (CHD; 287) Heart Failure (HF; 104) CHD deaths (29) All-cause deaths (347)
2	Srinath, 2016[17]	USA	ARIC	1,558	1996-98	63.1 (5.6)	13.9 (5.7)	Md=14.1 (27,311)	Ischemic Stroke (79)
3	Chan, 2016[18]	Australia	BHS	1,804	1994-95	50.3 (16.8)	13.6 (4.9)	Mn=14.9 (31,930)	CVD events (234; 399)*** CVD deaths (71; 141)*** All-cause deaths (191; 319)***
4	Chasland, 2017[19]	Australia	BHS	1,649	1994-95	49.8 (15.3)	13.7 (4.9)	Tot=20	CVD events (415) CVD deaths (127)
5	Chan, 2018[20]	Australia	BHS	1,574	1994-95	51.1 (14.7)	13.5 (4.8)	Tot=20	Prostate cancer (116) Lung cancer (22) Colorectal cancer (48) Cancer (any; 289)
6	Hsu, 2015[21]	Australia	CHAMP	853	2005-07	76.9 (5.5)	14.6 (6.2)	Tot=5	Cognitive decline (95)
7	Hsu, 2016[22]	Australia	СНАМР	1,705	2005-07	76.9 (5.5)	14.9 (6.6)	Md=6.9; Tot=10 (11,764)	Cancer deaths (151) CVD deaths (185) Other deaths (174) All-cause deaths (510)
8	Hsu, 2018[23]	Australia	CHAMP	1,651	2005-07	76.9 (5.5)	14.7 (6.4)	Tot=5	All-cause deaths (382) CVD deaths (cases not reported) Cancer deaths (cases not reported) Other deaths (cases not reported) Change in: MMSE, SF-12 (Mental).

BMJ Open

					Ba	seline**		Fol	llow-up (relevant outcomes)
[tem	Article	Country	Study name [§]	No. adult males	Baseline period	Age (yr) Mean (sd)	T (nmol/L) Mean (sd)	Length of follow-up (yr) (person-years)¶	AIMS Longitudinal Outcomes (no. of events analysed)
9	Rosenberg, 2018[24]	USA	CHS	1,019	1994	76.3 (4.9)	13.2 (6.2)	Md=9.5 (10,716)	Atrial Fibrillation (304)
10	Shores, 2014a[25]	USA	CHS	1,032	1994	76.5 (5.2)	13.5 (6.1)	Md=10; Tot=16 (19,220)	Ischemic stroke (114)
11	Shores, 2014b[26]	USA	CHS	NR	1994	NR	NR	Md=8.9 (CVD events) Md=10.8 yr (All-cause deaths). (9,184; CVD events)	CVD events (436) CVD deaths (157) All-cause deaths (777)
12	Lee, 2013[27]	Europe ^{§§}	EMAS	2,736	2003-05	59.2 (10.7)	16.5 (6)	Md=4.3; Tot=5 (14,486)	Cancer (any) Myocardial Infarction (MI) Heart Failure, Other heart conditions Stroke Cognitive function All-cause deaths (193)
13	Pye, 2014[28]	Europe ^{§§}	EMAS	2,599	NR	60 (11)	NR	Md=4.3; Tot=5 (11,140)	Cancer deaths (60) CVD deaths (56) All-cause deaths (147)
14	Chan, 2017[29]	Australia	HIMS	3,690	2001-04	77 (3.6)	13.1 (4.9)	Md=9.1, 9.2; Tot=11 (38,665)	Prostate cancer (348) Lung cancer (107) Colorectal cancer (137)
15	Ford, 2018[30]	Australia	HIMS	4,069	2001-04	NR	NR	Md=10.5; Tot=12 (44,404)	Dementia (499)
16	Yeap, 2014[31]	Australia	HIMS	3,690	2001-04	NR	NR	Mn=6.6 (2.3 sd) (28,036)	MI (344) Stroke (300)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Supplementary Material: Systematic Review for the Androgens In Men Study.

					Bas	seline**		Fol	llow-up (relevant outcomes)
Item	Article	Country	Study name [§]	No. adult males	Baseline period	Age (yr) Mean (sd)	T (nmol/L) Mean (sd)	Length of follow-up (yr) (person-years)¶	AIMS Longitudinal Outcomes (no. of events analysed)
17	Ohlsson, 2010[32]	Sweden	MrOS	2,644	2001-04	75.5 (3.2)	15.6 (6.5)	Mn=4.5† (11,880)	CVD deaths (123) Cancer deaths (127) All-cause deaths (328)
18	Ohlsson, 2011[33]	Sweden	MrOS	2,416	2001-04	75.4 (3.2)	15.7 (6)	Md=5.1 (11,605)	CVD events (485) Chronic Heart Disease events (302) Cerebrovascular events (225)
19	Tivesten, 2014[34]	Sweden	MrOS	2,416	2001-04	75.4 (3.2)	15.7 (6)	Md=5.2 (12,070; CHD) (12,137; CBD)	Chronic Heart Disease (302; CHD) Cerebrovascular Disease (225; CBD)
20	Kische, 2017[35]	•	SHIP	1,962	1997-01	49.5 (16.3)	15.6 (6.1)	Tot=10	Change in cognitive status
	on = "Maybe". Iten								
21	LeBlanc, 2010[36]	USA	MrOS	1,602	NR	NR	NR	Mn=4.5 †† (26,977)	Cognitive function (and change in) Cognitive decline
22*	Sueoka, 2010[14]	USA	MrOS	697	2000-05	72 (5.5)	14.5 (5.1)	Av=3.9 †† (6,247)	Coronary Heart Disease events (100)
Other.	Additional studies	selected based	l on inform	tion externd	al to the syst	ematic reviev	,		
	No articles were selected.	USA	FHS	3,352[12]	1998-05	59.6 (9.1)[12] 49.4 (13.8)[11]	20.7 (8.0)[12]	Tot=10 (for Atrial Fibrillation)[37]	Cardiovascular outcomes[37, 38] Deaths[37] Cause-specific deaths[38] Cancer[39]
	No articles were selected.	Australia	MAILES	1,632[40]	2002- 06[8]	54.1 (11.4)[40]	17.3 (5.7)[40]	Md=4.95; IQR=4.35- 5.00[40] (12,686)	CVD events Deaths (99)[8] Cause-specific deaths[8]

§ Study name abbreviations: 'ARIC'= Atherosclerosis Risk in Communities; 'BHS'=Busselton Health Study; 'CHAMP'=The Concord Health and Ageing in Men Project; 'CHS'= Cardiovascular Health Study; 'FHS'= the Framingham Heart Study; 'HIMS'=The Health In Men Study; 'EMAS'=European Male Ageing Study; 'MAILES'= The Men Androgen Inflammation Lifestyle Environment and Stress study; 'MrOS Sweden'=The MrOS Osteoporotic Fractures in Men study in Sweden; 'MrOS USA' = The MrOS Osteoporotic Fractures in Men study USA; 'SHIP'=Study of Health in Pomerania SHIP. §§ = UK, Italy, Belgium, Poland, Sweden, Spain, Hungary, Estonia

- 13 -

BMJ Open

¶ 'Md'=median; 'Mn'=mean; 'Av'=average; 'Tot'=total follow-up for the cohort (i.e., maximum, rounded down to nearest whole year); 'IQR'=interquartile range. Unless provided in text, person-years was calculated by multiplying the median, mean, or average length of follow-up by the total number of adult male participants.

* = Note that this is a published conference abstract so is not technically a "Full Text" item.

** = Baseline statistics reported for whole cohort; 'NR' = statistics not reported for whole cohort; Means and standard deviations calculated by firstly transforming into standard units (for T: nmol/L) and then, where required, transforming from quartile statistics using the Box-Cox method of McGrath et al.[41]

*** = First number is for individuals without CVD at baseline.

 \dagger = Total follow-up exceeded 5 years, from baseline visit (2001-04) to end of mortality data collection (March 1, 2008).

† = Note that since there was no published follow-up estimate exceeding 5 years (a requirement for selection) and it was not clear, based on the article estn.. least 5 years, u.. ,ry from subsequent corιc., information alone, whether the total follow-up was at least 5 years, these items were initially classified as "Maybe". The length of follow-up for collection of

AIMS outcome data was determined to be satisfactory from subsequent correspondence with MrOS USA researchers.

- 14 -

Supplementary Material: Systematic Review for the Androgens In Men Study.

Study	Article	Longitudinal measure of association	Exposure* (testosterone)	Outcome ascertainment	Covariates
ARIC	Srinath, 2015[16]	HR	T quartiles	CVD events and deaths identified by annual questionnaires and continuous surveillance, independent from hospital admissions data (ICD codes). Cause of death from death certificates.	Age, race/centre, BMI, waist circumference, smoking status diabetes mellitus, hypertension, LDL, HDL.
	Srinath, 2016[17]	HR	T tertiles	Definite or probable stroke events identified from hospital admissions, annual phone calls, study examinations adjudicated by a physician, with secondary physician adjudication if it disagreed with a computer algorithm.	Age, race, centre, BMI, waist circumference, smoking status, diabetes mellitus, hypertension, LDL, HDL.
BHS Chan, 2016[18]		HR	T quartiles (results not shown), Continuous T.	Linked hospital admissions and deaths records (ICD codes)	Age, smoking, vigorous exercise, alcohol, BMI, diabetes, CVD, COPD, non-skin cancer, systolic blood pressure, hypertension, lipid lowering therapy, cholesterol, HDL, triglycerides, C-reactive protein, creatinine
	Chasland, 2017[19]	HR	Categories: Low (L) v High (H) T, physical activity(PA) LT+LPA, LT+HPA, HT+LPA, HT+HPA	Linked hospital admissions and deaths records (ICD codes)	Age, prevalent CVD, smoking, waist circumference, cholesterol, HDL, lipids medication, diabetes, systolic blood pressure, hypertension medication
	Chan, 2018[20]	HR	T quartiles, Continuous T.	Linked cancer and death registry records (ICD codes)	Age, marital status, occupation, smoking, alcohol consumption, leisure time physical activity, BMI, diabetes
CHAMP	Hsu, 2015[21]	Slope estimate (change in MMSE on baseline hormone level or longitudinal change in hormone level)	Continuous T, cFT	Clinic assessment: MMSE, Informant Questionairre on Cognitive Decline as initial screen, followed by clinical assessment to diagnosis categories: normal cognition, MCI, dementia. During follow-up: A decline in MMSE by ≥3 points	Age, BMI, smoking status, years of education, depression score (GDS)
	Hsu, 2016[22]	RR	Continuous T, cFT	Deaths identified from 4-monthly phone calls or deaths registry. Cause of death identified on death certificates independently by 2 medical practitioners.	Age, BMI, smoking status, comorbidity score
	Hsu, 2018[23]	HR, RR (Death outcomes); Slope estimates (MMSE, SF-12 Mental)	Categories: Low (<20 th centile) v Normal T combinations with Low (<20 th centile) v Normal cFT	Cause of death identified on death certificates independently by 2 medical practitioners.	Age, BMI, smoking status, comorbidity score
CHS	Rosenberg, 2018[24]	HR	Continuous T and cFT, T and cFT quintiles	Independently verified from ECGs taken annually for participants and from hospital discharge diagnoses	Age (stratified), race, education, income, clinic, smoking status, diabetes mellitus, BMI, loop diuretics, height, hypertension, depressed left ventricular ejection fraction, kidney function, systolic blooc pressure, SHBG
				- 15 -	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 41 of 56

BMJ Open

Study	Article	Longitudinal measure of association	Exposure* (testosterone)	Outcome ascertainment	Covariates
	Shores, 2014a[25]	HR	Continuous T, cFT (linear & non- linear), T categories	Medicare data, hospital records, imaging studies, autopsy results, death certificates, physician interviews data used for adjudications by committee, which included a neurologist.	Age, systolic blood pressure, anti-hypertensive medications, atrial fibrillation, diabetes, smoking, lipid-lowering drugs, HDL, cholesterol, creatinine, fasting glucose, diabetes medications.
	Shores, 2014b[26]	HR	Continuous T, cFT (linear or non-linear) categories: Q1, Q2-4	Medicare data, hospital records, imaging studies, autopsy results, death certificates, physician interviews data used for adjudications by committee, which included a neurologist.	Age, race, site, smoking status, alcohol consumption, hypertensive use, HDL, BMI, waist circumference, diabetes SHBG.
EMAS	Lee, 2013[27]	N/A	No modelling of longitudinal outcomes reported	MI, heart failure, other heart conditions, cancers, stroke identified from postal questionnaire, MMSE for participants ≥65 yr old from clinic assessments Variable methods for data capture + validation among centres.	No modelling of longitudinal outcomes reported
	Pye, 2014[28]	HR	T, free T categories: quintiles, low v eugonadal T, LOH status.	Deaths identified from follow-up postal questionnaire or enquiry if no reply received, with 89% of deaths verified from death certificates, death registers, or medical/hospital records.	Age, site, BMI, smoking status, general health.
HIMS	Chan, 2017[29]	SHR	Continuous T, cFT.	Linked hospital admissions, death and cancer registry records (ICD, ICD-O-3 codes).	Age, BMI, smoking status, physical activity, alcohol consumption, diabetes mellitus, HDL, triglycerides, prior cancer diagnosis.
	Ford, 2018[30]	HR	Continuous T, free T Quartile categories of T, free T	Linked data (ICD codes) from inpatient and outpatient mental health services, hospital admissions, community aged care services, cancer and death registries.	Age, baseline cognitive function, depression, BMI, hypertension, CVD, plasma homocysteine.
	Yeap, 2014[31]	HR	T, free T as quartile categories	Linked hospital admissions, death and cancer registry records (ICD codes).	Age, education, smoking status, BMI, waist to hip ratio, hypertension, dyslipidemia, diabetes, creatinine, prior cancer or existing CVD. Also SHBG for models with T.
MrOS Europe	Ohlsson, 2010[32]	HR (in relation to DHEA, DHEA-S)	No: T modelled as a covariate only	Linked data (death and hospital discharge registries), death certificates.	Age, site, BMI, C-reactive protein, ApoB/A1, smoking status, diabetes, hypertension, prior CVD, prior cancer, low testosterone (in lowest quartile), low estradiol
	Ohlsson, 2011[33]	HR	T, free T as quartile categories, T as binary categories.	Linked data (death and hospital discharge registries), death certificates.	Age, morning sample, site, BMI, ApoB/A1, physical activity, smoking status, diabetes, hypertension
	Tivesten, 2014[34]	HR (in relation to DHEA, DHEA-S)	No: T modelled as a covariate only	Linked data (death and hospital discharge registries), death certificates.	Age, morning sample, site, BMI, ApoB/A1, C-reactive protein, estradiol, testosterone (i.e., continuous T), SHBG, eGFR, smoking status, diabetes, hypertension.
SHIP	Kische, 2017[35]	Slope estimate (change in MMSE on baseline hormone)	T, free T as continuous and as 10-year age group quartile categories.	MMSE score.	Age, BMI, smoking status, alcohol consumption, physical activity, hypertension, occupational status, education level, civil status, baseline MMSE.

Supplementary Material: Systematic Review for the Androgens In Men Study.

Study	Article	Longitudinal measure of association	Exposure* (testosterone)	Outcome ascertainment	Covariates
MrOS USA	LeBlanc, 2010[36]	Change in mean score RR of clinically important decline	Free T quartiles and continuous free T	Cognitive tests at the baseline and follow-up visit from Part B of the Trail Making Test (Trails B) and the Modified Mental State Examination (3MS). Calculated from pre-defined drop in scores.	Age group, education level, race, general health, alcohol consumption, clinic, physical and mental health, physical activity, medications used at baseline, other sex steroids, SHBG.
	Sueoka, 2010[14]	HR	T quartiles	CHD events identified from 3-monthly contacts with participants. Incident events were reviewed and adjudicated by cardiologist using clinical records.	Age, clinic, BMI, blood pressure, lipid levels, smoking, hypertension, diabetes, use of lipid-lowering agents
FHS	N/A – no items were selected.	N/A	N/A	AF measured and adjudicated by cardiologists. Mortality data from death certificates, hospital or institutional records, obituaries, or direct notification[37] Medical records of CVD events reviewed by panel of experienced investigators. A heart study neurologist examined most participants with suspected stroke[38] Medical records of cancer diagnoses reviewed by two independent reviewers, with majority confirmed by pathology reports.[39]	N/A
MAILES	N/A – no items selected.	N/A	N/A	Self-reported and clinical follow-up data, death registry (linked data)[8]	N/A

* T = total testosterone; cFT = calculated free testosterone; Q1=quartile 1; Q2-4=quartiles 2 to 4 combined.

BMJ Open

Table S7. Newcastle-Ottawa Quality Assessment Scale for Cohort Studies: selected articles.

		Selection	Comparability	Outcome		
Article	Study	(4 stars)	(2 stars)	(3 stars)	Notes on Selection	Notes on Outcome
Srinath 2015[16]	ARIC	****	**	**		Losses to f/u not mentioned; linked data ^b
Srinath 2016[17]	ARIC	****	**	**		Losses to f/u not mentioned; linked data ^b
Chan 2016[18]	BHS	****	**	**		Losses to f/u not mentioned; linked data ^b
Chasland 2017[19]	BHS	***	**	**	Prevalent cases not excluded ^a	Losses to f/u not mentioned; linked data ^b
Chan 2018[20]	BHS	****	**	**		Losses to f/u not mentioned; linked data ^b
Hsu 2015[21]	CHAMP	****	**	***		
Hsu 2016[22]	CHAMP	***	**	***	Prevalent cases not excluded ^c	
Hsu 2018[23]	CHAMP	***	**	***	Prevalent cases not excluded ^c	
Rosenberg 2018[24]	CHS	****	**	**		Losses to f/u not mentioned; linked data ^d
Shores 2014a[25]	CHS	****	**	**		Losses to f/u not mentioned; linked data ^d
Shores 2014b[26]	CHS	****	**	**		Losses to f/u not mentioned; linked data ^d
Lee 2013[27]	EMAS	NA	NA	NA NA	No modelling of longitudinal out	comes reported
Pye 2014[28]	EMAS	***	**	***	Prevalent cases not excluded ^a	-
Chan 2017[29]	HIMS	****	**	**		Losses to f/u not mentioned; linked data ^b
Ford 2018[30]	HIMS	****	**	**		Losses to f/u not mentioned; linked data ^b
Yeap 2014[31]	HIMS	***	**	**	Prevalent cases not excluded ^a	Losses to f/u not mentioned; linked data ^b
Ohlsson 2010[32]	MrOS Sw.	NA	NA	NA	Testosterone was not the exposur	re variable in this article
Ohlsson 2011[33]	MrOS Sw.	****	**	***		
Tivesten 2014[34]	MrOS Sw.	NA	NA	NA	Testosterone was not the exposur	re variable in this article
Kische 2017[35]	SHIP	***	**	***	Prevalent cases not excluded ^e	
LeBlanc 2010[36]	MrOS USA	****	**	*		Bias from loss to f/u; F/u OK: additional steps
Sueoka 2010[14]	MrOS USA	***	**	*	Prevalent cases not excluded ^a	F/u OK: additional steps ^f
Additional item not se	lected but includ	led in DR-MA	•			
Yeap 2014b[13]	HIMS	***	**	**	Prevalent cases not excluded ^a	Losses to f/u not mentioned; linked data ^b

'NA' = Not applicable (see Notes); 'f/u' = follow-up (of incident events); 'DR-MA' = dose-response meta-analyses of published estimates.

a = The influence of prevalent cases was statistically adjusted by including prevalent status as a model predictor.

^b = Follow-up of cases was assumed to be almost complete because analyses were of linked administrative data.

^c = The influence of prevalent cases was statistically adjusted by incorporating into a comorbidity status model predictor.

 d = Follow-up of cases was assumed to be almost complete because analyses were of linked administrative data (with expert adjudications).

^e = Outcome was change in cognition score, with baseline score (prevalent status) included as a model predictor.

f = Total length of follow-up period was not reported but determined to be satisfactory from correspondence with MrOS USA researchers.

- 18 -

BMJ Open

Supplementary Material: Systematic Review for the Androgens In Men Study.

Table S8. PRISMA Checklist for Systematic Review: the Androgens In Men Study.

Section/topic	#	Checklist item	Reported on page #			
TITLE	<u> </u>					
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1			
ABSTRACT						
Structured summary	ructured summary2Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.					
INTRODUCTION						
Rationale	3	Describe the rationale for the review in the context of what is already known.	5			
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5. For this type of review it is PEO instead.			
METHODS						
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5			
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5, Table S2			
Information sources	ormation sources 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.					
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Table S1			

 BMJ Open

Supplementary Material: Systematic Review for the Androgens In Men Study.

Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6, Tables S2-S3.
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6, Suppl. Data.
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6, Suppl. Data.
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6, Table S7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	7
		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses 16		Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indica which were pre-specified.	
,		which were pre-specified.	
		which were pre-specified.	
RESULTS Study selection	17	which were pre-specified. Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8, Fig. 1
RESULTS		Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at	8, Fig. 1 Tables S5-6, S9
RESULTS Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram. For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and	Tables

Supplementary Material: Systematic Review for the Androgens In Men Study.

Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-11, Figs. 3-4		
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-11, Fig. S2		
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	9-10, Fig. S1		
DISCUSSION	-				
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance key groups (e.g., healthcare providers, users, and policy makers).			
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	11-14		
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	11-14		
FUNDING	-				
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	15		

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

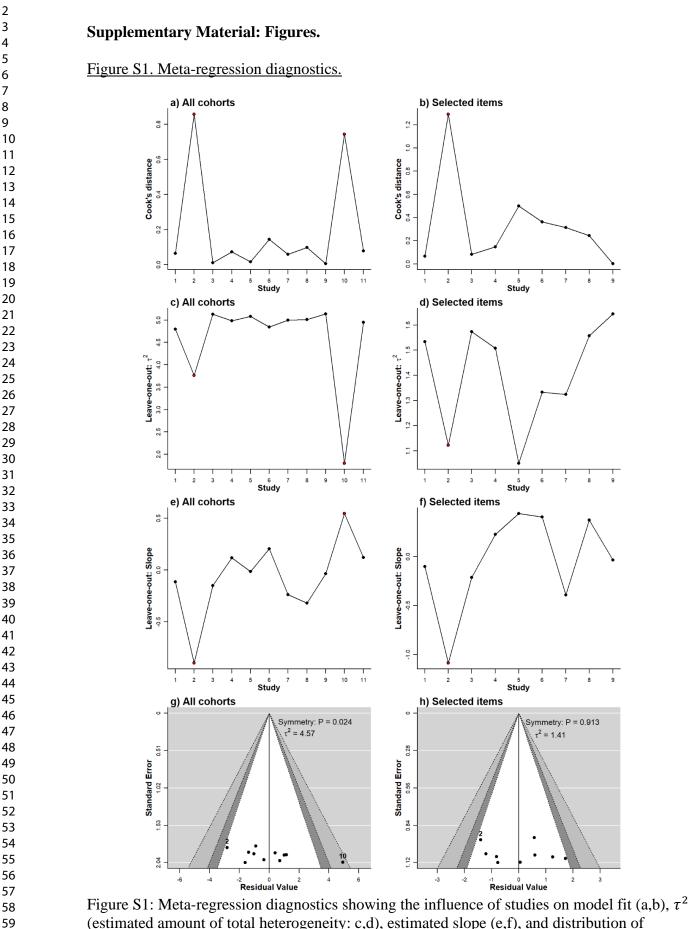
Supplementary Material: Systematic Review for the Androgens In Men Study.

Article	Study	Outcome	Testosterone	Units	HR	95% CI	Notes
Chan	DUC	A 11	-10.20		f		
2016[18]	BHS	All-cause mortality	<10.20	nmol/L	ref.	(0, (2, 1, 1, 4))	
Chan 2016	BHS	All-cause mortality	10.20 - <13.04	nmol/L	0.84	(0.62-1.14)	
Chan 2016	BHS	All-cause mortality	13.04 - <16.58	nmol/L	0.86	(0.62-1.19)	
Chan 2016	BHS	All-cause mortality	≥16.58	nmol/L	0.9	(0.62-1.3)	
Pye 2014[28]	EMAS	All-cause mortality	<11.65	nmol/L	1.1	(0.6-1.8)	
Pye 2014	EMAS	All-cause mortality	11.65-14.61	nmol/L	0.7	(0.4-1.3)	
Pye 2014	EMAS	All-cause mortality	14.61-17.28	nmol/L	0.7	(0.4-1.3)	
Pye 2014	EMAS	All-cause mortality	17.28-21.20	nmol/L	1.2	(0.7-2)	
Pye 2014	EMAS	All-cause mortality	>21.20	nmol/L	ref.		
Srinath 2015[16]	ARIC	All-cause mortality	≤288.4	ng/dL	0.96	(0.7-1.34)	
Srinath 2015	ARIC	All-cause mortality	288.5-377.6	ng/dL	0.99	(0.72-1.35)	
Srinath 2015	ARIC	All-cause mortality	377.7-480.1	ng/dL	1	(0.74-1.35)	
Srinath 2015	ARIC	All-cause mortality	≥480.2	ng/dL	ref.		
Shores 2014b[26]	CHS	All-cause mortality	<278	ng/dL	1.06	(0.88-1.29)	
Shores 2014b	CHS	All-cause mortality	≥278	ng/dL	ref.		
Yeap 2014b[13]	HIMS	All-cause mortality	0.25-9.82	nmol/L	ref.		Fully-adjusted model + SHBG
Yeap 2014b	HIMS	All-cause mortality	9.82-12.53	nmol/L	0.81	(0.68-0.98)	
Yeap 2014b	HIMS	All-cause mortality	12.56-15.75	nmol/L	0.75	(0.61-0.92)	
Yeap 2014b	HIMS	All-cause mortality	15.79-46.50	nmol/L	0.77	(0.61-0.97)	
Yeap 2014b	HIMS	All-cause mortality	0.25-9.82	nmol/L	ref.		Fully-adjusted
Yeap 2014b	HIMS	All-cause mortality	9.82-12.53	nmol/L	0.84	(0.7-1.01)	model + LH
Yeap 2014b	HIMS	All-cause mortality	12.56-15.75	nmol/L	0.81	(0.67-0.97)	
Yeap 2014b	HIMS	All-cause mortality	15.79-46.50	nmol/L	0.89	(0.73-1.07)	
Chan 2016	BHS	CVD mortality	<10.20	nmol/L	ref.	(0.75 1.07)	
		CVD mortality	10.20 - <13.04	nmol/L	1.12	(0.7-1.78)	
Chan 2016	BHS	•					
Chan 2016	BHS	CVD mortality	13.04 - <16.58	nmol/L	1.39	(0.86-2.25)	
Chan 2016 Chasland	BHS	CVD mortality	≥16.58	nmol/L	1.25	(0.69-2.25)	Total PA, "Low"
2017[19]	BHS BHS	CVD mortality CVD mortality	<13.1 ≥13.1	nmol/L nmol/L	ref. 1.25	(0.77-2.03)	PA, NS PA x T: these estimates were used
Chasland 2017	BHS	CVD mortality	<13.1	nmol/L	0.69	(0.4-1.2)	Total PA, "High'
Chasland 2017	BHS	CVD mortality	≥13.1	nmol/L	0.8	(0.48-1.35)	PA, NS PA x T
Pye 2014	EMAS	CVD mortality	<11.65	nmol/L	1	(0.4-2.2)	
Pye 2014	EMAS	CVD mortality	11.65-14.61	nmol/L	0.5	(0.4-2.2) (0.2-1.4)	
Pye 2014	EMAS	CVD mortality	14.61-17.28	nmol/L	0.5	(0.2-1.4) (0.2-1.2)	
•		•					
Pye 2014	EMAS	CVD mortality	17.28-21.20	nmol/L	1.1 rof	(0.5-2.4)	
Pye 2014	EMAS	CVD mortality	>21.20	nmol/L	ref.	(0.45.4.00)	
Srinath 2015	ARIC	CVD mortality	≤288.4	ng/dL	1.36	(0.45-4.08)	
Srinath 2015	ARIC	CVD mortality	288.5-377.6	ng/dL	1.26	(0.73-3.7)	
Srinath 2015	ARIC	CVD mortality	377.7-480.1	ng/dL	0.57	(0.16-1.99)	
Srinath 2015	ARIC	CVD mortality	≥480.2	ng/dL	ref.		

Table CO Ext ่าเ d motio data fam de .

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Material:	Systematic Review for	r the Androgens In Men Study.


Article	Study	Outcome	Testosterone	Units	HR	95% CI	Notes
Shores 2014b	CHS	CVD mortality	<278	ng/dL	1.28	(0.94-1.75)	
Shores 2014b	CHS	CVD mortality	≥278	ng/dL	ref.		
Yeap 2014b	HIMS	CVD mortality	0.25-9.82	nmol/L	ref.		
Yeap 2014b	HIMS	CVD mortality	9.82-12.53	nmol/L	0.82	(0.61-1.11)	
Yeap 2014b	HIMS	CVD mortality	12.56-15.75	nmol/L	0.79	(0.58-1.09)	
Yeap 2014b	HIMS	CVD mortality	15.79-46.50	nmol/L	0.79	(0.56-1.11)	

to peet terien only

4 5

6 7

8 9

(estimated amount of total heterogeneity: c,d), estimated slope (e,f), and distribution of residuals with funnel plots (g,h). Analysis repeated for all 11 cohort studies (a,c,e,g) and for 9

Supplementary Material: Systematic Review for the Androgens In Men Study.

studies with selected articles (b,d,f,h). In cases where more than one article was available per cohort study, the article with the largest sample size was used. Highlighted estimates for cohort study 2 (BHS) were those from Chan et al.[18] (N=1,804) and for study 10 (FHS) were from Pencina et al.[12] (N=720). In funnel plots: light grey + dark grey + white shading = 99% pseudo confidence interval (CI); dark grey + white shading = 95% CI; white shading = 90% CI.

. dark grey +

Supplementary Material: Systematic Review for the Androgens In Men Study.

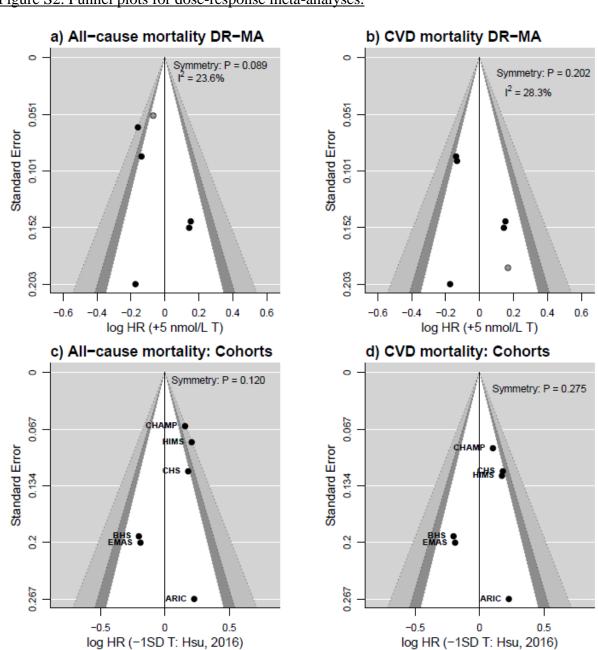


Figure S2: Contour-enhanced funnel plots showing the distribution of log hazard ratio (HR) estimates for all-cause mortality (a, c) and mortality caused by cardiovascular disease (CVD) (b, d) attributed to a 5 nmol/L increase (a, b), or a 1.9 nmol/L (1SD in Hsu et al. 2016[22]) decrease, in endogenous testosterone concentration. Log HR values and standard errors were calculated using generalised least squares regression of published estimates.[42, 43] In cases where more than one article was available per cohort study, the article with the largest sample size was used. Estimates represented by black dots in (a) and (b) were analysed in respective dose-response meta-analyses (DR-MA; results presented in Figs. 3, 4). The grey dot in (a) is the estimate for Yeap et al. 2014b[13] and in (b) is the estimate for Chasland et al. (2017)[19]; these estimates were substituted for others for the HIMS and BHS studies respectively for alternative summary estimates (i.e., the grey summary estimates presented in Figs. 3, 4). Estimates presented in (c) and (d) are shown for a more complete assessment of funnel plot symmetry: estimates are plotted for all studies with estimates, including those that

Supplementary Material: Systematic Review for the Androgens In Men Study.

did not have sufficient information for including in the DR-MA. In funnel plots: light grey + dark grey + white shading = 99% pseudo confidence interval (CI); dark grey + white shading = 95% CI; white shading = 90% CI.

References cited.

- 1. MedNar: Deep Web Technologies.
- 2. OpenGrey: GreyNet International.
- Yeap BB, Marriott RJ, Adams RJ, et al. Androgens In Men Study (AIMS): protocol for meta-analyses of individual participant data investigating associations of androgens with health outcomes in men. *BMJ Open* 2020; 10. https://bmjopen.bmj.com/content/10/5/e034777 (accessed 19 Nov 2020).
- 4. Handelsman DJ, Wartofsky L. Requirement for mass spectrometry sex steriod assays in the Journal of Clinical Endocrinology and Metabolism. *J Clin Endocrinol Metab* 2013;98(10):3971-73.
- 5. Endnote X8: Clarivate Analytics, 2019
- 6. Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan a web and mobile app for systematic reviews. *Syst Rev* 2016; 5.
- 7. Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to Meta-Analysis. West Sussex: John Wiley & Sons Ltd 2009.
- Grant JF, Martin SA, Taylor AW, et al. Cohort profile: The men androgen inflammation lifestyle environment and stress (MAILES) study. *Int J Epidemiol* 2014;43(4):1040-53. doi: <u>https://dx.doi.org/10.1093/ije/dyt064</u>
- 9. Arnlov J, Pencina MJ, Amin S, et al. Endogenous sex hormones and cardiovascular disease incidence in men. *Ann Intern Med* 2006;145(3):176-84.
- 10. Haring R, Teng Z, Xanthakis V, et al. Association of sex steroids, gonadotrophins, and their trajectories with clinical cardiovascular disease and all-cause mortality in elderly men from the Framingham Heart Study. *Clin Endocrinol (Oxf)* 2013;78(4):629-34. doi: <u>https://dx.doi.org/10.1111/cen.12013</u>
- 11. Bhasin S, Pencina MJ, Kaur Jasuja G, et al. Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-base sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. *J Clin Endocrinol Metab* 2011;96(8):2430-39.
- 12. Pencina KM, Travison TG, Bhasin S, et al. Endogenous circulating testosterone and sex hormone-binding globulin levels and measures of myocardial structure and function: the Framingham Heart Study. *Andrology* 2019;7:307-14.
- 13. Yeap BB, Alfonso H, Chubb SAP, et al. In older men an optimal plasma testosterone is associated with reduced all-cause mortality and higher dihydrotestosterone with reduced ischemic heart disease mortality, while estradiol levels do not predict mortality. *J Clin Endocrinol Metab* 2014;99(1):E9-E18.
- 14. Sueoka KT, Ewing MS, Ensrud KE, et al. Higher endogenous testosterone levels associated with increased risk of coronary heart disease in elderly men: a prospective study. *Endocr Rev* 2010;31(3):S858.
- 15. Holmegard HN, Nordestgaard BG, Jensen GB, et al. Sex hormones and ischemic stroke: a prospective cohort study and meta-analyses. *J Clin Endocrinol Metab* 2016;101:69-78.
- 16. Srinath R, Hill Golden S, Carson KA. Endogenous Testosterone and its Relationship to Preclinical and Clinical Measures of Cardiovascular Disease in the Atherosclerosis Risk in Communities Study. J Clin Endocrinol Metab 2015;100(4):1602-02. doi: 10.1210/jc.2014-

- 17. Srinath R, Gottesman RF, Hill Golden S, et al. Association Between Endogenous Testosterone and Cerebrovascular Disease in the ARIC Study (Atherosclerosis Risk in Communities). *Stroke* 2016;47(11):2682-88.
- 18. Chan YX, Knuiman MW, Hung J, et al. Neutral associations of testosterone, dihydrotestosterone and estradiol with fatal and non-fatal cardiovascular events, and mortality in men aged 17-97 years. *Clin Endocrinol (Oxf)* 2016;85(4):575-82. doi: <u>https://dx.doi.org/10.1111/cen.13089</u>
- 19. Chasland LC, Knuiman MW, Divitini ML, et al. Greater physical activity and higher androgen concentrations are independently associated with lower cardiometabolic risk in men. *Clin Endocrinol (Oxf)* 2017;87(5):466-74. doi: <u>https://dx.doi.org/10.1111/cen.13407</u>
- 20. Chan YX, Knuiman MW, Divitini ML, et al. Lower Circulating Androgens Are Associated with Overall Cancer Risk and Prostate Cancer Risk in Men Aged 25-84 Years from the Busselton Health Study. *Horm Cancer* 2018;9(6):391-98. doi: <u>https://dx.doi.org/10.1007/s12672-018-0346-5</u>
- 21. Hsu B, Cumming RG, Waite LM, et al. Longitudinal Relationships between Reproductive Hormones and Cognitive Decline in Older Men: The Concord Health and Ageing in Men Project. *J Clin Endocrinol Metab* 2015;100(6):2223-30. doi: <u>https://dx.doi.org/10.1210/jc.2015-1016</u>
- 22. Hsu B, Cumming RG, Naganathan V, et al. Temporal Changes in Androgens and Estrogens Are Associated With All-Cause and Cause-Specific Mortality in Older Men. *J Clin Endocrinol Metab* 2016;101(5):2201-10. doi: <u>https://dx.doi.org/10.1210/jc.2016-1025</u>
- 23. Hsu B, Cumming RG, Blyth FM, et al. Evaluating Calculated Free Testosterone as a Predictor of Morbidity and Mortality Independent of Testosterone for Cross-sectional and 5-Year Longitudinal Health Outcomes in Older Men: The Concord Health and Ageing in Men Project. *J Gerontol A Biol Sci Med Sci* 2018;73(6):729-36. doi: <u>https://dx.doi.org/10.1093/gerona/glx170</u>
- 24. Rosenberg MA, Shores MM, Matsumoto AM, et al. Serum androgens and risk of atrial fibrillation in older men: The Cardiovascular Health Study. *Clin Cardiol* 2018;41(6):830-36. doi: <u>https://dx.doi.org/10.1002/clc.22965</u>
- 25. Shores MM, Arnold AM, Biggs ML, et al. Testosterone and dihydrotestosterone and incident ischaemic stroke in men in the Cardiovascular Health Study. *Clin Endocrinol* (*Oxf*) 2014;81(5):746-53. doi: <u>https://dx.doi.org/10.1111/cen.12452</u>
- 26. Shores MM, Biggs ML, Arnold AM, et al. Testosterone, dihydrotestosterone, and incident cardiovascular disease and mortality in the cardiovascular health study. *J Clin Endocrinol Metab* 2014;99(6):2061-8. doi: <u>https://dx.doi.org/10.1210/jc.2013-3576</u>
- 27. Lee DM, Pye SR, Tajar A, et al. Cohort profile: the European Male Ageing Study. *Int J Epidemiol* 2013;42(2):391-401. doi: <u>https://dx.doi.org/10.1093/ije/dyr234</u>
- 28. Pye SR, Huhtaniemi IT, Finn JD, et al. Late-onset hypogonadism and mortality in aging men. J Clin Endocrinol Metab 2014;99(4):1357-66. doi: <u>https://dx.doi.org/10.1210/jc.2013-2052</u>
- 29. Chan YX, Alfonso H, Chubb SA, et al. Higher Dihydrotestosterone Is Associated with the Incidence of Lung Cancer in Older Men. *Horm Cancer* 2017;8(2):119-26. doi: <u>https://dx.doi.org/10.1007/s12672-017-0287-4</u>
- 30. Ford AH, Yeap BB, Flicker L, et al. Sex hormones and incident dementia in older men: The health in men study. *Psychoneuroendocrinology* 2018;98:139-47. doi: <u>https://dx.doi.org/10.1016/j.psyneuen.2018.08.013</u>
- 31. Yeap BB, Alfonso H, Chubb SA, et al. In older men, higher plasma testosterone or dihydrotestosterone is an independent predictor for reduced incidence of stroke but not myocardial infarction. *J Clin Endocrinol Metab* 2014;99(12):4565-73. doi: <u>https://dx.doi.org/10.1210/jc.2014-2664</u>

- 32. Ohlsson C, Labrie F, Barrett-Connor E, et al. Low serum levels of dehydroepiandrosterone sulfate predict all-cause and cardiovascular mortality in elderly Swedish men. J Clin Endocrinol Metab 2010;95(9):4406-14. doi: <u>https://dx.doi.org/10.1210/jc.2010-0760</u>
- 33. Ohlsson C, Barrett-Connor E, Bhasin S, et al. High serum testosterone is associated with reduced risk of cardiovascular events in elderly men. The MrOS (Osteoporotic Fractures in Men) study in Sweden. *J Am Coll Cardiol* 2011;58(16):1674-81. doi: <u>https://dx.doi.org/10.1016/j.jacc.2011.07.019</u>
- 34. Tivesten Å, Vandenput L, Carlzon D, et al. Dehydroepiandrosterone and its sulfate predict the 5-year risk of coronary heart disease events in elderly men. J Am Coll Cardiol 2014;64(17):1801-10. doi: <u>https://dx.doi.org/10.1016/j.jacc.2014.05.076</u>
- 35. Kische H, Gross S, Wallaschofski H, et al. Associations of androgens with depressive symptoms and cognitive status in the general population. *PLoS ONE* 2017;12(5):e0177272. doi: https://dx.doi.org/10.1371/journal.pone.0177272
- 36. LeBlanc ES, Wang PY, Janowsky JS, et al. Association between sex steroids and cognition in elderly men. *Clin Endocrinol (Oxf)* 2010;72(3):393-403. doi: https://dx.doi.org/10.1111/j.1365-2265.2009.03692.x
- 37. Magnani JW, Moser CB, Murabito JM, et al. Association of sex hormones, aging, and atrial fibrillation in men: The Framingham Heart Study. *Circ Arrhythm Electrophysiol* 2014;7:307-12.
- 38. D'Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. *Circulation* 2008;117:743-53.
- 39. Murabito JM, Rosenberg CL, Finger D, et al. A genome-wide association study of breast and prostate cancer in the NHLBI's Framingham Heart Study. *BMC Med Genet* 2007; 8(Suppl I).
- 40. Li JJ, Wittert GA, Vincent A, et al. Muscle grip strength predicts incident type 2 diabetes: population-based cohort study. *Metab Clin Exp* 2016;65:883-92.
- 41. McGrath S, Zhao X, Steele R, et al. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. *Stat Methods Med Res* 2020;29(9):2520-37. doi: 10.1177/0962280219889080
- 42. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. *Am J Epidemiol* 1992;135(11):1301-09.
- 43. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. *Stata J* 2006;6(1):40-57.

PRISMA Checklist for Systematic Review: the Androgens In Men Study.

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5. For this type of review it is PEC instead.
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5, Table S2
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5-6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Table S1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6, Tables S2-S3.

Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6, Suppl. Data.
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6, Suppl. Data.
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6, Table S7.
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	7
		Page 1 of 2	
Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8, Fig. 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Tables S5-6, S9
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9, Table S7
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	9-11, Figs. 2-4
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-11, Figs. 3-4

 BMJ Open

Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-11, Fig. S2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	9-10, Fig. S1
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	11-13
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	11-14
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	11-14
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	15

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

BMJ Open

BMJ Open

Systematic review and meta-analyses on associations of endogenous testosterone concentration with health outcomes in community-dwelling men.

	-
Journal:	BMJ Open
Manuscript ID	bmjopen-2020-048013.R1
Article Type:	Original research
Date Submitted by the Author:	11-Aug-2021
Complete List of Authors:	Marriott, Ross; The University of Western Australia, School of Population and Global Health Harse, Janis; The University of Western Australia, School of Population and Global Health Murray, Kevin; The University of Western Australia, School of Population and Global Health Yeap, Bu; The University of Western Australia, Medical School; Harry Perkins Institute of Medical Research
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Research methods
Keywords:	EPIDEMIOLOGY, Sex steroids & HRT < DIABETES & ENDOCRINOLOGY, STATISTICS & RESEARCH METHODS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Systematic review and meta-analyses on associations of endogenous testosterone
5 6	2	concentration with health outcomes in community-dwelling men.
7 8 9	3	
9 10 11	4	Corresponding author:
12 13	5	Ross J. Marriott PhD, School of Population and Global Health, Faculty of Health and
14 15	6	Medical Sciences, The University of Western Australia, Clifton Street Building, Clifton
16 17 18	7	Street, Nedlands 6009, Western Australia, Australia.
19 20	8	Email: ross.marriott@uwa.edu.au; Telephone: +61 8 6488 1299
21 22	9	
23 24 25	10	Authors:
26 27	11	Ross J. Marriott, School of Population and Global Health, The University of Western
28 29	12	Australia, Nedlands 6009, Australia.
30 31 32	13	Janis Harse, School of Population and Global Health, The University of Western Australia,
33 34	14	Nedlands 6009, Australia.
35 36	15	Kevin Murray, School of Population and Global Health, The University of Western Australia,
37 38 39	16	Nedlands 6009, Australia.
40 41	17	Bu B Yeap, Medical School, The University of Western Australia, Perth 6009, Australia.
42 43	18	
44 45 46	19	Short title:
47 48	20	Systematic review: associations of testosterone with men's health
49 50	21	
51 52 53	22	Keywords:
54 55	23	Testosterone, Individual Participant Data, Cardiovascular Disease, Cancer, Mortality,
56 57	24	Dementia, Meta-analysis.
58 59 60	25	

BMJ Open

2							
3 4	26	Word count, excluding title page, abstract, strengths and limitations, references,					
5 6 7	27	acknowledgements, contributions, figures and tables: 3,639 words.					
7 8 9	28						
10 11	29	ABSTRACT					
12 13 14	30	Objectives					
14 15 16	31	The overall study aim is to clarify the relation of endogenous sex hormones with major health					
17 18	32	outcomes in men. This paper reports a systematic review focussing on published estimates for					
19 20 21	33	testosterone associations.					
22 23	34	Setting					
24 25 26	35	Community-dwelling men.					
26 27 28	36	Participants					
29 30	37	20,180 adult males participated in the final set of studies identified and selected from a					
31 32	38	systematic review. Eligible studies included prospective cohort studies with plasma or serum					
33 34 35	39	testosterone concentrations measured for adult males using mass spectrometry with at least 5					
36 37	40	years of follow-up data and one of the specified outcome measures recorded. Only published					
38 39	41	or grey literature items written in English were considered.					
40 41 42	42	Primary and secondary outcome measures					
42 43 44	43	Planned prospective outcome measures: cardiovascular disease (CVD) events, CVD deaths,					
45 46	44	all-cause mortality, cancer deaths, cancer diagnoses, cognitive decline, dementia. Meta-					
47 48	45	analyses were of the most frequently reported outcomes in selected studies: CVD deaths and					
49 50 51	46	all-cause mortality. Succinct characterisations of testosterone associations with other					
52 53	47	outcomes are also presented.					
54 55	48	Results					
56 57 58	49	Screening of 1,994 de-duplicated items identified 9 suitable studies, with an additional two					
58 59 60	50	identified by colleagues (11 in total). Summary estimates of mean testosterone concentration					

BMJ Open

2
2
5
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 21 22 23 24 5 26 7 28 2 27 28 29 30 3 12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
25
25
20
27
28
29
30
31
32
33
24
24
35
36
37
38
39
40
41
41
43
44
45
46
47
48
49
5 0
51
52
53
54
55
56
57
57
50
59
60

51	and age at recruitment for 20,180 adult males were 15.4±0.7nmol/L and 64.9±3.3yr. Despite
52	considerable variation in mean testosterone, a meta-regression estimated no significant
53	dependence on mean age at recruitment among studies (Slope = -0.03 , 95% CI $-0.11 - 0.06$).
54	Meta-analyses demonstrated negligible heterogeneity and no significant effect of a 5 nmol/L
55	increase in testosterone on the risk of all-cause mortality (hazard ratio, $HR = 0.96$, 95% CI
56	0.89 - 1.03) or death from CVD (HR = 0.95, 95% CI 0.83 - 1.08).
57	Conclusions
58	Analyses of published estimates did not demonstrate associations of endogenous testosterone
59	with CVD deaths or with all-cause mortality. Suggested further research includes the planned
60	individual participant data meta-analyses for selected studies, enabling the investigation of
61	non-linear summary effects.
62	Registration
63	PROSPERO: CRD42019139668.
64	
64 65	STRENGTHS AND LIMITATIONS OF THIS STUDY
	STRENGTHS AND LIMITATIONS OF THIS STUDY This is the first systematic review on this topic to restrict selections to prospective cohort
65	
65 66	• This is the first systematic review on this topic to restrict selections to prospective cohort
65 66 67	• This is the first systematic review on this topic to restrict selections to prospective cohort studies of community-dwelling men with testosterone measured using mass spectrometry:
65 66 67 68	• This is the first systematic review on this topic to restrict selections to prospective cohort studies of community-dwelling men with testosterone measured using mass spectrometry: the "gold standard" method.
65 66 67 68 69	 This is the first systematic review on this topic to restrict selections to prospective cohort studies of community-dwelling men with testosterone measured using mass spectrometry: the "gold standard" method. Systematic searches were made of both the published and grey literature using online
65 66 67 68 69 70	 This is the first systematic review on this topic to restrict selections to prospective cohort studies of community-dwelling men with testosterone measured using mass spectrometry: the "gold standard" method. Systematic searches were made of both the published and grey literature using online search tools.
 65 66 67 68 69 70 71 	 This is the first systematic review on this topic to restrict selections to prospective cohort studies of community-dwelling men with testosterone measured using mass spectrometry: the "gold standard" method. Systematic searches were made of both the published and grey literature using online search tools. Meta-analyses used estimates obtained from studies with at least five years of follow-up
 65 66 67 68 69 70 71 72 	 This is the first systematic review on this topic to restrict selections to prospective cohort studies of community-dwelling men with testosterone measured using mass spectrometry: the "gold standard" method. Systematic searches were made of both the published and grey literature using online search tools. Meta-analyses used estimates obtained from studies with at least five years of follow-up data and from fitted models which controlled for (at least) the age, smoking status, and

76 explore non-linear associations.

BMJ Open

Analyses are of observational data, and so summary estimates will not fully eliminate the
 possibility of confounding arising from unadjusted effects.

80 1. INTRODUCTION

What does a low testosterone level mean for a man's health? In men, levels of testosterone, the key male sex hormone (androgen), decline with increasing age, yet the basis for and health consequences of this phenomenon remain unclear.[1-5] Endogenous testosterone concentrations reflect the function of the hypothalamic-pituitary-testicular (HPT) axis, and are relatively lower in men who are obese, or with metabolic syndrome or diabetes.[6-8] Others have reported associations of lower endogenous testosterone concentrations with higher risk of incident diseases, such as cardiovascular disease (CVD), and death.[9-16] Whether low testosterone concentrations might contribute directly to the risk of CVD or death or whether it may be associated indirectly through its relationship with aging and obesity is unknown.[17] And whether or not it is directly related, it is possible that endogenous testosterone could be useful as a biomarker for diagnostic and/or prognostic health care applications in men.[18-20] An improved understanding of the associations of testosterone to health outcomes could inform further exploration and development of this concept.

96 The Androgens In Men Study (AIMS) seeks to clarify the associations of androgens
97 (primarily testosterone) with key health outcomes in men (mortality, cardiovascular disease,
98 cancer, cognitive decline and dementia) by conducting a systematic review and a series of
99 individual participant data meta-analyses.[21] In this paper we present the systematic review
100 and meta-analyses using published estimates from prospective cohort studies with at least 5

years of follow-up data and testosterone measured using only mass spectrometry, the most reliable method.[22]

2. METHODS

This systematic review, conducted 14 June—31 December 2019, was of "etiology and/or risk type" studies.[23-24] The pre-specified purpose of the systematic review was to identify studies with suitable individual participant-level data (IPD) for collaborating with on a series of IPD meta-analyses. The PEO (Population, Exposure, Outcomes) characteristics included: adult men in the general community; endogenous circulating sex hormone concentration (primarily testosterone); incident cardiovascular disease (CVD), mortality, cancers, cognitive decline, dementia. Subgroup IPD meta-analyses are also planned for heart failure, myocardial infarction, stroke; colorectal cancer, lung cancer, prostate cancer. A protocol was submitted to PROSPERO on 23 July 2019 and registered on 20 November 2019 (registration number CRD42019139668) and a protocol article has been published.[21]

- - 2.1. Literature search and screening

Four online search tools were used to identify available published (MEDLINE, EMBASE) and grey literature (OpenGrey, Mednar) *items* (journal articles, reports, theses, webpage articles) reporting on suitable prospective cohort studies (the underlying unique sources of data). Two reviewers (RJM, JH) independently screened the de-duplicated items against pre-specified criteria using Rayyan.[25] To optimise efficiency, title and abstract screenings were initially conducted (Step 1), followed by full text screenings of the selected abstracts (Step 2). Disagreements were resolved through subsequent discussions between reviewers and agreement quantified using Cohen's Kappa and percent agreement. Only items reporting on prospective population-based cohort studies of adults (combined sexes or of men alone) with

Page 7 of 64

BMJ Open

mass spectrometry measurements of testosterone and at least five years of subsequent followup data on incident CVD events, cancer or dementia diagnoses, cognition assessments, or on
all-cause, CVD, or cancer deaths were selected. The Newcastle-Ottawa Quality Assessment
Scale for Cohort Studies (NOS) was used to assess quality of the selected items.[26]

Additional details on the methods and results are provided in Supplementary Material
(Supplementary Section 1). Specifically, additional details on systematic searches and
screening (Supplementary Section 2; Supplementary tables 1-4), supplemental tables
(Supplementary Section 3), including the PRISMA checklist (Supplementary table 5),
supplemental figures (Supplementary Section 4), and references cited (Supplementary
Section 5) have been included.

8 2.2. Meta-analyses of published estimates

Published estimates (author names, publication year, cohort study name, number of participants analysed, model covariates, testosterone statistics (overall and for individual exposure levels), participant age statistics, numbers of outcome events, follow-up time, hazard ratios (HRs) and 95% CIs of the most fully-adjusted model) were extracted from selected articles by the first author (RJM). For the purpose of these analyses, we present associations for endogenous total testosterone concentrations, comprising the sum of testosterone in the circulation, whether bound to sex hormone-binding globulin or albumin, or unbound. Testosterone statistics were converted into standard units (nmol/L) and values representing categorical ranges were determined following Wang et al. [27] If not reported, the numbers of participants and events within categories of testosterone, and the means of participant ages and testosterone concentrations at baseline, were calculated. The numbers of participants within quartile or quintile categories were calculated by dividing the total sample

BMJ Open

size by four or five. The numbers of events within categories were solved using Newton's
method by applying the algorithm of Greenland and Longnecker.[28] Means and standard
deviations for testosterone and age were calculated from presented quartile estimates using
the Box-Cox method of McGrath et al., which does not make distributional assumptions.[29]
A random effects meta-regression of mean baseline testosterone concentration on the mean

participant age at baseline was conducted using published estimates from: (i) only those items identified in systematic searches; and (ii) all suitable articles, including those found outside of systematic searches. A t-test of the meta-regression slope coefficient's departure from zero was done after applying the Knapp and Hartung adjustment.

Dose-response random effects meta-analyses (DR-MAs) were conducted to summarise published HR estimates for the associations of baseline testosterone concentrations with incident all-cause deaths and with CVD cause-specific deaths, as these were the most frequently reported outcomes in selected articles. Estimates from an additional article that had not been selected from systematic searches (Yeap et al[30]) were also used because it reported suitable estimates from one of the selected studies, and had been published within the literature search period. Contour-enhanced funnel plots were inspected for publication bias and patterns in heterogeneity and Cochran Q tests for heterogeneity (I²), as well as regression tests for funnel plot asymmetry,[31] were done. Forest plots were constructed to represent single HR estimates for each study, per 5nmol/L increase in testosterone. For completeness, HR estimates for the other outcomes are represented in a grouped forest plot, and other effect sizes in tables.

6 174

175 The "metafor" package was used for meta-regressions, forest plots and funnel plots, the

Page 9 of 64

1 2 BMJ Open

3 4	176	"doseresmeta" package for DR-MAs, and the "estmeansd" package for calculating study
5 6 7 8 9	177	means and standard deviations from published quartile statistics in R version 4.0.2.[32-35]
	178	
10 11	179	2.3. Patient and public involvement
12 13	180	This work uses existing published data. Patients and public were not involved in the design,
14 15	181	conduct, reporting, or dissemination plans of the systematic review or meta-analyses.
16 17 18	182	
19 20	183	3. RESULTS
21 22 23	184	
23 24 25	185	3.1. Literature search and study selection
26 27	186	The literature search returned 2,177 items (1,738 published and 439 from grey literature),
28 29	187	with 1,994 items remaining after duplicates had been removed, and after excluding two
30 31 32	188	Mednar items that had insufficient information available to review (Fig. 1). These included
33 34	189	1,764 journal articles, 111 webpage articles, 81 theses, and 38 unpublished reports/other
35 36	190	documents. Systematic screening of the returned, deduplicated items excluded 1,968,
37 38 39	191	classified five as "Maybe", and selected 20 as suitable. Most (92.1%) items were excluded
40 41	192	from screening titles and abstracts at Step 1, with a much smaller percentage (6.6%) excluded
42 43	193	from screening the 157 full text items in Step 2. One item could not be screened in Step 2
44 45 46	194	because the full text was not available. Inter-reviewer agreement was a Cohen's Kappa
40 47 48	195	$\kappa = 0.69$ (or 96.0 percent agreement) for Step 1 and $\kappa = 0.82$ (or 98.1 percent agreement) for
49 50 51 52 53 54 55	196	Step 2.
	197	
	198	The 20 selected items collectively reported on eight prospective cohort studies: three from
56 57	199	Australia (Busselton Health Study BHS,[36-38] The Concord Health and Ageing in Men
58 59 60	200	Project CHAMP, [9, 39-40] The Health In Men Study HIMS); [14, 41-42] three from Europe

BMJ Open

(European Male Ageing Study EMAS, [11, 43] The MrOS Osteoporotic Fractures in Men study in Sweden, [10, 44-45] Study of Health in Pomerania SHIP); [46] and two from the USA (Atherosclerosis Risk in Communities ARIC, [47-48] Cardiovascular Health Study CHS). [49-51] Two of the five items classified as "Maybe" reported on the MrOS USA study, which were found, after further investigation, to be suitable for selection.[52-53] Two additional studies were identified as suitable based on information external to the systematic searches and screenings: one from Australia (The Men Androgen Inflammation Lifestyle Environment and Stress study *MAILES*);[54] and one from the USA (the Framingham Heart Study FHS).[55] This is 11 cohort studies identified, in total. Additional details on returned and screened items, and selected article attributes are provided in Supplementary Material (Supplementary Section 2, Supplementary tables 4, 6-7).

3.2. Meta-analysis and summary of selected articles.

The quality of selected articles ranged from six to nine (out of nine) stars on the Newcastle-Ottawa Scale. Relatively high scores reflected that all articles: were of population-based studies; accurately measured the exposure (baseline testosterone concentration); included multivariable models adjusting for participant age and other risk factors; had outcomes measured or collected from record linkage, with or without expert adjudication; and had sufficient follow-up, ranging from 5-20 years (Supplementary tables 6-8). Relevant outcomes included: all-cause deaths (n=8 articles); CVD deaths (n=7); strokes or cerebrovascular disease (n=6); cognitive function or cognitive decline (n=5); coronary heart disease (n=4); CVD events (n=4); cancer deaths (n=4); cancer diagnoses (n=3); myocardial infarction (MI; n=2); heart failure (HF; n=2); and dementia (n=1). However, one of these articles was a cohort profile description that did not report effect size estimates but the availability of all-cause deaths, cause-specific deaths, stroke, cognitive function, CVD, cancer, MI, and HF

Page 11 of 64

BMJ Open

1 2	
2 3 4	2
3 4 5 6 7	2
7 8 9	2
9 10 11	2
12	2
13 14 15 16 17	2
17 18	2
19	2
21 22	2
20 21 22 23 24 25 26 27 28 29	2
26 27	2
28 29	2
30 31 32	2
32 33 34	2
33 34 35 36 37	2
37 38 39	2
39 40 41	2
42 43	2
44 45	2
46 47 48	2
49 50	2
51 52	2
53 54 55	2
55 56 57	2
58 59	2
60	

	226	outcome data.[43]. Two articles reported testosterone not as the exposure but as a covariate in
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	227	analyses investigating associations with cerebrovascular events and with all-cause, cancer,
	228	and CVD deaths.[44-45] The supplementary material for one article[11] was sought to obtain
	229	effect size estimates for cancer deaths but these were not obtained as at the time of writing.
	230	All were published between 2010 and 2018, reflecting the relatively recent adoption of mass
	231	spectrometry as the "gold standard" for measuring endogenous testosterone levels.[22]
	232	
	233	The mean age of men at baseline ranged from middle-aged (49-54yr: BHS, FHS, MAILES,
	234	SHIP)[18, 36-38, 46, 56] to elderly (72-77yr: CHAMP, CHS, HIMS, MrOS Sweden, MrOS
	235	USA).[9-10, 39, 41, 44-45, 49-50, 53] Across the 11 studies, summary estimates for 20,180
	236	adult males at baseline were 64.9 ± 3.3 yr for mean age and 15.4 ± 0.7 nmol/L for mean
	237	testosterone. Although there appeared to be a slight declining trend in mean testosterone with
	238	mean age among studies (Meta-regression Slope= -0.07, 95% CI -0.21 – 0.07), this estimate
	239	was not significantly different from zero (P=0.27; Fig. 2a). However, the distribution of
	240	model residuals demonstrated significant heterogeneity (P<0.001) and funnel plot asymmetry
	241	(P=0.02). Additional diagnostics highlighted a relatively high mean testosterone estimate
	242	from Pencina et al.[57] (FHS) and a low mean testosterone estimate (relative to mean age)
	243	from Chan et al.[37] (BHS), as compared to the other studies (Supplementary figure 1).
	244	When restricted to systematically selected items (reporting on ARIC, BHS, CHAMP, CHS,
	245	EMAS, HIMS, MAILES, MrOS Sweden, SHIP studies), tests of residual heterogeneity were
9 0	246	significant (P<0.001), funnel plot asymmetry (P=0.91) was non-significant, and the slope
1 2	247	estimate (Meta-regression Slope= -0.03, 95% CI -0.11 – 0.06) was not significantly different
3 4 5	248	from zero (P=0.50; Fig. 2b). These results demonstrate that varying distributions of
5 6 7	249	participant age (likely reflecting differences in study-specific objectives and recruitment
8 9	250	methods) did not explain the observed heterogeneity in published estimates of testosterone
0		

among the studies.

Hazard ratios (HRs) for all-cause mortality were calculated from values in four of the selected articles (ARIC, [48] BHS, [37] CHS, [51] EMAS[11]) and from one that was not selected, but had reported on the HIMS study during the literature search period.[30] All HRs were adjusted for the age, smoking status, and body mass index (BMI) or waist circumference of participants. A DR-MA estimated a summary HR of 0.96 (95% CI 0.89-1.03) per 5nmol/L increase in testosterone (Fig. 3). The summary estimate was similar when calculated using an alternative estimate from Yeap et al[30] (HR=0.97, 95% CI 0.92-1.03). For both analyses, tests for residual heterogeneity (I²=23.6%, P=0.26; I²=0.0%, P=0.76) and funnel plot asymmetry (P=0.09; P=0.39) were non-significant (Supplementary figure 2a). A comparable HR was calculated from a CHAMP study article[9] for inclusion in the forest plot but not in the DR-MA, because a corresponding estimate of variance per 5nmol/L increase in testosterone could not be calculated. An additional funnel plot, which included the HR estimate from this CHAMP article^[9] (per 1 standard deviation decrease in testosterone, as reported in that article), also demonstrated no significant asymmetry (Supplementary figure 2b). These results demonstrate no overall effect of baseline testosterone concentration on the relative hazard of death from any cause after adjusting for factors including age, smoking status, and BMI or waist circumference.

HRs for death caused by CVD demonstrated similar findings. A DR-MA using estimates from the same five articles estimated a summary HR of 0.95 (95% CI 0.83-1.08) per 5nmol/L increase in testosterone, with no significant residual heterogeneity ($I^2=28.3\%$, P=0.23) or funnel plot asymmetry (P=0.20; Fig. 4; Supplementary figure 2c). Again, all HRs were adjusted for the age, smoking status, and BMI or waist circumference. The DR-MA repeated

Page 13 of 64

1

BMJ Open

2 3	276	using an alternative estimate from Chasland et al.[38] for the BHS gave similar results
3 4 5	270	
5 6 7	277	(summary HR=0.93, 95% CI 0.83-1.03; heterogeneity I ² =17.5%, P=0.30; funnel plot
7 8 9	278	asymmetry P=0.17; Supplementary figure 2d). These results demonstrate no overall effect of
10 11	279	baseline testosterone concentration on the relative hazard of death from CVD after adjusting
12 13	280	for factors including age, smoking status, and BMI or waist circumference.
14 15 16	281	
10 17 18	282	Summary estimates calculated for the combined outcome of incident stroke and
19 20	283	cerebrovascular disease (summary HR=0.93, 95% CI 0.83-1.03; heterogeneity I ² =43.3%,
21 22	284	P=0.15) and incident CVD diagnosis (summary HR=0.93, 95% CI 0.84-1.03; heterogeneity
23 24 25	285	$I^2=34.7\%$, P=0.22) demonstrated no overall effect of testosterone (Supplementary figure 3).
26 27	286	Funnel plot asymmetry was not assessed due to the low number of studies ($n \le 4$),[58] and
28 29	287	95% confidence intervals could not be calculated for several studies[36-37, 41] using the
30 31 32	288	published information. Although a summary estimate could not be calculated, the study-
33 34	289	specific estimates demonstrated some significant associations with cancer outcomes
35 36	290	(Supplementary figure 3, Supplementary table 9). Estimates showed an increased risk of lung
37 38	291	cancer for men with higher concentrations,[41] an increased risk of death from cancer for
39 40 41	292	men with lower[9] or the lowest (<8nmol/L)[11] concentrations, and an increased risk of
42 43	293	diagnosis for any cancer or for prostate cancer for men with the lowest (<10.17nmol/L)
44 45	294	concentrations of testosterone.[36] However, results were varied and not all articles reported
46 47 48	295	these associations as being significant.[39] Furthermore, aside from an average increase in
49 50	296	MMSE of 0.067 per ng/mL decrease in testosterone concentration during follow-up,[40]
51 52	297	there were no significant associations of baseline testosterone with cognitive function, or with
53 54	298	change in cognitive function reported in the selected articles (Supplementary table 10).
55 56 57	299	
57 58 59 60	300	4. DISCUSSION

The systematic review identified nine studies, and when combined with an additional two identified by colleagues, comprises 11 in total, with data for over 20,000 men from Australia, Europe, USA and the United Kingdom. Meta-regressions revealed significant heterogeneity in testosterone measurements at baseline, which was not explained by the mean age of participants among studies. However, DR-MA summary estimates demonstrated no significant effects of baseline testosterone on the relative hazard of death from any cause or from CVD, with negligible heterogeneity present. The DR-MAs, which suitably accounted for correlations between estimates for different exposure categories within studies, were of published estimates that had been adjusted for age, smoking status, and BMI or waist circumference. Furthermore, only published estimates from prospective cohort studies of community-dwelling men that had measured testosterone accurately using mass spectrometry and had observed at least five years of follow-up data were used. Despite some of these studies having reported an association between testosterone and mortality, [9, 30] the collective body of evidence demonstrated no overall associations of endogenous testosterone concentration with mortality or CVD mortality. Previous meta-analyses investigating associations of endogenous testosterone with the health outcomes of interest looked at CVD outcomes, [59-61] all-cause mortality, [59] and prostate

319 cancer.[62] Boyle et al.[62] and Holmegard et al.[60] both reported negligible heterogeneity 320 in their estimates. Boyle et al. found no significant association of a 5nmol/L increase in 321 testosterone with prostate cancer and Holmegard et al. estimated a 43% increase in risk of 322 ischemic stroke for men with testosterone levels below the 10th percentile, as compared to 323 men in the 11th-90th percentile range, from a meta-analysis of four articles.[60, 62] Ruige et 324 al. estimated an 11% decrease in risk of a CVD event from a standard deviation increase in 325 testosterone, and reported that significant heterogeneity was explained by larger effect sizes Page 15 of 64

BMJ Open

estimated for studies that recruited older men and for more recent articles.[61] Araujo et al estimated a 35% increase in risk of all-cause mortality and a non-significant effect on CVD mortality from a 2.18 standard deviation decrease in testosterone, although reported significant heterogeneity, and suggested that effects were driven by differences between the cohorts, such as underlying health status.[59] Two of these meta-analyses did not restrict selections to prospective cohort studies [59, 62] and none restricted selections based on testosterone assay method, although Ruige et al.[61] did find that assay method did not explain heterogeneity in that study.

The presented meta-analyses are the first to restrict selections to items of prospective cohort studies of community-dwelling men with testosterone measured using mass spectrometry, which is widely regarded as the reference method, [22] and with at least five years of followup data. Accordingly, the presented summary estimates could arguably be viewed as the most reliable to date. These restrictions also resulted in the selection of a relatively small number of publications with estimates suitable for use in DR-MAs. Follow-up times for all-cause and CVD mortality ranged from a median of 4.3 years (total = 5 years; EMAS)[11] to a mean of 14.9 years (total = 16 years; BHS).[37] The number of incident deaths ranged from 147 (EMAS)[40] to 777 (CHS),[51] or to 974 with the additional HIMS article[30] included. The number of CVD deaths ranged from 29 (ARIC)[48] to 264 (CHS)[51], or to 325 with the additional HIMS article.[30] However, despite these differences, there was negligible heterogeneity in estimates and no significant funnel plot asymmetry detected.

Linear models were fitted because the HR estimates were reported for insufficient numbersof testosterone categories to have fitted non-linear DR-MA models. This was a key limitation

of the analyses and likely to have resulted in an oversimplification of true effects. For instance, although the 95% CI for the Pye et al[11] study (calculated from HR estimates for quintile categories of testosterone) overlapped one, an alternative set of estimates in that article (which could not be included in the DR-MAs) reported a two-fold increase in the risk of all-cause mortality for men with very low testosterone (<8nmol/L), as compared to "eugonadal" men (>11nmol/L). Pye et al[11] postulated that their reported differences in estimates might be reflective of a nonlinear association that emerges only when endogenous testosterone declines into the lower part of the range (<8nmol/L). Furthermore, Yeap et al.[30] estimated an "U"-shaped association between endogenous testosterone and all-cause mortality, as consistent with a lower relative risk of health impacts for adult males with mid-range levels of testosterone. However, Shores et al.[51] also used non-linear modelling but did not find any significant associations of testosterone with all-cause or CVD mortality. Clearly, the investigation of non-linear associations is required to more comprehensively investigate the associations of testosterone concentrations with health outcomes in men.

In addition to the linearity assumption, there were other methodological limitations. Several articles reported estimated HRs per increase or decrease in standard deviation (SD) and it was not possible to use these estimates in DR-MAs. Although it was possible to convert the per SD estimates to a standardised scale (i.e., per 5nmol/L increase), there was no information to determine adjustments to respective estimates of precision. Estimates for those studies could therefore not be included in the calculation of summary estimates and 95% confidence intervals could not be calculated in forest plots. Summary estimates were calculated from a relatively low number (n = 3-5) of articles and for most outcomes a summary estimate could not be calculated, which impacts upon the generalisability of findings. Furthermore, these analyses were of observational data so summary estimates will not fully eliminate the

BMJ Open

3 4	375
5 6 7	376
8 9 10	377
11 12	378
13 14 15	379
15 16 17	380
18 19	381
20 21	382
22 23 24	383
25 26	384
27 28	385
29 30	386
31 32 33	387
34 35	388
36 37	389
38 39 40	390
41 42	391
43 44	392
45 46 47	393
48 49	394
50 51	395
52 53	396
54 55 56	397
57 58	398
59 60	300

possibility of confounding arising from unadjusted effects.

77 The implications of these findings are that associations of endogenous testosterone 78 concentrations with key health outcomes should not be overstated, as they are not readily 79 portrayed by meta-analyses of summary estimates. A more nuanced approach may be 80 required, to capture non-linear or U-shaped associations.[11, 30] Also, while testosterone 81 concentrations across ages were relatively stable when considering estimates from different 82 cohorts, associations of testosterone with health outcomes may differ with age, for example 83 with all-cause mortality in middle-aged men[37] compared to older men.[9, 30] A deeper 84 understanding of associations of endogenous testosterone concentrations with key health 85 outcomes, would provide a foundation for analyses of the effects of exogenous testosterone, 86 administered via therapeutic or pharmacologic interventions, on men's health.

88 Individual participant data (IPD) meta-analyses that incorporate flexible non-linear modelling 89 techniques will provide improved scope to clarify the nature of such associations. The ability 90 to apply a consistent statistical model to all studies, incorporate a more extended set of 91 covariates than may have been included at the individual study level, and to estimate effects 92 with increased statistical power, should result in more reliable summary estimates with 93 reduced bias. Furthermore, other hitherto unpublished variables may be available for sharing 94 by the collaborating studies to use in IPD meta-analyses, which could be useful for 95 constructing analysis covariates or outcome variables. For instance, articles from the ARIC 96 study that were identified from the systematic review reported on incident CVD event and 97 death outcomes, but documentation on the ARIC study website shows that data on other 98 prospective health outcomes, including cause-specific deaths and dementia diagnoses, are 399 also available upon request.[63] Although there have been recent advances with non-linear

400 modelling methods for the meta-analyses of published estimates, [32, 64] sufficient 401 information in the published articles, as is required for implementing these methods, was not 402 available. In future work, estimates from analyses of the IPD-level data will be used to 403 estimate and plot non-linear summary effects, and so will provide further improvements to 404 estimates of associations between androgen levels and health outcomes in men. 405 406 ACKNOWLEDGEMENTS 407 We thank Terena Solomons for valuable advice and guidance with conducting the literature 408 search and screening steps of the systematic review. 409 **AUTHORS' CONTRIBUTIONS** 410 411 BBY, KM, RJM, JH contributed to the design of the systematic review. RJM conducted the 412 literature search and RJM, JH independently screened the returned items. RJM, KM 413 conducted the statistical analyses. All authors were involved in manuscript preparation and subsequent revisions, and approved this submission. 414 415 416 **COMPETING INTERESTS** None declared. 417

1		
2 3	418	
4	410	
5 6	419	FUNDING
7 8 9	420	This work was supported by: (i) Western Australian Health Translation Network Medical
10 11	421	Research Future Fund Rapid Applied Translation Grant (2018), Grant number N/A; (ii)
12 13 14	422	Lawley Pharmaceuticals, Western Australia, Grant number N/A.
14 15 16	423	
17 18	424	DATA SHARING STATEMENT
19 20	425	No additional data available.
21 22 23	426	
23 24 25	427	PATIENT CONSENT
26 27	428	This manuscript does not contain patient personal data.
28 29	429	
30 31 32	430	PROVENANCE AND PEER REVIEW
33 34	431	Not commissioned; externally peer reviewed.
35 36	432	
37 38 39	433	ETHICS STATEMENT
40 41	434	Not applicable. No human participants or animal subjects included.
42 43	435	
44 45 46	436	
40 47 48		
49		
50		
51 52		
53		
54		
55		
56 57		
58		
59		
60		

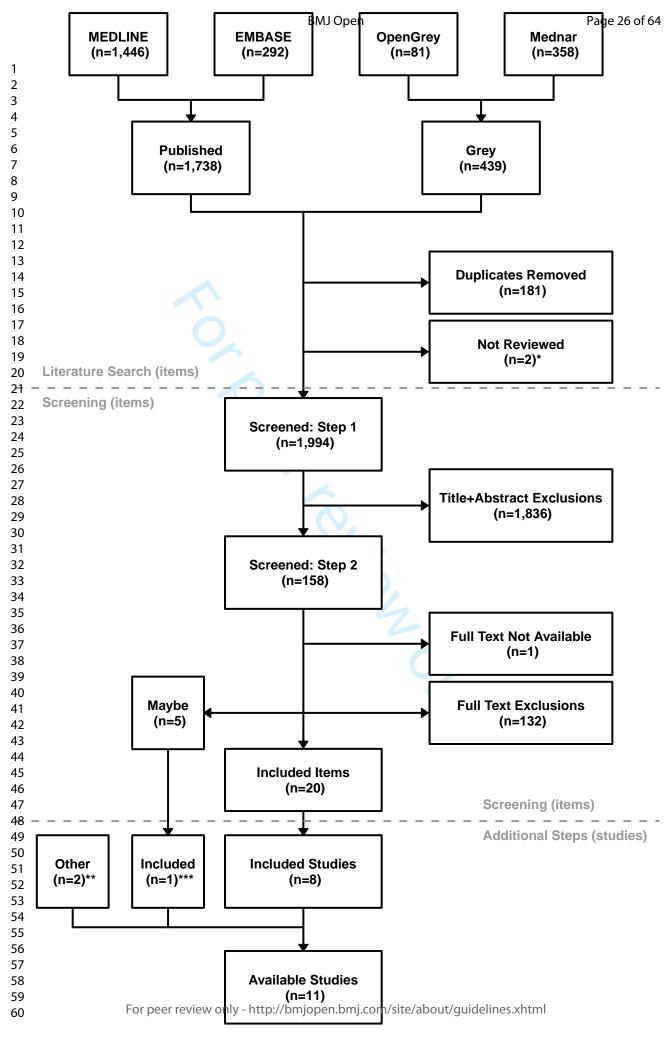
REFERENCES CITED

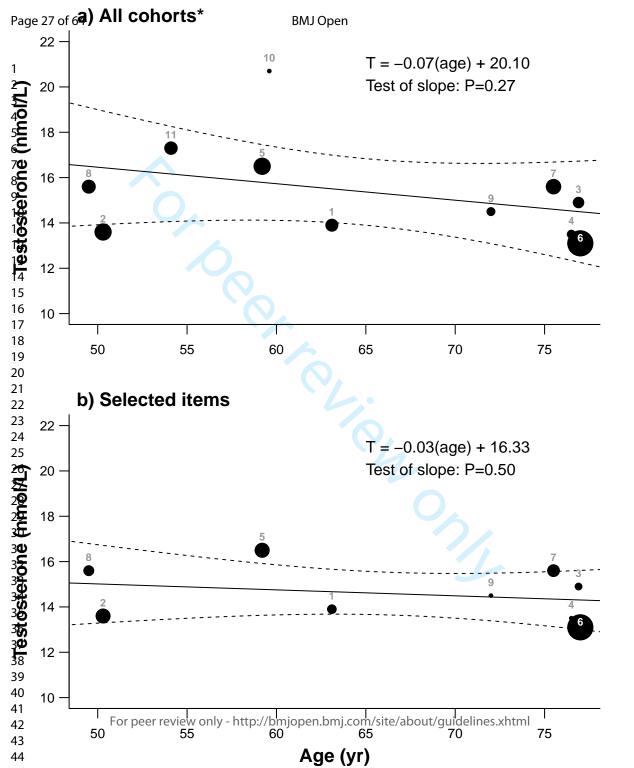
> 1. Ahern T, Swiecicka A, Eendebak RJAH, et al. Natural history, risk factors and clinical features of primary hypogonadism in ageing men: Longitudinal Data from the European Male Ageing Study. Clin Endocrinol 2016;85:891-901.

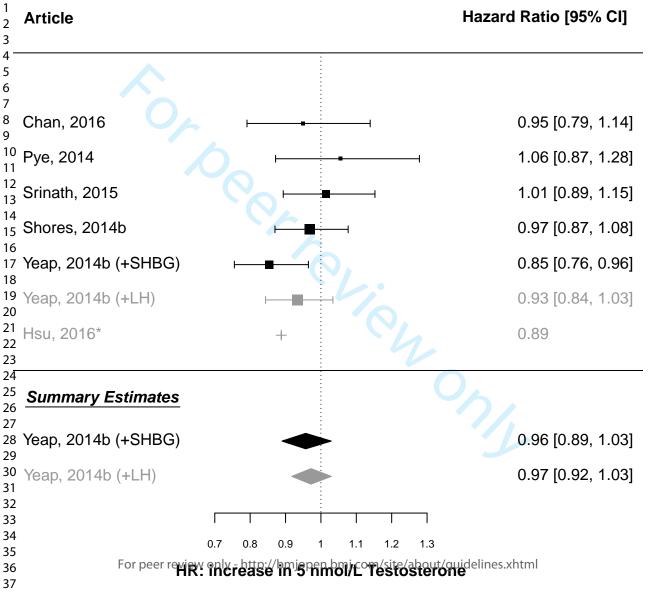
- 2. Feldman HA, Longcope C, Derby CA, et al. Age Trends in the Level of Serum Testosterone and Other Hormones in Middle-Aged Men: Longitudinal Results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 2002;87:589-98.
- 3. Handelsman DJ, Yeap BB, Flicker L, et al. Age-specific population centiles for androgen status in men. Eur J Endocrinol 2015;173:809-17.
- 4. Hsu B, Cumming RG, Hirani V, et al. Temporal Trend in Androgen Status and Androgen-Sensitive Outcomes in Older Men. J Clin Endocrinol Metab 2016;101:1836-46.
- 5. Yeap BB, Manning L, Chubb SAP, et al. Progressive impairment of testicular endocrine function in ageing men: Testosterone and dihydrotestosterone decrease, and luteinizing hormone increases, in men transitioning from the 8th to 9th decades of life. Clin Endocrinol 2018;88:88-95.
- 6. Brand JS, Rovers MM, Yeap BB, et al. Testosterone, sex hormone-binding globulin and the metabolic syndrome in men: An individual participant data meta-analysis of observational studies. PLoS One 2014;9:e100409.
 - 7. Ding EL, Song Y, Malik VS, et al. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 2006;295:1288-99.
 - 8.Yeap BB, Marriott RJ, Antonio L, et al. Sociodemographic, lifestyle and medical influences on serum testosterone and sex hormone-binding globulin in men from UK Biobank. Clin Endocrinol 2021;94:290-302.
- 9. Hsu B, Cumming RG, Naganathan V, et al. Temporal Changes in Androgens and Estrogens Are Associated With All-Cause and Cause-Specific Mortality in Older Men. J Clin Endocrinol Metab 2016;101:2201-10.
- 10. Ohlsson C, Barrett-Connor E, Bhasin S, et al. High serum testosterone is associated with reduced risk of cardiovascular events in elderly men. The MrOS (Osteoporotic Fractures in Men) study in Sweden. J Am Coll Cardiol 2011;58:1674-81.
 - 11. Pye SR, Huhtaniemi IT, Finn JD, et al. Late-onset hypogonadism and mortality in aging men. J Clin Endocrinol Metab 2014;99:1357-66.
 - 12. Tivesten Å, Mellström D, Jutberger H, et al. Low serum testosterone and high serum estradiol associate with lower extremity peripheral arterial disease in elderly men. J Am Coll Cardiol 2007;50:1070-6.
 - 13. Tivesten Å, Vandenput L, Labrie F, et al. Low serum testosterone and estradiol predict mortality in elderly men. J Clin Endocrinol Metab 2009;94:2482-8.
- 14. Yeap BB, Alfonso H, Chubb SA, et al. In older men, higher plasma testosterone or dihydrotestosterone is an independent predictor for reduced incidence of stroke but not myocardial infarction. J Clin Endocrinol Metab 2014;99:4565-73.
- 15. Yeap BB, Hyde Zoë, Almeida OP, et al. Lower testosterone levels predict incident stroke and transient ischemic attack in older men. J Clin Endocrinol Metab 2009;94:2353-9.
- 16. Yeap BB, Knuiman MW, Divitini ML, et al. Differential associations of testosterone, dihydrotestosterone and oestradiol with physical, metabolic and health-related factors in community-dwelling men aged 17-97 years from the Busselton Health Survey. Clin Endocrinol 2014;81:100-8.
- 17. Yeap BB, Araujo AB, Wittert GA. Do low testosterone levels contribute to ill-health during male ageing? Crit Rev Clin Lab Sci 2012;49:168-82.
- 18. Bhasin S, Pencina MJ, Kaur Jasuja G, et al. Reference ranges for testosterone in men generated
- using liquid chromatography tandem mass spectrometry in a community-base sample of healthy

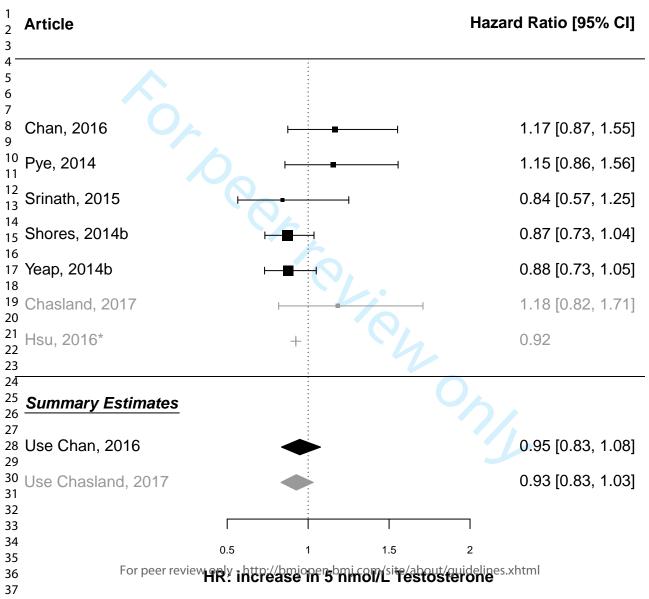
1		
2		
3	486	nonobese young men in the Framingham Heart Study and applied to three geographically distinct
4 5	487	cohorts. J Clin Endocrinol Metab 2011;96:2430-9.
5 6	488	19. Sikaris K, McLachlan RI, Kazlauskas R, et al. Reproductive hormone reference intervals for healthy
7	489	fertile young men: evaluation of automated platform assays. J Clin Endocrinol Metab
8	490	2005;90:5928-36.
9	491	20. Yeap BB, Alfonso H, Chubb SAP, et al. Reference ranges and determinants of testosterone,
10	492	dihydrotestosterone, and estradiol levels measured using liquid chromatography-tandem mass
11	493	spectrometry in a population-based cohort of older men. J Clin Endocrinol Metab 2012;97:4030-9.
12	494	21. Yeap BB, Marriott RJ, Adams RJ, et al. Androgens In Men Study (AIMS): protocol for meta-
13	495	analyses of individual participant data investigating associations of androgens with health
14	496	outcomes in men. <i>BMJ Open</i> 2020;10:e034777.
15 16	497	22. Handelsman DJ, Wartofsky L. Requirement for mass spectrometry sex steriod assays in the
10	498	Journal of Clinical Endocrinology and Metabolism. J Clin Endocrinol Metab 2013;98:3971-73.
18	499	23. Munn Z, Stern C, Aromataris E, et al. What kind of systematic review should I conduct? A
19	500	proposed typology and guidance for systematic reviewers in the medical and health sciences.
20	501	BMC Med Res Methodol 2018;18:5.
21	502	24. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A
22	503	proposal for reporting. JAMA 2000;283:2008-12.
23	504	25. Ouzzani M, Hammady H, Fedorowicz Z, <i>et al</i> . Rayyan - a web and mobile app for systematic
24	505	reviews. Syst Rev 2016;5:210.
25	506	26. Wells GA, Shea B, O'Connell DO, <i>et al</i> . The Newcastle-Ottawa Scale (NOS) for assessing the
26 27	507	quality of nonrandomised studies in meta-analyses 2020.
27 28	508	http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed 10 Nov 2020).
29	509	27. Wang X, Ouyang Y, Liu J, <i>et al</i> . Fruit and vegetable consumption and mortality from all causes,
30	510	cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of
31	510	prospective cohort studies. <i>BMJ</i> 2014;349:g4490.
32	512	28. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response
33	512	data, with applications to meta-analysis. Am J Epidemiol 1992;135:1301-9.
34	514	29. McGrath S, Zhao X, Steele R, <i>et al</i> . Estimating the sample mean and standard deviation from
35	515	commonly reported quantiles in meta-analysis. Stat Methods Med Res 2020;29:2520-37.
36 37	516	30. Yeap BB, Alfonso H, Chubb SAP, <i>et al.</i> In older men an optimal plasma testosterone is associated
38	517	with reduced all-cause mortality and higher dihydrotestosterone with reduced ischemic heart
39	518	disease mortality, while estradiol levels do not predict mortality. J Clin Endocrinol Metab
40	519	2014;99:E9-18.
41	520	31. Sterne JAC, Egger M. Regression methods to detect publication and other bias in meta-analysis.
42	520	In: Rothstein HR, Sutton AJ, Borenstein M, eds. Publication bias in meta-analysis: Prevention,
43	522	assessment, and adjustments. Chichester, England: Wiley 2005:99-110.
44	523	32. Crippa A, Orsini N. Multivariate dose-response meta-analysis: The dosresmeta R package. J Stat
45 46	524	Softw 2016;72:1.
46 47	525	33. estmeansd: Estimating the Sample Mean and Standard Deviation from Commonly Reported
48	526	Quantiles in Meta-Analysis. R package version 0.2.1, 2020.
49	520 527	34. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for
50	528	Statistical Computing, 2020. <u>https://www.R-project.org/</u>
51	529	35. Viechtbauer W. Conducting meta-analyses in R with the metafor package. <i>J Stat Softw</i> 2010;36:3.
52	530	36. Chan YX, Knuiman MW, Divitini ML, <i>et al</i> . Lower Circulating Androgens Are Associated with
53	531	Overall Cancer Risk and Prostate Cancer Risk in Men Aged 25-84 Years from the Busselton Health
54	532	Study. Horm Cancer 2018;9:391-8.
55 56	533	37. Chan YX, Knuiman MW, Hung J, <i>et al</i> . Neutral associations of testosterone, dihydrotestosterone
50 57	534	and estradiol with fatal and non-fatal cardiovascular events, and mortality in men aged 17-97
58	535	years. Clin Endocrinol 2016;85:575-82.
59	555	
60		

Z		
3	536	38. Chasland LC, Knuiman MW, Divitini ML, et al. Greater physical activity and higher androgen
4	537	concentrations are independently associated with lower cardiometabolic risk in men. Clin
5	538	Endocrinol 2017;87:466-74.
6 7	539	39. Hsu B, Cumming RG, Blyth FM, et al. Evaluating Calculated Free Testosterone as a Predictor of
7 8	540	Morbidity and Mortality Independent of Testosterone for Cross-sectional and 5-Year Longitudinal
o 9	541	Health Outcomes in Older Men: The Concord Health and Ageing in Men Project. J Gerontol A Biol
9 10	542	Sci Med Sci 2018;73:729-36.
11	543	40. Hsu B, Cumming RG, Waite LM, <i>et al.</i> Longitudinal relationships between reproductive hormones
12	545 544	
13	544 545	and cognitive decline in older men: The Concord Health and Ageing in Men Project. <i>J Clin</i>
14		Endocrinol Metab 2015;100:2223-30.
15	546	41. Chan YX, Alfonso H, Chubb SA, et al. Higher Dihydrotestosterone Is Associated with the Incidence
16	547	of Lung Cancer in Older Men. Horm Cancer 2017;8:119-26.
17	548	42. Ford AH, Yeap BB, Flicker L, et al. Sex hormones and incident dementia in older men: The health
18	549	in men study. Psychoneuroendocrinology 2018;98:139-47.
19	550	43. Lee DM, Pye SR, Tajar A, et al. Cohort profile: the European Male Ageing Study. Int J Epidemiol
20	551	2013;42:391-401.
21	552	44. Ohlsson C, Labrie F, Barrett-Connor E, et al. Low serum levels of dehydroepiandrosterone sulfate
22	553	predict all-cause and cardiovascular mortality in elderly Swedish men. J Clin Endocrinol Metab
23 24	554	2010;95:4406-14.
24 25	555	45. Tivesten Å, Vandenput L, Carlzon D, et al. Dehydroepiandrosterone and its sulfate predict the 5-
26	556	year risk of coronary heart disease events in elderly men. J Am Coll Cardiol 2014;64:1801-10.
27	557	46. Kische H, Gross S, Wallaschofski H, et al. Associations of androgens with depressive symptoms
28	558	and cognitive status in the general population. <i>PLoS One</i> 2017;12:e0177272.
29	559	47. Srinath R, Gottesman RF, Hill Golden S, et al. Association Between Endogenous Testosterone and
30	560	Cerebrovascular Disease in the ARIC Study (Atherosclerosis Risk in Communities). Stroke
31	561	2016;47:2682-8.
32	562	48. Srinath R, Hill Golden S, Carson KA, <i>et al</i> . Endogenous Testosterone and its Relationship to
33	563	Preclinical and Clinical Measures of Cardiovascular Disease in the Atherosclerosis Risk in
34	564	Communities Study. J Clin Endocrinol Metab 2015;100:1602-8.
35	565	49. Rosenberg MA, Shores MM, Matsumoto AM, <i>et al.</i> Serum androgens and risk of atrial fibrillation
36	566	in older men: The Cardiovascular Health Study. <i>Clin Cardiol</i> 2018;41:830-6.
37 38	567	50. Shores MM, Arnold AM, Biggs ML, <i>et al.</i> Testosterone and dihydrotestosterone and incident
30 39	568	ischaemic stroke in men in the Cardiovascular Health Study. <i>Clin Endocrinol</i> 2014;81:746-53.
40	569	
41	509 570	51. Shores MM, Biggs ML, Arnold AM, <i>et al.</i> Testosterone, dihydrotestosterone, and incident
42		cardiovascular disease and mortality in the cardiovascular health study. J Clin Endocrinol Metab
43	571	2014;99:2061-8.
44	572	52. LeBlanc ES, Wang PY, Janowsky JS, <i>et al.</i> Association between sex steroids and cognition in
45	573	elderly men. <i>Clin Endocrinol</i> 2010;72:393-403.
46	574	53. Sueoka KT, Ewing MS, Ensrud KE, et al. Higher endogenous testosterone levels associated with
47	575	increased risk of coronary heart disease in elderly men: a prospective study. Endocr Rev
48	576	2010;31:S858.
49 50	577	54. Grant JF, Martin SA, Taylor AW, et al. Cohort profile: The men androgen inflammation lifestyle
50	578	environment and stress (MAILES) study. Int J Epidemiol 2014;43:1040-53.
51 52	579	55. Kannel WB, Feinleib M, McNamara PM, et al. An investigation of coronary heart disease in
52	580	families. The Framingham offspring study. Am J Epidemiol 1979;110:281–90.
54	581	56. Li JJ, Wittert GA, Vincent A, et al. Muscle grip strength predicts incident type 2 diabetes:
55	582	population-based cohort study. Metab Clin Exp 2016;65:883-92.
56	583	57. Pencina KM, Travison TG, Bhasin S, et al. Endogenous circulating testosterone and sex hormone-
57	584	binding globulin levels and measures of myocardial structure and function: the Framingham
58	585	Heart Study. Andrology 2019;7:307-14.
59		
60		


1 2		
3	586	58. Sterne JAC, Sutton AJ, Ioannidis JPA, et al. Recommendations for examining and interpreting
4	587	funnel plot asymmetry in meta-analyses of randomised controlled trials. <i>BMJ</i> 2011;342:d4002.
5 6	588	59. Araujo AB, Dixon JM, Suarez EA, et al. Endogenous testosterone and mortality in men: a
7	589	systematic review and meta-analysis. J Clin Endocrinol Metab 2011;96:3007-19.
8	590	60. Holmegard HN, Nordestgaard BG, Jensen GB, et al. Sex hormones and ischemic stroke: a
9	591	prospective cohort study and meta-analyses. J Clin Endocrinol Metab 2016;101:69-78.
10	592	61. Ruige JB, Mahmoud AM, De Bacquer D, <i>et al.</i> Endogenous testosterone and cardiovascular
11 12	593 594	disease in healthy men: a meta-analysis. <i>Heart</i> 2011;97:870-5.
13	594 595	62. Boyle P, Koechlin A, Bota M, <i>et al.</i> Endogenous and exogenous testosterone and the risk of prostate cancer and increased prostate-specific antigent (PSA) level: a meta-analysis. <i>BJU Int</i>
14	596	2016;118:731-41.
15	597	63. Surveillence Dictionaries Atherosclerosis Risk In Communities 2020.
16 17	598	https://sites.cscc.unc.edu/aric/surveillance-dictionaries (accessed 6 July 2020).
18	599	64. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized
19	600	dose-response data. <i>Stata J</i> 2006;6:40-57.
20	601	
21 22	60 .	
23	602	FIGURE LEGENDS
24	603	
25	005	
26 27	604	Figure 1. Studies returned from systematic review of the published and grey literature. Step 1
28 29	001	rigare i Staales fetatied nom systematic fetter of the published and grey interation. Step i
	605	involved screening of titles and abstracts only and Step 2 the screening of full text items not
30 31		
32	606	excluded at Step 1 (see Supplementary tables 2, 3). "Items" are individual articles or reports,
33	(0 7	
34 35	607	with multiple items returned for some studies (the purpose was to identify studies with
36	608	suitable IPD-level data). * = Mednar items with insufficient information available to review;
37	000	suitable if D level data). Internal items with insufficient information available to review,
38	609	** = Additional studies identified through known contacts; *** = Screening criteria for five
39 40		
41	610	items selected as "Maybe" in Step 2 were further investigated using information external to
42		
43	611	systematic searches and screenings, resulting in the identification of one additional study with
44 45		
45 46	612	suitable IPD-level data.
47	(12	
48	613	
49 50	614	Figure 2. Meta-regression of mean testosterone on mean age for (a) all 11 cohort studies and
50 51		
52	615	(b) 9 studies with articles that were selected by systematic literature searches and screening.
53		
54 57	616	The size of plotted points refers are proportional to the inverse of the corresponding standard
55 56	c 1 –	
57	617	errors (indicative of relative weightings), with lines demonstrating the fitted model and 95%
58	618	CIs. Plotted estimates are numbered as from the following articles (cohort studies):
59 60	010	cis. I force estimates are numbered as nom the following afficies (conort studies).
00		


1= Srinath et al.[48] (ARIC); 2= Chan et al.[37] (BHS); 3= Hsu et al.[9] (CHAMP); 4=
Shores et al.[50] (CHS); 5= Lee et al.[43] (EMAS); 6= Chan et al.[41] (HIMS); 7= Ohlsson
et al.[44] (MrOS Sweden); 8= Kische et al.[46] (SHIP); 9= Sueoka et al.[53] (MrOS USA);
10= Pencina et al.[57] (FHS); 11= Li et al.[56] (MAILES). * = includes articles from two
additional studies (FHS, MAILES) that were not identified from systematic searches but by
colleagues.


Figure 3. Forest plot of a meta-analysis of published estimates: association of testosterone with all-cause mortality. Plotted values are the estimated hazard ratios (HR) for death from any cause, as attributed to an increase in endogenous testosterone concentration by 5 nmol/L. The vertical reference line is HR=1. Study-specific estimates are presented for six of the selected studies: BHS (Chan, 2016)[37]; EMAS (Pye, 2014)[11]; ARIC (Srinath, 2015)[48]; CHS (Shores, 2014b)[51]; HIMS (Yeap, 2014b)[30]; CHAMP (Hsu, 2016).[9] Summary estimates are colour-coded as calculated using either the estimates from Yeap et al.[30] calculated from the model including SHBG (black) or from the model including LH (grey). * This estimate from Hsu et al.[9] could not be used to calculate the summary estimate because a variance estimate was not calculable for a 5nmol/L change in testosterone using the published information.


Figure 4. Forest plot of a meta-analysis of published estimates: association of testosterone
with mortality caused by cardiovascular disease. Plotted values are the estimated hazard
ratios (HR) for death from any cause, as attributed to an increase in endogenous testosterone
concentration by 5 nmol/L. The vertical reference line is HR=1. Study-specific estimates are
presented for six of the selected studies: BHS (Chan, 2016; Chasland, 2017)[37-38]; EMAS
(Pye, 2014)[11]; ARIC (Srinath, 2015)[48]; CHS (Shores, 2014b)[51]; HIMS (Yeap,

2 3	644	2014b)[30]; CHAMP (Hsu, 2016).[9] Summary estimates are colour-coded as calculated
4 5 6	645	using either the estimates from Chan et al.[37] (black) or Chasland et al.[38] (grey) for the
6 7 8	646	BHS. * This estimate from Hsu et al.[9] could not be used to calculate the summary estimate
9 10		
11 12	647	because a variance estimate was not calculable for a 5nmol/L change in testosterone using the
13 14	648	published information.
15 16	649	
$\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 546\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	650 651	
		- 24 -

Supplementary Material. Systematic review: associations of testosterone with men's health.

2 3	1
4 5	2
6 7	2
8	3 4
9 10	5
11 12	
13 14	6 7
15	8 9
16 17	9 10
18 19	11
20	12
21 22	13
23 24	14
25	15
26 27	16 17
28 29	18
30 31	19
32	20
33 34	21
35 36	22
37	23 24
38 39	25
40 41	26
42	27
43 44	28
45 46	
47	
48 49	
50 51	
52	
53 54	
55 56	
57	
58 59	
60	

1

1	1.	Table of Contents
2	1.	Table of Contents1
3	2.	Additional details on systematic searches and screening2
4	3.	Tables7
5		Supplementary table 1. Full electronic search strategy used for MEDLINE database7
6 7		Supplementary table 2: Selection criteria for screening items returned from the literature search
8 9		Supplementary table 3: Adaptation of screening rules for different types of published and unpublished items
10		Supplementary table 4. Words mentioned in the titles or abstracts of reviewed items 10
11		Supplementary table 5. PRISMA Checklist
12		Supplementary table 6. Attributes of selected items
13		Supplementary table 7. Exposure levels, outcome assessment, covariates
14 15		Supplementary table 8. Newcastle-Ottawa Quality Assessment Scale for Cohort Studies: selected articles
16 17		Supplementary table 9. Extracted hazard ratio data for dose-response meta-analyses (DR-MAs)
18 19		Supplementary table 10. Published estimates for selected studies investigating associations of total testosterone with cognitive status or decline
20	4.	Figures
21		Supplementary figure 1. Meta-regression diagnostics
22		Supplementary figure 2. Funnel plots for dose-response meta-analyses
23 24		Supplementary figure 3: Forest plot of published hazard ratio (HR) estimates: association of testosterone with other AIMS outcomes

BMJ Open

Supplementary Material. Systematic review: associations of testosterone with men's health.

2. Additional details on systematic searches and screening

30 31	We used online search tools to identify available published (MEDLINE, EMBASE) and grey
32	literature (OpenGrey, Mednar) items (journal articles, reports, theses, webpage articles)
33	reporting on suitable prospective cohort studies (the underlying unique sources of data). We
34	used OpenGrey and Mednar because both were free search tools that we considered likely to
35	identify additional grey literature items and studies in an expanded search beyond the
36	mainstream publications. Mednar is a medically-focussed search engine of public and deep
37	web resources, excluding subscription services.[1] OpenGrey is a searchable database
38	containing citations for items including technical or research reports, theses, conference
39	papers, and other types of grey literature.[2] Literature searches were conducted on 18-22
40	July 2019, with no date restrictions set.
41	
42	Where possible (as functionality varied among the different tools), we placed the following

Where possible (as functionality varied among the different tools), we placed the following restrictions on the search: items reporting on the results of a research study, longitudinal or prospective cohort studies, not of hormone therapy or deprivation treatments. Due to study timeframe and language translation limitations, we opted to search for only those items that were reported in the English language. The terms and full criteria used for the MEDLINE search are provided in Supplementary table 1, and the PRISMA checklist as Supplementary table 5.

Selection criteria were set as applicable to the planned sets of IPD meta-analyses
(Supplementary table 2).[3] Only items reporting on prospective population-based cohort
studies, adults of combined sexes or of men alone, with individuals free of the disease at
baseline, were sought. Items reporting a different design for the analysis of longitudinal data,
such as nested case-control or case-cohort design, were also considered acceptable. A

- 2 -

Supplementary Material. Systematic review: associations of testosterone with men's health.

minimum of five years follow-up was selected, to ensure a sufficient number of incident
events for statistical modelling. We excluded items that did not measure testosterone using
mass spectrometry, which is regarded to be the 'gold standard' method,[4] although
testosterone was not required to be mentioned in the title or abstract, nor modelled as the
primary exposure variable. Selected items were to be studies of humans, reported in English,
and reporting on analyses of at least one of the AIMS outcomes.

Two reviewers (RJM, JH) independently screened the de-duplicated items against these pre-specified criteria. To optimise efficiency, the selection of items proceeded in two steps. Title and abstract screenings (Step 1) were followed by full text screening of items selected in Step 1 (Step 2). If an item was selected for exclusion, then the main reason for that decision was recorded. If there was uncertainty in the decision to exclude, in Step 1 the reviewer selected "include" (in Step 1) or "maybe" (in Step 2). At the end of each step, the two reviewers sought to achieve consensus, through discussion, for each item that did not achieve agreement. Exclusion reasons were used to inform discussions for achieving consensus. Items with a consensus decision of "maybe" were further investigated by Reviewer 1 (RJM) using information external to the systematic searches and screenings (reading further details of methods used in cited articles, and from correspondence with authors or other researchers currently working on the research study).

75 This screening procedure was adjusted to accommodate the different types of items reviewed 76 (published articles, theses, webpage articles, unpublished reports; Supplementary table 3). A 77 pilot set of title-only screenings for 30 randomly chosen articles suggested that sufficient Page 33 of 64

BMJ Open

Supplementary Material. Systematic review: associations of testosterone with men's health.

information was contained within the titles alone for the purpose of Step 1 screenings.^a Therefore, in cases when an abstract was not available, only the titles were screened. Website items identified by the Mednar search tool were the type of item that most often did not have abstract or summary text, and in these cases the webpage text was reviewed in place of an abstract (Supplementary table 3). Endnote X8[5] was used for collating and storing the citations returned from literature searches, and for de-duplicating and storing the selected references. The full citations, including abstracts, were exported from Endnote for uploading into Rayyan[6], which is a free web tool that was used for screening, recording exclusion decisions, and downloading selection results. The literature search identified 2,177 items (1,738 published and 439 from grey literature), with 1,994 items remaining after duplicates had been removed, and after excluding two Mednar items that had insufficient information available to review (Fig. 1). Supplementary table 4 shows the frequencies of returned items by search terms present in the titles and abstracts. Most (72.7%) had the word "cancer", and 1,107 (55.5%) of these had the word "prostate cancer", in the title or abstract. This, combined with frequent mentions of "androgen deprivation" (29.2%), "radiotherapy" (18.6%), and "brachytherapy" (8.3%), show that items reporting aspects of testosterone deprivation or suppression for treating prostate cancer were a predominant feature of the returned items. Different types of returned items included 1,764 published articles, 111 webpage articles, 81 theses, and 38 unpublished reports/other documents, and the percentages without abstract or webpage text screened in ^a 30 titles were initially screened at random. 18 were flagged as not suitable, leaving 12 as potentially suitable. Subsequent Step 1 screening of titles with abstracts selected 25 of these articles for exclusion, with 5 retained for Step 2 (full text screening). All 5 were flagged as being potentially suitable in the pilot set of title-only screenings.

Supplementary Material. Systematic review: associations of testosterone with men's health.

101 Step 1 were 2.6%, 1.8%, 24.7%, 65.8%, respectively (i.e., 4.7% overall).

One thousand nine hundred sixty-eight items were excluded, five items were classified as "Maybe", and one item could not be screened because the full text version was not available, leaving n = 20 suitable items selected (Fig. 1). Most (92.1%) of the exclusions were made from reviewing titles and abstracts at Step 1, with a further 6.6% excluded from screening of the 157 full text items in Step 2. Inter-reader agreement was a Cohen's Kappa $\kappa = 0.69$ (or 96.0 percent agreement) for Step 1 and $\kappa = 0.82$ (or 98.1 percent agreement) for Step 2. Percentages of items with search terms (AIMS outcomes) in the title or abstract increased after Step 1 in most cases except for "cancer" and "prostate cancer" (Supplementary table 4). This reflects many exclusions in Step 1 that were of items reporting research on testosterone deprivation or suppression treatments for prostate cancer.

The systematic approach to literature searching and screening is widely held to be beneficial to identifying studies that otherwise may not have been considered for inclusion, and thus to minimise the prospect for reviewer biases affecting study selections and summary results.[7] This process is not perfect though, and in our case it did not identify two prospective cohort studies that were known to be suitable, prior to commencing this review (FHS, MAILES).[3] In the case of MAILES, this was one of the more recently commenced of the selected studies, with its cohort profile article published in 2014,[8] and accordingly has had a comparatively short timeframe within which to analyse and publish suitable findings. In the case of FHS, associations of endogenous testosterone with male health outcomes had previously been investigated and published, but not using mass spectrometry for measuring testosterone.[9, 10] Those articles were identified in the literature search but had been excluded on account of assay method. Only relatively recently have testosterone measures been re-assayed for FHS

BMJ Open

Supplementary Material. Systematic review: associations of testosterone with men's health.

participants using mass spectrometry methods.[11] One article by Pencina et al[12] was possibly within scope but not identified because it had not been entered into the MEDLINE database prior to the literature search (article entry date = 14 May 2020). Furthermore, an article that presented suitable estimates from one of the selected studies by Yeap et al[13] was not identified from the literature search because it did not have "prospective", "followup", "cohort study" or "longitudinal study" terms in its title or abstract, nor any of the corresponding MeSH terms listed (refer to Supplementary table 1 for search terms used).

In expanding our literature search to unpublished grey literature, it successfully located one
suitable item, which was a link to a Web MD webpage article, with further details published
in a conference abstract by Sueoka et al[14] that would otherwise have not been returned
from searching only the MEDLINE and EMBASE databases.

- 6 -

Supplementary Material. Systematic review: associations of testosterone with men's health.

2		
3 4	139	3. Tables
5	140	Supplementary table 1 Full electronic search strategy used for MEDI INE detabase
6	140 141	Supplementary table 1. Full electronic search strategy used for MEDLINE database.
7 8	142	The following is the search that was conducted on 18 July 2019 using MEDLINE.
9	143	The following is the search that was conducted on fo buly 2017 using http://it.
10	144	1. Testosterone/ or Androgens/
11	145	2. (testosterone or androgen* or sex hormone* or sex steroid*).ti.
12	146	3. (testosterone or androgen*).ab.
13 14	147	4. cardiovascular diseases/ or heart diseases/ or heart failure/ or vascular diseases/ or stroke/
15	148	or myocardial infarction/ or coronary disease/ or cerebrovascular disorders/
16	149	5. (cardiovascular or stroke or myocardial infarction or heart failure).ti.
17	150	6. neoplasms/ or colorectal neoplasms/ or lung neoplasms/ or prostatic neoplasms/
18	151	7. cancer.ti.
19 20	152	8. mortality/ or mortality.ti.
20 21	153	9. dementia/ or cognition/ or dementia.ti. or cognit*.ti.
22	154	10. Aging/psychology or Neuropsychological Tests/
23	155	11. 1 or 2 or 3
24	156	12. 4 or 5 or 6 or 7 or 8 or 9 or 10
25	157	13. 11 and 12
26 27	158	14. longitudinal studies/ or prospective studies/ or follow-up studies/ or cohort studies/
28	159	15. (prospective or follow-up or cohort study or longitudinal study).ti,ab.
29	160	16. 14 or 15
30	161	17. 13 and 16
31	162	18. (exogenous or replacement or therapy or hormone treatment).ti.
32 33	163	19. Hormone Replacement Therapy/
33 34	164	20. 18 or 19
35	165	21. 17 not 20
36	166	22. limit 21 to humans
37	167	23. limit 22 to english language
38	168	24. limit 23 to (adaptive clinical trial or address or autobiography or bibliography or
39 40	169	biography or case reports or clinical trial, all or clinical trial, phase i or clinical trial, phase ii or clinical trial, phase iii
41	170 171	or clinical trial, phase iii or clinical trial, phase iv or clinical trial, veterinary or clinical trials,
42	171	veterinary as topic or clinical trial protocol or clinical trial or comment or controlled clinical trial or dictionary or editorial or lecture or legislation or meta analysis or practice guideline or
43	172	pragmatic clinical trial or published erratum or randomized controlled trial or retracted
44	174	publication or "retraction of publication" or "review" or "scientific integrity review" or
45 46	175	"systematic review")
40 47	176	25. Retrospective Studies/ or Case-Control Studies/ or (retrospective analysis or case-
48	177	control).ti.
49	178	26. 24 or 25
50	179	27. 23 not 26
51	180	
52 53	181	Notes:
54	182	
55	183	Terms with a trailing "/" are MeSH terms and those with a trailing "*" are truncated search
56	184	strings. Beforehand, a search of PROSPERO was conducted for another suitable strategy but
57	185	none were found. However, the above strategy is based upon one that has been used for a
58 59	186	similar study.[15] This search strategy is also published in the protocol article for the
60	187	Androgens In Men Study.[3]

BMJ Open

Supplementary Material. Systematic review: associations of testosterone with men's health.

188 <u>Supplementary table 2: Selection criteria for screening items returned from the literature search.</u> If neither Include nor Exclude could be selected for Step 189 1, then reviewer selected "Include".

	Exclude	Include	Rationale	Used in S		Used in Step
				Title & Ab		Full-text
				Title only (no abstract)	Title & Abstract	
Article type:	Reviews, comments/opinion pieces, systematic reviews, dictionary, fact sheet, website information about diseases, fact sheets, etc.	Research study article / report, or an article that specifically refers to the results of one (e.g., a webpage referring to unpublished data).	These searches were of both published and unpublished scientific literature for the purpose of identifying prospective cohort studies that are likely to have the relevant data for planned IPD meta-analyses	Yes	Yes	Yes
Study type:	Retrospective or cross-sectional designs, case studies, case-control, surveys, RCTs or other trials, experiments, evaluation of androgen / testosterone therapy / deprivation / HRT or the effectiveness of any other type of intervention / surgery / treatment, genetics, etc.	Prospective cohort study.	A prospective cohort study design is of incident health outcomes for investigating etiology or disease risk for a cohort free of disease at baseline, and ideally should be representative of the local population, but may or may not be some demographic subset: e.g., age range, sex, ethnicity type.	Yes	Yes	Yes
Population (at baseline/date of recruitment to study)	Studies of juveniles only Studies of females only Individuals with some specific health condition/characteristic or following surgery / other medical treatment for specific illness	Adults (18 yr or older) Not females only Community-dwelling men	The study is of community-dwelling men.	Yes	Yes	Yes
Exposure (at baseline)	Do not exclude studies that do not model testosterone as the exposure: although it should be shown that it was measured for participants. If not mentioned in Step 2 then Exclude.	Endogenous testosterone	This will be the focal exposure for all IPD meta- analyses. However, as we are focussing on the identification of only those studies who have suitable androgen measurements available in IPD data, then testosterone does not necessarily need to be modelled as	Only if available	Only if available	Yes
	Testosterone not measured using mass spectrometry	Testosterone assay of serum or plasma sample using mass spectrometry (lc-ms or gc-ms)	the focal exposure in included items. It is likely that details on the methods will be available only from full- text review.	Only if available	Only if available	Yes
Outcome (at follow-up)	Incident outcome not one of those type of events specified for inclusion.	Diagnosis/event of: cardiovascular disease (any); cancer (any); dementia. Deaths (any cause); deaths due to any type of cardiovascular disease; deaths due to any type of cancer. Cognition change / outcome	These are the outcomes for the planned IPD meta- analyses so it is important to seek IPD datasets from those studies who have already modelled these outcomes. We refer to these as the "AIMS outcomes".	Yes	Yes	Yes
	Less than 5 years of follow-up data	Five or more years of follow-up data, with outcomes identified using systematic follow-up or data linkage.	As consistent across all included studies for IPD meta- analyses and set <i>a priori</i> . Likely that this will be available only from full-text review so not included Step 1.	No	No	Yes
Language	Title and/or abstract of article not in English	Title and/or abstract of article in English	As limited by the timeframe of this study and the native language of reviewers (a practicality).	Yes	Yes	Yes
Species	Studies not of humans	Studies of humans	We are studying humans.	Yes	Yes	Yes

Supplementary Material. Systematic review: associations of testosterone with men's health.

93	unpublished items.							
	Item Type	Step 1	Step 2					
	Published article	Screen title (and abstract ^a)	Screen full text article					
	Thesis	Screen title (and abstract ^a)	Screen full thesis					
	Unpublished report / other document	Screen title (and abstract ^{a,b})	Screen full document					
	Webpage	Screen title and webpage ^c	Screen full text					
			article/document as					
			identified from the webpag					
			or from a google search of					
			information provided about the article, from the					
			webpage.					
		5	• •					
	^a = when an abstract was ava	ilable, otherwise title-only decisi	ons were made (see					
	Supplementary table 2).							
	b = or, if not an abstract, other suitable document summary, as returned by the search tool.							
c^{c} = for webpage articles, the webpage text served as the proxy for an abstract, with the								
		not navigate to additional webpa						
	1							
		- 9 -						

Supplementary Material. Systematic review: associations of testosterone with men's health.

201	Supplementary table 4	Vords mentioned in the titles or abstracts	of reviewed ite	ems. ^a
		Step 1 items	Step 2 items	Selected items
	Word(s)	(n=1,994)	(n=158)	(n=20)

Word(s)	(n=1,994)	(n=158)	(n=20)
Search terms (AIMS outcomes)			
cancer	1,449 (72.7)	72 (45.6)	6 (30.0)
colorectal cancer	9 (0.5)	4 (2.5)	2 (10.0)
lung cancer	10 (0.5)	6 (3.8)	2 (10.0)
prostate cancer	1,107 (55.5)	40 (25.3)	2 (10.0)
cardiovascular	219 (11.0)	49 (31)	15 (75.0)
heart failure	29 (1.5)	2 (1.3)	1 (5.0)
stroke	31 (1.6)	12 (7.6)	4 (20.0)
myocardial infarction	33 (1.7)	7 (4.4)	1 (5.0)
mortality	232 (11.6)	45 (28.5)	9 (45.0)
dementia	22 (1.1)	8 (5.1)	2 (10.0)
cognit*	87 (4.4)	20 (12.7)	4 (20.0)
Other frequently observed (not search terms)			
androgen deprivation	583 (29.2)	2 (1.3)	0 (0.0)
androgen receptor	235 (11.8)	10 (6.3)	0 (0.0)
brachytherapy	165 (8.3)	0 (0.0)	0 (0.0)
breast cancer	153 (7.7)	9 (5.7)	0 (0.0)
radiotherapy	371 (18.6)	0 (0.0)	0 (0.0)

^a = Items summarised as numbers (percentages); *= wildcard character designating truncation

Supplementary Material. Systematic review: associations of testosterone with men's health.

Supplementary table 5. PRISMA Checklist.

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	_		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5. For this typ of review it is PEO instead.
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5, Supplementar table 2
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5-6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Supplementar table 1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6, Supplementat tables 2-3.

BMJ Open

Supplementary Material. Systematic review: associations of testosterone with men's health.

Section/topic	#	Checklist item	Reported on page #		
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6, Suppl. Data		
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6, Suppl. Data		
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6, Supplementar table 8.		
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7		
Synthesis of results	thesis of results 14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., 1 ²) for each meta-analysis.				
Risk of bias across studies	bias across studies 15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).				
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7		
RESULTS	÷	· · · · · · · · · · · · · · · · · · ·			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8, Fig. 1		
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Supplementa tables 6-7, 9- 10		
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9, Supplemental table 8		
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-12, Figs 3- 4; Supplementa figure 3		

 Supplementary Material. Systematic review: associations of testosterone with men's health.

21 22	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-12, Figs 3- 4; Supplementary figure 3
22	Dregent results of any approximant of risk of hiss serves studies (see Item 45)	
	Present results of any assessment of risk of bias across studies (see Item 15).	10-11, Supplementary figure 2
23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	10-12, Fig 2; Supplementary figures 1-3
24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12-16
25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	14-15
26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13-16
27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	17
	24 25 26	 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). Provide a general interpretation of the results in the context of other evidence, and implications for future research. Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

Supplementary table 6. Attributes of selected items.

					Ba	seline**		Fol	llow-up (relevant outcomes)
Item	Article	Country	Study name [§]	No. adult males	Baseline period	Age (yr) Mean (sd)	T (nmol/L) Mean (sd)	Length of follow-up (yr) (person-years)¶	AIMS Longitudinal Outcomes (no. of events analysed)
Selected	l from systematic re	view							
1	Srinath, 2015[16]	USA	ARIC	1,558	1996-98	63.1 (5.6)	13.9 (5.7)	Md=12.8 (CHD); Md=13.1 (HF) (25,374; HF)	Coronary Heart Disease (CHD; 287) Heart Failure (HF; 104) CHD deaths (29) All-cause deaths (347)
2	Srinath, 2016[17]	USA	ARIC	1,558	1996-98	63.1 (5.6)	13.9 (5.7)	Md=14.1 (27,311)	Ischemic Stroke (79)
3	Chan, 2016[18]	Australia	BHS	1,804	1994-95	50.3 (16.8)	13.6 (4.9)	Mn=14.9 (31,930)	CVD events (234; 399)*** CVD deaths (71; 141)***
4	Chasland, 2017[19]	Australia	BHS	1,649	1994-95	49.8 (15.3)	13.7 (4.9)	Tot=20	All-cause deaths (191; 319)*** CVD events (415) CVD deaths (127)
5	Chan, 2018[20]	Australia	BHS	1,574	1994-95	51.1 (14.7)	13.5 (4.8)	Tot=20	Prostate cancer (116) Lung cancer (22) Colorectal cancer (48) Cancer (any; 289)
6	Hsu, 2015[21]	Australia	CHAMP	853	2005-07	76.9 (5.5)	14.6 (6.2)	Tot=5	Cognitive decline (95)
7	Hsu, 2016[22]	Australia	CHAMP	1,705	2005-07	76.9 (5.5)	14.9 (6.6)	Md=6.9; Tot=10 (11,764)	Cancer deaths (151) CVD deaths (185) Other deaths (174) All-cause deaths (510)
8	Hsu, 2018[23]	Australia	CHAMP	1,651	2005-07	76.9 (5.5)	14.7 (6.4)	Tot=5	All-cause deaths (382) CVD deaths (cases not reported) Cancer deaths (cases not reported) Other deaths (cases not reported) Change in: MMSE, SF-12 (Mental).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Supplementary Material. Systematic review: associations of testosterone with men's health.

					Ba	seline**		Follow-up (relevant outcomes)		
ltem	Article	Country	Study name [§]	No. adult males	Baseline period	Age (yr) Mean (sd)	T (nmol/L) Mean (sd)	Length of follow-up (yr) (person-years)¶	AIMS Longitudinal Outcomes (no. of events analysed)	
9	Rosenberg, 2018[24]	USA	CHS	1,019	1994	76.3 (4.9)	13.2 (6.2)	Md=9.5 (10,716)	Atrial Fibrillation (304)	
10	Shores, 2014a[25]	USA	CHS	1,032	1994	76.5 (5.2)	13.5 (6.1)	Md=10; Tot=16 (19,220)	Ischemic stroke (114)	
11	Shores, 2014b[26]	USA	CHS	NR	1994	NR	NR	Md=8.9 (CVD events) Md=10.8 yr (All-cause deaths). (9,184; CVD events)	CVD events (436) CVD deaths (157) All-cause deaths (777)	
12	Lee, 2013[27]	Europe ^{§§}	EMAS	2,736	2003-05	59.2 (10.7)	16.5 (6)	Md=4.3; Tot=5 (14,486)	Cancer (any) Myocardial Infarction (MI) Heart Failure, Other heart conditions Stroke Cognitive function All-cause deaths (193)	
13	Pye, 2014[28]	Europe ^{§§}	EMAS	2,599	NR	60 (11)	NR	Md=4.3; Tot=5 (11,140)	Cancer deaths (60) CVD deaths (56) All-cause deaths (147)	
14	Chan, 2017[29]	Australia	HIMS	3,690	2001-04	77 (3.6)	13.1 (4.9)	Md=9.1, 9.2; Tot=11 (38,665)	Prostate cancer (348) Lung cancer (107) Colorectal cancer (137)	
15	Ford, 2018[30]	Australia	HIMS	4,069	2001-04	NR	NR	Md=10.5; Tot=12 (44,404)	Dementia (499)	
16	Yeap, 2014[31]	Australia	HIMS	3,690	2001-04	NR	NR	Mn=6.6 (2.3 sd) (28,036)	MI (344) Stroke (300)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Supplementary Material. Systematic review: associations of testosterone with men's health.

					Ba	seline**		Fol	llow-up (relevant outcomes)
Item	Article	Country	Study name [§]	No. adult males	Baseline period	Age (yr) Mean (sd)	T (nmol/L) Mean (sd)	Length of follow-up (yr) (person-years)¶	AIMS Longitudinal Outcomes (no. of events analysed)
17	Ohlsson, 2010[32]	Sweden	MrOS	2,644	2001-04	75.5 (3.2)	15.6 (6.5)	Mn=4.5† (11,880)	CVD deaths (123) Cancer deaths (127) All-cause deaths (328)
18	Ohlsson, 2011[33]	Sweden	MrOS	2,416	2001-04	75.4 (3.2)	15.7 (6)	Md=5.1 (11,605)	CVD events (485) Chronic Heart Disease events (302) Cerebrovascular events (225)
19	Tivesten, 2014[34]	Sweden	MrOS	2,416	2001-04	75.4 (3.2)	15.7 (6)	Md=5.2 (12,070; CHD) (12,137; CBD)	Chronic Heart Disease (302; CHD) Cerebrovascular Disease (225; CBD)
20 Decisi	Kische, 2017[35]	2	SHIP	1,962	1997-01	49.5 (16.3)	15.6 (6.1)	Tot=10	Change in cognitive status
21	LeBlanc, $2010[36]$	USA	MrOS	1,602	NR	NR	NR	Mn=4.5 †† (26,977)	Cognitive function (and change in) Cognitive decline
22*	Sueoka, 2010[14]	USA	MrOS	697	2000-05	72 (5.5)	14.5 (5.1)	Av=3.9 †† (6,247)	Coronary Heart Disease events (100)
Other.	Additional studies	selected base	d on inform	ation externa	ıl to the syst	ematic reviev	v		
	No articles were selected.	USA	FHS	3,352[12]	1998-05	59.6 (9.1)[12] 49.4 (13.8)[11]	20.7 (8.0)[12]	Tot=10 (for Atrial Fibrillation)[37]	Cardiovascular outcomes[37, 38] Deaths[37] Cause-specific deaths[38] Cancer[39]
	No articles were selected.	Australia	MAILES	1,632[40]	2002- 06[8]	54.1 (11.4)[40]	17.3 (5.7)[40]	Md=4.95; IQR=4.35- 5.00[40] (12,686)	CVD events Deaths (99)[8] Cause-specific deaths[8]

§ Study name abbreviations: 'ARIC'= Atherosclerosis Risk in Communities; 'BHS'=Busselton Health Study; 'CHAMP'=The Concord Health and Ageing in Men Project; 'CHS'= Cardiovascular Health Study; 'FHS'= the Framingham Heart Study; 'HIMS'=The Health In Men Study; 'EMAS'=European Male Ageing Study; 'MAILES'= The Men Androgen Inflammation Lifestyle Environment and Stress study; 'MrOS Sweden'=The MrOS Osteoporotic Fractures in Men study in Sweden; 'MrOS USA' = The MrOS Osteoporotic Fractures in Men study USA; 'SHIP'=Study of Health in Pomerania SHIP. §§ = UK, Italy, Belgium, Poland, Sweden, Spain, Hungary, Estonia

Supplementary Material. Systematic review: associations of testosterone with men's health.

¶ 'Md'=median; 'Mn'=mean; 'Av'=average; 'Tot'=total follow-up for the cohort (i.e., maximum, rounded down to nearest whole year); 'IQR'=interquartile range. Unless provided in text, person-years was calculated by multiplying the median, mean, or average length of follow-up by the total number of adult male participants.

* = Note that this is a published conference abstract so is not technically a "Full Text" item.

** = Baseline statistics reported for whole cohort; 'NR' = statistics not reported for whole cohort; Means and standard deviations calculated by firstly transforming into standard units (for T: nmol/L) and then, where required, transforming from quartile statistics using the Box-Cox method of McGrath et al.[41]

*** = First number is for individuals without CVD at baseline.

 \dagger = Total follow-up exceeded 5 years, from baseline visit (2001-04) to end of mortality data collection (March 1, 2008).

+† = Note that since there was no published follow-up estimate exceeding 5 years (a requirement for selection) and it was not clear, based on the article information alone, whether the total follow-up was at least 5 years, these items were initially classified as "Maybe". The length of follow-up for collection of AIMS outcome data was determined to be satisfactory from subsequent correspondence with MrOS USA researchers.

- 17 -

BMJ Open

Supplementary table 7. Exposure levels, outcome assessment, covariates.*

Study	Article	Longitudinal measure of association	Exposure (testosterone)	Outcome ascertainment	Covariates
ARIC Srin	Srinath, 2015[16]	HR	T quartiles	CVD events and deaths identified by annual questionnaires and continuous surveillance, independent from hospital admissions data (ICD codes). Cause of death from death certificates.	Age, race/centre, BMI, waist circumference, smoking status diabetes mellitus, hypertension, LDL, HDL.
	Srinath, 2016[17]	HR	T tertiles	Definite or probable stroke events identified from hospital admissions, annual phone calls, study examinations adjudicated by a physician, with secondary physician adjudication if it disagreed with a computer algorithm.	Age, race, centre, BMI, waist circumference, smoking status, diabetes mellitus, hypertension, LDL, HDL.
BHS	Chan, 2016[18]	HR	T quartiles (results not shown), Continuous T.	Linked hospital admissions and deaths records (ICD codes)	Age, smoking, vigorous exercise, alcohol, BMI, diabetes, CVD, COPD, non-skin cancer, systolic blood pressure, hypertension, lipid lowering therapy, cholesterol, HDL, triglycerides, C-reactive protein, creatinine
	Chasland, 2017[19]	HR	Categories: Low (L) v High (H) T, physical activity(PA) LT+LPA, LT+HPA, HT+LPA, HT+HPA	Linked hospital admissions and deaths records (ICD codes)	Age, prevalent CVD, smoking, waist circumference, cholesterol, HDL, lipids medication, diabetes, systolic blood pressure, hypertension medication
	Chan, 2018[20]	HR	T quartiles, Continuous T.	Linked cancer and death registry records (ICD codes)	Age, marital status, occupation, smoking, alcohol consumption, leisure time physical activity, BMI, diabetes
CHAMP	Hsu, 2015[21]	Slope estimate (change in MMSE on baseline hormone level or longitudinal change in hormone level)	Continuous T, cFT	Clinic assessment: MMSE, Informant Questionairre on Cognitive Decline as initial screen, followed by clinical assessment to diagnosis categories: normal cognition, MCI, dementia. During follow-up: A decline in MMSE by ≥3 points	Age, BMI, smoking status, years of education, depression score (GDS)
	Hsu, 2016[22]	RR	Continuous T, cFT	Deaths identified from 4-monthly phone calls or deaths registry. Cause of death identified on death certificates independently by 2 medical practitioners.	Age, BMI, smoking status, comorbidity score
	Hsu, 2018[23]	HR, RR (Death outcomes); Slope estimates (MMSE, SF-12 Mental)	Categories: Low (<20 th centile) v Normal T combinations with Low (<20 th centile) v Normal cFT	Cause of death identified on death certificates independently by 2 medical practitioners.	Age, BMI, smoking status, comorbidity score
CHS	Rosenberg, 2018[24]	HR	Continuous T and cFT, T and cFT quintiles	Independently verified from ECGs taken annually for participants and from hospital discharge diagnoses	Age (stratified), race, education, income, clinic, smoking status, diabetes mellitus, BMI, loop diuretics, height, hypertension, depressed left ventricular ejection fraction, kidney function, systolic blood pressure, SHBG

 Supplementary Material. Systematic review: associations of testosterone with men's health.

Study	Article	Longitudinal measure of association	Exposure (testosterone)	Outcome ascertainment	Covariates
	Shores, 2014a[25]	HR	Continuous T, cFT (linear & non- linear), T categories	Medicare data, hospital records, imaging studies, autopsy results, death certificates, physician interviews data used for adjudications by committee, which included a neurologist.	Age, systolic blood pressure, anti-hypertensive medications, atrial fibrillation, diabetes, smoking, lipid-lowering drugs, HDL, cholesterol, creatinine, fasting glucose, diabetes medications.
	Shores, 2014b[26]	HR	Continuous T, cFT (linear or non-linear) categories: Q1, Q2-4	Medicare data, hospital records, imaging studies, autopsy results, death certificates, physician interviews data used for adjudications by committee, which included a neurologist.	Age, race, site, smoking status, alcohol consumption, hypertensive use, HDL, BMI, waist circumference, diabetes SHBG.
EMAS	Lee, 2013[27]	N/A	No modelling of longitudinal outcomes reported	MI, heart failure, other heart conditions, cancers, stroke identified from postal questionnaire, MMSE for participants ≥65 yr old from clinic assessments Variable methods for data capture + validation among centres.	No modelling of longitudinal outcomes reported
	Pye, 2014[28]	HR	T, cFT categories: quintiles, low v eugonadal T, LOH status.	Deaths identified from follow-up postal questionnaire or enquiry if no reply received, with 89% of deaths verified from death certificates, death registers, or medical/hospital records.	Age, site, BMI, smoking status, general health.
HIMS Chan, 2017[29]		SHR	Continuous T, cFT.	Linked hospital admissions, death and cancer registry records (ICD, ICD-O-3 codes).	Age, BMI, smoking status, physical activity, alcohol consumption, diabetes mellitus, HDL, triglycerides, prior cancer diagnosis.
	Ford, 2018[30]	HR	Continuous T, cFT Quartile categories of T, cFT	Linked data (ICD codes) from inpatient and outpatient mental health services, hospital admissions, community aged care services, cancer and death registries.	Age, baseline cognitive function, depression, BMI, hypertension, CVD, plasma homocysteine.
	Yeap, 2014[31]	HR	T, cFT as quartile categories	Linked hospital admissions, death and cancer registry records (ICD codes).	Age, education, smoking status, BMI, waist to hip ratio, hypertension, dyslipidemia, diabetes, creatinine, prior cancer or existing CVD. Also SHBG for models with T.
MrOS Europe	Ohlsson, 2010[32]	HR (in relation to DHEA, DHEA-S)	No: T modelled as a covariate only	Linked data (death and hospital discharge registries), death certificates.	Age, site, BMI, C-reactive protein, ApoB/A1, smoking status, diabetes, hypertension, prior CVD, prior cancer, low testosterone (in lowest quartile), low estradiol
	Ohlsson, 2011[33]	HR	T, cFT as quartile categories, T as binary categories.	Linked data (death and hospital discharge registries), death certificates.	Age, morning sample, site, BMI, ApoB/A1, physical activity, smoking status, diabetes, hypertension
	Tivesten, 2014[34]	HR (in relation to DHEA, DHEA, DHEA)	No: T modelled as a covariate only	Linked data (death and hospital discharge registries), death certificates.	Age, morning sample, site, BMI, ApoB/A1, C-reactive protein, estradiol, testosterone (i.e., continuous T), SHBG, eGFR, smoking status, diabetes, hypertension.
SHIP	Kische, 2017[35]	Slope estimate (change in MMSE on baseline hormone)	T, cFT as continuous and as 10-year age group quartile categories.	MMSE score.	Age, BMI, smoking status, alcohol consumption, physical activity, hypertension, occupational status, education level, civil status, baseline MMSE.

BMJ Open

Supplementary Material.	Systematic review:	associations of test	osterone with men's health.
	~)>!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		

Study	Article	Longitudinal measure of association	Exposure (testosterone)	Outcome ascertainment	Covariates
MrOS USA	LeBlanc, 2010[36]	Change in mean score RR of clinically important decline	cFT quartiles and continuous cFT and T (data not shown)	Cognitive tests at the baseline and follow-up visit from Part B of the Trail Making Test (Trails B) and the Modified Mental State Examination (3MS). Calculated from pre-defined drop in scores.	Age group, education level, race, general health, alcohol consumption, clinic, physical and mental health, physical activity, medications used at baseline, other sex steroids, SHBG.
	Sueoka, 2010[14]	HR	T quartiles	CHD events identified from 3-monthly contacts with participants. Incident events were reviewed and adjudicated by cardiologist using clinical records.	Age, clinic, BMI, blood pressure, lipid levels, smoking, hypertension, diabetes, use of lipid-lowering agents
FHS	N/A – no items were selected.	N/A	N/A	AF measured and adjudicated by cardiologists. Mortality data from death certificates, hospital or institutional records, obituaries, or direct notification[37] Medical records of CVD events reviewed by panel of experienced investigators. A heart study neurologist examined most participants with suspected stroke[38] Medical records of cancer diagnoses reviewed by two independent reviewers, with majority confirmed by pathology reports.[39]	N/A
MAILES	N/A – no items selected.	N/A	N/A	Self-reported and clinical follow-up data, death registry (linked data)[8]	N/A

* ApoB/A1 = apolipoprotein-B to apolipoprotein-A1 ratio; BMI = body mass index; cFT = calculated free testosterone; CHD = coronary heart disease; COPD = chronic obstructive pulmonary disease; CVD = cardiovascular disease; DHEA = dehydroepiandrosterone; DHEA-S = DHEA sulfate; ECG = electrocardiogram; eGFR = estimated glomerular filtration rate; GDS = Geriatric Depression Scale; HDL = high-density lipoprotein; HR = hazard ratio; ICD = International Classification of Diseases; ICD-O-3 = International Classification of Diseases for Oncology; LDL = low-density lipoprotein; LOH = late-onset hypogonadism; MCI = mild cognitive impairment; MMSE = mini-mental state examination; N/A = not applicable; Q1=quartile 1; Q2-4=quartiles 2 to 4 combined; RR = relative risk; SF-12 = The Short Form (12) Health Survey; SHBG = sex hormone binding globulin; SHR = subhazard ratio, as estimated from competing-risks regression; T = total endogenous testosterone.

BMJ Open

Supplementary Material. Systematic review: associations of testosterone with men's health.

Supplementary table 8. Newcastle-Ottawa Quality Assessment Scale for Cohort Studies: selected articles.

		Selection	Comparability	Outcome		
Article	Study	(4 stars)	(2 stars)	(3 stars)	Notes on Selection	Notes on Outcome
Srinath 2015[16]	ARIC	****	**	**		Losses to f/u not mentioned; linked data ^b
Srinath 2016[17]	ARIC	****	**	**		Losses to f/u not mentioned; linked data ^b
Chan 2016[18]	BHS	****	**	**		Losses to f/u not mentioned; linked data ^b
Chasland 2017[19]	BHS	***	**	**	Prevalent cases not excluded ^a	Losses to f/u not mentioned; linked data ^b
Chan 2018[20]	BHS	****	**	**		Losses to f/u not mentioned; linked data ^b
Hsu 2015[21]	CHAMP	****	**	***		
Hsu 2016[22]	CHAMP	***	**	***	Prevalent cases not excluded ^c	
Hsu 2018[23]	CHAMP	***	**	***	Prevalent cases not excluded ^c	
Rosenberg 2018[24]	CHS	****	**	**		Losses to f/u not mentioned; linked data ^d
Shores 2014a[25]	CHS	****	**	**		Losses to f/u not mentioned; linked data ^d
Shores 2014b[26]	CHS	****	**	**		Losses to f/u not mentioned; linked data ^d
Lee 2013[27]	EMAS	NA	NA	NA	No modelling of longitudinal out	comes reported
Pye 2014[28]	EMAS	***	**	***	Prevalent cases not excluded ^a	
Chan 2017[29]	HIMS	****	**	**		Losses to f/u not mentioned; linked data ^b
Ford 2018[30]	HIMS	****	**	**		Losses to f/u not mentioned; linked data ^b
Yeap 2014[31]	HIMS	***	**	**	Prevalent cases not excluded ^a	Losses to f/u not mentioned; linked data ^b
Ohlsson 2010[32]	MrOS Sw.	NA	NA	NA	Testosterone was not the exposur	
Ohlsson 2011[33]	MrOS Sw.	****	**	***		
Tivesten 2014[34]	MrOS Sw.	NA	NA	NA	Testosterone was not the exposur	e variable in this article
Kische 2017[35]	SHIP	***	**	***	Prevalent cases not excluded ^e	
LeBlanc 2010[36]	MrOS USA	****	**	*		Bias from loss to f/u; F/u OK: additional steps
Sueoka 2010[14]	MrOS USA	***	**	*	Prevalent cases not excluded ^a	F/u OK: additional steps ^f
Additional item not se	lected but includ	led in DR-MA:				
Yeap 2014b[13]	HIMS	***	**	**	Prevalent cases not excluded ^a	Losses to f/u not mentioned; linked data ^b

'NA' = Not applicable (see Notes); 'f/u' = follow-up (of incident events); 'DR-MA' = dose-response meta-analyses of published estimates.

 a^{a} = The influence of prevalent cases was statistically adjusted by including prevalent status as a model predictor.

^b = Follow-up of cases was assumed to be almost complete because analyses were of linked administrative data.

^c = The influence of prevalent cases was statistically adjusted by incorporating into a comorbidity status model predictor.

 d = Follow-up of cases was assumed to be almost complete because analyses were of linked administrative data (with expert adjudications).

^e = Outcome was change in cognition score, with baseline score (prevalent status) included as a model predictor.

f = Total length of follow-up period was not reported but determined to be satisfactory from correspondence with MrOS USA researchers.

BMJ Open

Supplementary Material. Systematic review: associations of testosterone with men's health.

Supplementary table 9. Extracted hazard ratio data for dose-response meta-analyses (DR-MAs).*

Article	Study	Outcome	Testosterone	Units	HR	95% CI	Notes
Chan 2016[18]	BHS	All-cause mortality	<10.20	nmol/L	ref.		
Chan 2016	BHS	All-cause mortality	10.20 - <13.04	nmol/L	0.84	(0.62-1.14)	
Chan 2016	BHS	All-cause mortality	13.04 - <16.58	nmol/L	0.86	(0.62-1.19)	
Chan 2016	BHS	All-cause mortality	≥16.58	nmol/L	0.9	(0.62-1.3)	
Pye 2014[28]	EMAS	All-cause mortality	<11.65	nmol/L	1.1	(0.6-1.8)	
Pye 2014	EMAS	All-cause mortality	11.65-14.61	nmol/L	0.7	(0.4-1.3)	
Pye 2014	EMAS	All-cause mortality	14.61-17.28	nmol/L	0.7	(0.4-1.3)	
Pye 2014	EMAS	All-cause mortality	17.28-21.20	nmol/L	1.2	(0.7-2)	
Pye 2014	EMAS	All-cause mortality	>21.20	nmol/L	ref.		
Srinath 2015[16]	ARIC	All-cause mortality	≤288.4	ng/dL	0.96	(0.7-1.34)	
Srinath 2015	ARIC	All-cause mortality	288.5-377.6	ng/dL	0.99	(0.72-1.35)	
Srinath 2015	ARIC	All-cause mortality	377.7-480.1	ng/dL	1	(0.74-1.35)	
Srinath 2015	ARIC	All-cause mortality	≥480.2	ng/dL	ref.		
Shores 2014b[26]	CHS	All-cause mortality	<278	ng/dL	1.06	(0.88-1.29)	
Shores 2014b	CHS	All-cause mortality	≥278	ng/dL	ref.		
Yeap 2014b[13]	HIMS	All-cause mortality	0.25-9.82	nmol/L	ref.		Fully-adjusted model + SHBG
Yeap 2014b	HIMS	All-cause mortality	9.82-12.53	nmol/L	0.81	(0.68-0.98)	
Yeap 2014b	HIMS	All-cause mortality	12.56-15.75	nmol/L	0.75	(0.61-0.92)	
Yeap 2014b	HIMS	All-cause mortality	15.79-46.50	nmol/L	0.77	(0.61-0.97)	
Yeap 2014b	HIMS	All-cause mortality	0.25-9.82	nmol/L	ref.		Fully-adjusted model + LH
Yeap 2014b	HIMS	All-cause mortality	9.82-12.53	nmol/L	0.84	(0.7-1.01)	
Yeap 2014b	HIMS	All-cause mortality	12.56-15.75	nmol/L	0.81	(0.67-0.97)	
Yeap 2014b	HIMS	All-cause mortality	15.79-46.50	nmol/L	0.89	(0.73-1.07)	
Hsu 2016[22]	CHAMP	All-cause mortality		ng/mL	1.17	(1.03-1.32)	Per SD decrease in T. RR estimate use
Chan 2016	BHS	CVD mortality	<10.20	nmol/L	ref.	,	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Supplementary Material. Systematic review: associations of testosterone with men's health.

Article	Study	Outcome	Testosterone	Units	HR	95% CI	Notes
Chan 2016	BHS	CVD mortality	10.20 - <13.04	nmol/L	1.12	(0.7-1.78)	
Chan 2016	BHS	CVD mortality	13.04 - <16.58	nmol/L	1.39	(0.86-2.25)	
Chan 2016	BHS	CVD mortality	≥16.58	nmol/L	1.25	(0.69-2.25)	
Chasland 2017[19]	BHS BHS	CVD mortality CVD mortality	<13.1 ≥13.1	nmol/L nmol/L	ref. 1.25	(0.77-2.03)	Total PA, "Low" PA, NS PA x T: these estimates were used
Chasland 2017	BHS	CVD mortality	<13.1	nmol/L	0.69	(0.4-1.2)	Total PA, "High" PA, NS PA x T
Chasland 2017	BHS	CVD mortality	≥13.1	nmol/L	0.8	(0.48-1.35)	
Pye 2014	EMAS	CVD mortality	<11.65	nmol/L	1	(0.4-2.2)	
Pye 2014	EMAS	CVD mortality	11.65-14.61	nmol/L	0.5	(0.2-1.4)	
Pye 2014	EMAS	CVD mortality	14.61-17.28	nmol/L	0.4	(0.2-1.2)	
Pye 2014	EMAS	CVD mortality	17.28-21.20	nmol/L	1.1	(0.5-2.4)	
Pye 2014	EMAS	CVD mortality	>21.20	nmol/L	ref.		
Srinath 2015	ARIC	CVD mortality	≤288.4	ng/dL	1.36	(0.45-4.08)	
Srinath 2015	ARIC	CVD mortality	288.5-377.6	ng/dL	1.26	(0.73-3.7)	
Srinath 2015	ARIC	CVD mortality	377.7-480.1	ng/dL	0.57	(0.16-1.99)	
Srinath 2015	ARIC	CVD mortality	≥480.2	ng/dL	ref.		
Shores 2014b	CHS	CVD mortality	<278	ng/dL	1.28	(0.94-1.75)	
Shores 2014b	CHS	CVD mortality	≥278	ng/dL	ref.		
Yeap 2014b	HIMS	CVD mortality	0.25-9.82	nmol/L	ref.		
Yeap 2014b	HIMS	CVD mortality	9.82-12.53	nmol/L	0.82	(0.61-1.11)	
Yeap 2014b	HIMS	CVD mortality	12.56-15.75	nmol/L	0.79	(0.58-1.09)	
Yeap 2014b	HIMS	CVD mortality	15.79-46.50	nmol/L	0.79	(0.56-1.11)	
Hsu 2016	CHAMP	CVD mortality		ng/mL	1.11	(0.93-1.32)	Per SD decrease in T. RR estimate use
Srinath	ARIC	Stroke / CBD	≤317.7	ng/dL	1.47	(0.83-2.61)	
2016[17]	ARIC	Stroke / CBD	317.8-441.2	ng/dL	ref.		
Srinath 2016	ARIC	Stroke / CBD	≥441.3	ng/dL	1.15	(0.62-2.14)	
Shores 2014a[25]	CHS	Stroke / CBD	<200	ng/dL	1.46	(0.77-2.75)	
Shores 2014a	CHS	Stroke / CBD	200-400	ng/dL	0.9	(0.56-1.45)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Supplementary Material. Systematic review: associations of testosterone with men's health.

Article	Study	Outcome	Testosterone	Units	HR	95% CI	Notes
Shores 2014a	CHS	Stroke / CBD	400-600	ng/dL	ref.		
Shores 2014a	CHS	Stroke / CBD	600-800	ng/dL	1.73	(0.88-3.39)	
Shores 2014a	CHS	Stroke / CBD	>800	ng/dL	1.69	(0.51-5.60)	
Yeap 2014[31]	HIMS	Stroke / CBD	0.25-9.82	nmol/L	ref.		
Yeap 2014	HIMS	Stroke / CBD	9.82-12.53	nmol/L	0.8	(0.59-1.09)	
Yeap 2014	HIMS	Stroke / CBD	12.56-15.75	nmol/L	0.72	(0.52-0.99)	
Yeap 2014	HIMS	Stroke / CBD	15.79-46.5	nmol/L	0.56	(0.39-0.81)	
Ohlsson	MrOS(Sw)	Stroke / CBD	≤340	ng/dL	ref.		
2011[33]	MrOS(Sw)	Stroke / CBD	341-438	ng/dL	ref.		
Ohlsson 2011	MrOS(Sw)	Stroke / CBD	439-549	ng/dL	ref.		Quartile 4 vs. quartiles 1 to 3 of
Ohlsson 2011	MrOS(Sw)	Stroke / CBD	≥550	ng/dL	0.76	(0.55-1.05)	testosterone
Ohlsson 2011	MrOS(Sw)	CVD	≤340	ng/dL	ref.		
Ohlsson 2011	MrOS(Sw)	CVD	341-438	ng/dL	1.02	(0.80-1.30)	
Ohlsson 2011	MrOS(Sw)	CVD	439-549	ng/dL	0.96	(0.75-1.23)	
Ohlsson 2011	MrOS(Sw)	CVD	<u>≥</u> 550	ng/dL	0.71	(0.54-0.93)	
Chan 2016	BHS	CVD		nmol/L	1.03	(0.92-1.15)	Per SD increase in T
Chasland 2017	BHS	CVD	<13.1	nmol/L	ref.		Total PA, "Low" PA, NS PA x T: these
Chasland 2017	BHS	CVD	≥13.1	nmol/L	1.09	(0.83-1.44)	estimates were used
Chasland 2017	BHS	CVD	<13.1	nmol/L	0.93	(0.70-1.23)	Total PA, "High" PA, NS PA x T
Chasland 2017	BHS	CVD	≥13.1	nmol/L	1.04	(0.78-1.38)	
Shores 2014b	CHS	CVD	<278	ng/dL	1.11	(0.87-1.43)	
Shores 2014b	CHS	CVD	≥278	ng/dL	ref.		
Yeap 2014	HIMS	CVD: MI	0.25-9.82	nmol/L	ref.		
Yeap 2014	HIMS	CVD: MI	9.82-12.53	nmol/L	1.07	(0.79-1.44)	
Yeap 2014	HIMS	CVD: MI	12.56-15.75	nmol/L	1.03	(0.76-1.41)	
Yeap 2014	HIMS	CVD: MI	15.79-46.5	nmol/L	0.92	(0.66-1.28)	
Srinath 2015	ARIC	CVD: HF	≤288.4	ng/dL	0.77	(0.46-1.29)	
Srinath 2015	ARIC	CVD: HF	288.5-377.6	ng/dL	0.72	(0.43-1.21)	

- 24 -

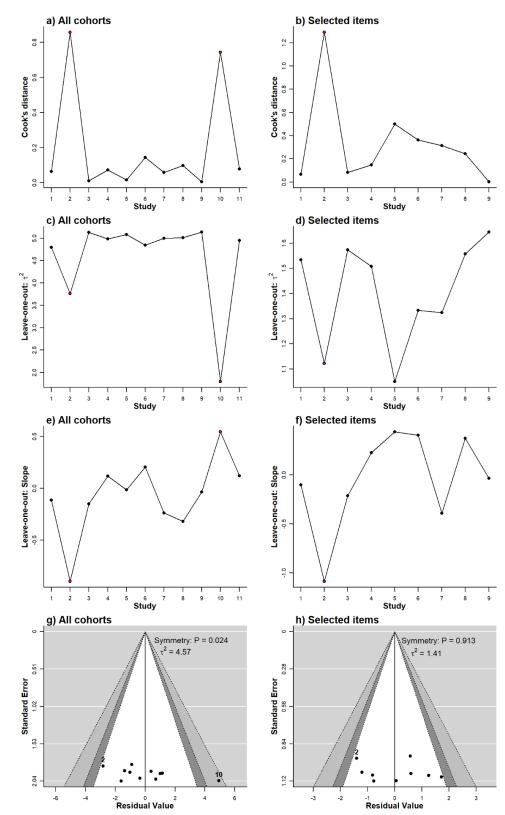
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Supplementary Material. Systematic review: associations of testosterone with men's health.

Article	Study	Outcome	Testosterone	Units	HR	95% CI	Notes
Srinath 2015	ARIC	CVD: HF	377.7-480.1	ng/dL	0.87	(0.53-1.42)	
Srinath 2015	ARIC	CVD: HF	≥480.2	ng/dL	ref.		
Chan 2018[20]	BHS	Cancer	<10.17	nmol/L	ref.		
Chan 2018	BHS	Cancer	10.17-<12.95	nmol/L	0.72	(0.53-0.99)	
Chan 2018	BHS	Cancer	12.95-<16.49	nmol/L	0.71	(0.51-0.98)	
Chan 2018	BHS	Cancer	≥16.49	nmol/L	0.81	(0.57-1.14)	
Chan 2018	BHS	Cancer: Prostate	<10.17	nmol/L	ref.		
Chan 2018	BHS	Cancer: Prostate	10.17-<12.95	nmol/L	0.62	(0.37-1.03)	
Chan 2018	BHS	Cancer: Prostate	12.95-<16.49	nmol/L	0.75	(0.46-1.23)	
Chan 2018	BHS	Cancer: Prostate	≥16.49	nmol/L	0.58	(0.33-1.01)	
Chan 2018	BHS	Cancer: Colorectal		nmol/L	1.04	(0.76-1.42)	Per SD increase in T
Chan 2018	BHS	Cancer: Lung		nmol/L	0.65	(0.39-1.09)	Per SD increase in T
Chan 2017[29]	HIMS	Cancer: Prostate		nmol/L	1.00	(0.90-1.12)	Per SD increase in T.
Chan 2017	HIMS	Cancer: Colorectal		nmol/L	0.96	(0.80-1.15)	Per SD increase in T
Chan 2017	HIMS	Cancer: Lung		nmol/L	1.30	(1.06-1.60)	Per SD increase in T
Hsu 2016	CHAMP	Cancer mortality		ng/mL	1.30	(1.02-1.65)	Per SD decrease in T. RR estimate used.
Ford 2018[30]	HIMS	Dementia	Not reported	nmol/L	1.39	(1.04-1.85)	
Ford 2018	HIMS	Dementia			1.31	(1.00 - 1.73)	
Ford 2018	HIMS	Dementia			1.23	(0.93-1.61)	
Ford 2018	HIMS	Dementia			ref.		
Ford 2018	HIMS	Dementia	SD for cohort not reported	nmol/L	1.11	(1.01-1.21)	Per SD decrease in T
					011.1	(

* = Estimates were also reported for all-cause and CVD mortality mortality for the CHAMP study in another of the selected articles,[23] but were not used because they were reported for combinations of free testosterone and total testosterone, and so were not comparable to the above published estimates.

CBD = cerebrovascular disease; CVD = cardiovascular disease; HF = heart failure; LH = luteinising hormone; MI = myocardial infarction; NS = non-significant result at*a priori*selected threshold for test; PA = physical activity level; ref. = referent level; RR = relative risk; SD = standard deviation; SHBG = sex hormone-binding globulin; T = endogenous total testosterone concentration.

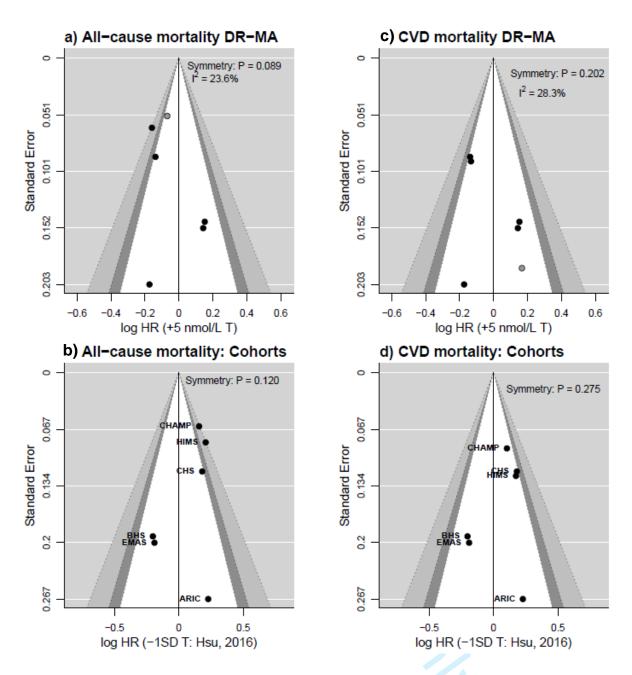

BMJ Open

Supplementary Material. Systematic review: associations of testosterone with men's health.

Article	Study	Outcome	Testosterone	Units	Effect size parameter	Estimate	95% CI	p value	Notes
Hsu 2015[21]	CHAMP	Cognitive change	Baseline	ng/mL	Slope: Per	0.012	NR	0.7	Longitudinal change in MMSE score
Hsu 2015	CHAMP	Cognitive change	Longitudinal	ng/mL	unit decline	0.067	NR	0.03	Longitudinal change in MMSE score
Hsu 2015	CHAMP	Cognitive decline	Baseline	ng/mL	Odds Ratio	NR	NR	NR	Longitudinal decline in MMSE \geq 3 points. No significant association (data not shown)
Hsu 2018[23]	CHAMP	Baseline cognition	Baseline NN	nmol/L	Slope	0	0	NR	MMSE** at baseline
Hsu 2018	CHAMP	Baseline cognition	Baseline NL	nmol/L	Slope	0.1	-0.8-1.1	NR	MMSE at baseline
Hsu 2018	CHAMP	Baseline cognition	Baseline LN	nmol/L	Slope	0.02	-1.0-1.02	NR	MMSE at baseline
Hsu 2018	CHAMP	Baseline cognition	Baseline LL	nmol/L	Slope	0.8	-0.5-0.4	NR	MMSE at baseline
Hsu 2018	CHAMP	Cognitive change	Baseline NN	nmol/L	Slope	0	0	NR	Longitudinal change in MMSE score
Hsu 2018	CHAMP	Cognitive change	Baseline NL	nmol/L	Slope	0.007	-0.5-0.5	NR	Longitudinal change in MMSE score
Hsu 2018	CHAMP	Cognitive change	Baseline LN	nmol/L	Slope	-0.2	-0.7-0.4	NR	Longitudinal change in MMSE score
Hsu 2018	CHAMP	Cognitive change	Baseline LL	nmol/L	Slope	-0.004	-0.3-0.3	NR	Longitudinal change in MMSE score
Kische 2017[35]	SHIP	Cognitive change	Baseline	nmol/L	Slope	0.02	-0.15-0.20	≥0.05	Longitudinal change in MMSE score after 5 y
Kische 2017	SHIP	Cognitive change	Baseline	nmol/L	Slope	0.01	-0.22-0.24	≥0.05	Longitudinal change in MMSE score after 10
LeBlanc 2010[36]	MrOS US	Baseline cognition	Baseline	nmol/L	-	NR	NR	≥0.29	3MS score (includes MMSE)
LeBlanc 2010	MrOS US	Follow-up cognition	Baseline	nmol/L	-	NR	NR	≥0.29	3MS score (includes MMSE)
LeBlanc 2010	MrOS US	Cognitive change	Baseline	nmol/L	-	NR	NR	≥0.29	3MS score (includes MMSE)
LeBlanc 2010	MrOS US	Baseline cognition	Baseline	nmol/L	-	NR	NR	≥0.63	Trails B: test of executive function and motor
LeBlanc 2010	MrOS US	Follow-up cognition	Baseline	nmol/L	-	NR	NR	≥0.63	Trails B: test of executive function and motor
LeBlanc 2010	MrOS US	Cognitive change	Baseline	nmol/L	-	NR	NR 🧹	≥0.63	Trails B: test of executive function and motor

* NR = Not reported; NN = Normal (>10.2 nmol/L) total testosterone (T), normal (>156 pmol/L) calculated free testosterone (cFT); NL = normal T, low (<156 pmol/L) cFT; LN = low (<10.2 nmol/L) T, normal cFT; LL = low T, low cFT. MMSE = mini-mental state examination; 3MS = modified mini-mental state examination.

4. Figures.



<u>Supplementary figure 1. Meta-regression diagnostics.</u> Meta-regression diagnostics showing the influence of studies on model fit (a,b), τ^2 (estimated amount of total heterogeneity: c,d), estimated slope (e,f), and distribution of residuals with funnel plots (g,h). Analysis repeated for all 11 cohort studies (a,c,e,g) and for 9 studies with selected articles (b,d,f,h). In cases where more than one article was available per cohort study, the article with the largest sample

Supplementary Material. Systematic review: associations of testosterone with men's health.

size was used. Highlighted estimates for cohort study 2 (BHS) were those from Chan et al.[18] (N=1,804) and for study 10 (FHS) were from Pencina et al.[12] (N=720). In funnel plots: light grey + dark grey + white shading = 99% pseudo confidence interval (CI); dark grey + white shading = 95% CI; white shading = 90% CI.

tor peer teriew only

Supplementary figure 2. Funnel plots for dose-response meta-analyses. Contour-enhanced funnel plots showing the distribution of log hazard ratio (HR) estimates for all-cause mortality (a, b) and mortality caused by cardiovascular disease (CVD) (c, d) attributed to a 5 nmol/L increase (a, c), or a 1.9 nmol/L (1SD in Hsu et al. 2016[22]) decrease (b, d), in endogenous testosterone concentration. Log HR values and standard errors were calculated using generalised least squares regression of published estimates.[42, 43] In cases where more than one article was available per cohort study, the article with the largest sample size was used. Estimates represented by black dots in (a) and (c) were analysed in respective dose-response meta-analyses (DR-MA; results presented in Figs. 3, 4). The grey dot in (a) is the estimate for Yeap et al. 2014b[13] and in (c) is the estimate for Chasland et al. (2017)[19]; these estimates were substituted for others for the HIMS and BHS studies respectively for alternative summary estimates (i.e., the grey summary estimates presented in Figs. 3, 4). Estimates are plotted for all studies with estimates, including those that did not have sufficient information for including in the DR-MA. In funnel plots: light grey + dark

Supplementary Material. Systematic review: associations of testosterone with men's health.

grey + white shading = 99% pseudo confidence in	terval (CI); dark grey + white shading =
95% CI; white shading = 90% CI.	

Article	Study	HR [95% CI]
<u>Stroke & CBD</u> Ohlsson, 2011 Shores, 2014a Srinath, 2016 Yeap, 2014a Summary Estimate (I ² =	MrOS(Sw) CHS ARIC HIMS 43.3%, p = 0.15)	0.83 [0.67, 1.03] 1.06 [0.92, 1.23] 0.88 [0.67, 1.17] 0.90 [0.84, 0.96] 0.93 [0.83, 1.03]
<u>CVD</u> Chasland, 2017 Ohlsson, 2011 Shores, 2014b Chan, 2016* Summary Estimate (I ² =	BHS MrOS(Sw) CHS BHS 34.7%, p = 0.22)	1.07 [0.87, 1.32] 0.87 [0.77, 0.98] 0.94 [0.82, 1.08] 1.03 0.93 [0.84, 1.03]
<u>CVD: MI</u> Yeap, 2014a	HIMS H	0.98 [0.92, 1.04]
<u>CVD: HF</u> Srinath, 2015	ARIC	−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
<u>Cancer Deaths</u> Hsu, 2016*	СНАМР •	0.82**
<u>Cancer</u> Chan, 2018	BHS	0.89 [0.75, 1.06]
<u>Cancer: Colorectal</u> Chan, 2017* Chan, 2018*	HIMS BHS	0.96 1.04
Cancer: Lung Chan, 2017* Chan, 2018*	HIMS BHS ●	 1.31 ** 0.64
<u>Cancer: Prostate</u> Chan, 2017* Chan, 2018	HIMS BHS	1.00 0.78 [0.59, 1.03]
	0.4 0.6 0.9	1.1 1.4
	HR: per 5 nmol/L Test	osterone

Supplementary figure 3: Forest plot of published hazard ratio (HR) estimates: association of testosterone with other AIMS outcomes. Plotted estimates for other outcomes, as listed in the AIMS protocol article,[3] have been standardised to the HR for a 5nmol/L increase in testosterone. The size of squares are scaled to the precision of estimates, as used for obtaining the corresponding summary estimate for that outcome (diamonds). Estimates presented as circles were not used to obtain a summary estimate and so the size of circles is not scaled to estimated precision. * = 95 % confidence intervals (CIs) were not calculable for these

- 30 -

estimates, which were reported as the HR per standard deviation change (see Supplementary table 9).

** = for 'per SD' estimates: to show that the published HR 95% CIs did not overlap 1. 'CBD' = Cerebrovascular disease; 'CVD' = cardiovascular disease; 'MI' = myocardial infarction; 'HF' = heart failure. Study-specific estimates presented for MrOS Sweden (Ohlsson, 2011)[33]; CHS (Shores, 2014a, b)[25-26]; ARIC (Srinath, 2015; 2016)[16-17]; HIMS (Yeap, 2014a, b)[13,31]; BHS (Chan, 2016; Chasland, 2017; Chan, 2018)[18-20].

5. References cited.

- 1. MedNar: Deep Web Technologies.
- 2. OpenGrey: GreyNet International.
- 3. Yeap BB, Marriott RJ, Adams RJ, *et al.* Androgens In Men Study (AIMS): protocol for meta-analyses of individual participant data investigating associations of androgens with health outcomes in men. *BMJ Open* 2020;10:e034777.
- 4. Handelsman DJ, Wartofsky L. Requirement for mass spectrometry sex steriod assays in the Journal of Clinical Endocrinology and Metabolism. *J Clin Endocrinol Metab* 2013;98:3971-73.
- 5. Endnote X8: Clarivate Analytics, 2019
- 6. Ouzzani M, Hammady H, Fedorowicz Z, *et al.* Rayyan a web and mobile app for systematic reviews. *Syst Rev* 2016;5:210.
- 7. Borenstein M, Hedges LV, Higgins JPT, *et al.* Introduction to Meta-Analysis. West Sussex: John Wiley & Sons Ltd 2009.
- 8. Grant JF, Martin SA, Taylor AW, et al. Cohort profile: The men androgen inflammation lifestyle environment and stress (MAILES) study. *Int J Epidemiol* 2014;43:1040-53.
- 9. Arnlov J, Pencina MJ, Amin S, *et al.* Endogenous sex hormones and cardiovascular disease incidence in men. *Ann Intern Med* 2006;145:176-84.
- 10. Haring R, Teng Z, Xanthakis V, *et al.* Association of sex steroids, gonadotrophins, and their trajectories with clinical cardiovascular disease and all-cause mortality in elderly men from the Framingham Heart Study. *Clin Endocrinol* 2013;78:629-34.
- 11. Bhasin S, Pencina MJ, Kaur Jasuja G, *et al.* Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-base sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. *J Clin Endocrinol Metab* 2011;96:2430-39.
- 12. Pencina KM, Travison TG, Bhasin S, *et al.* Endogenous circulating testosterone and sex hormone-binding globulin levels and measures of myocardial structure and function: the Framingham Heart Study. *Andrology* 2019;7:307-14.
- 13. Yeap BB, Alfonso H, Chubb SAP, *et al.* In older men an optimal plasma testosterone is associated with reduced all-cause mortality and higher dihydrotestosterone with reduced ischemic heart disease mortality, while estradiol levels do not predict mortality. *J Clin Endocrinol Metab* 2014;99:E9-E18.
- 14. Sueoka KT, Ewing MS, Ensrud KE, *et al.* Higher endogenous testosterone levels associated with increased risk of coronary heart disease in elderly men: a prospective study. *Endocr Rev* 2010;31:S858.
- 15. Holmegard HN, Nordestgaard BG, Jensen GB, *et al.* Sex hormones and ischemic stroke: a prospective cohort study and meta-analyses. *J Clin Endocrinol Metab* 2016;101:69-78.
- 16. Srinath R, Hill Golden S, Carson KA. Endogenous Testosterone and its Relationship to Preclinical and Clinical Measures of Cardiovascular Disease in the Atherosclerosis Risk in Communities Study. J Clin Endocrinol Metab 2015;100:1602-02.

Page 61 of 64

Supplementary Material. Systematic review: associations of testosterone with men's health.

- 17. Srinath R, Gottesman RF, Hill Golden S, *et al.* Association Between Endogenous Testosterone and Cerebrovascular Disease in the ARIC Study (Atherosclerosis Risk in Communities). *Stroke* 2016;47:2682-88.
- 18. Chan YX, Knuiman MW, Hung J, *et al.* Neutral associations of testosterone, dihydrotestosterone and estradiol with fatal and non-fatal cardiovascular events, and mortality in men aged 17-97 years. *Clin Endocrinol* 2016;85:575-82.
- 19. Chasland LC, Knuiman MW, Divitini ML, *et al*. Greater physical activity and higher androgen concentrations are independently associated with lower cardiometabolic risk in men. *Clin Endocrinol* 2017;87:466-74.
- 20. Chan YX, Knuiman MW, Divitini ML, *et al.* Lower Circulating Androgens Are Associated with Overall Cancer Risk and Prostate Cancer Risk in Men Aged 25-84 Years from the Busselton Health Study. *Horm Cancer* 2018;9:391-98.
- 21. Hsu B, Cumming RG, Waite LM, *et al.* Longitudinal Relationships between Reproductive Hormones and Cognitive Decline in Older Men: The Concord Health and Ageing in Men Project. *J Clin Endocrinol Metab* 2015;100:2223-30.
- 22. Hsu B, Cumming RG, Naganathan V, *et al.* Temporal Changes in Androgens and Estrogens Are Associated With All-Cause and Cause-Specific Mortality in Older Men. *J Clin Endocrinol Metab* 2016;101:2201-10.
- 23. Hsu B, Cumming RG, Blyth FM, *et al.* Evaluating Calculated Free Testosterone as a Predictor of Morbidity and Mortality Independent of Testosterone for Cross-sectional and 5-Year Longitudinal Health Outcomes in Older Men: The Concord Health and Ageing in Men Project. *J Gerontol A Biol Sci Med Sci* 2018;73:729-36.
- 24. Rosenberg MA, Shores MM, Matsumoto AM, *et al.* Serum androgens and risk of atrial fibrillation in older men: The Cardiovascular Health Study. *Clin Cardiol* 2018;41:830-36.
- 25. Shores MM, Arnold AM, Biggs ML, *et al.* Testosterone and dihydrotestosterone and incident ischaemic stroke in men in the Cardiovascular Health Study. *Clin Endocrinol* 2014;81:746-53.
- 26. Shores MM, Biggs ML, Arnold AM, *et al.* Testosterone, dihydrotestosterone, and incident cardiovascular disease and mortality in the cardiovascular health study. *J Clin Endocrinol Metab* 2014;99:2061-8.
- 27. Lee DM, Pye SR, Tajar A, *et al.* Cohort profile: the European Male Ageing Study. *Int J Epidemiol* 2013;42(2):391-401.
- 28. Pye SR, Huhtaniemi IT, Finn JD, *et al.* Late-onset hypogonadism and mortality in aging men. *J Clin Endocrinol Metab* 2014;99:1357-66.
- 29. Chan YX, Alfonso H, Chubb SA, *et al.* Higher Dihydrotestosterone Is Associated with the Incidence of Lung Cancer in Older Men. *Horm Cancer* 2017;8:119-26.
- 30. Ford AH, Yeap BB, Flicker L, *et al.* Sex hormones and incident dementia in older men: The health in men study. *Psychoneuroendocrinology* 2018;98:139-47.
- 31. Yeap BB, Alfonso H, Chubb SA, *et al.* In older men, higher plasma testosterone or dihydrotestosterone is an independent predictor for reduced incidence of stroke but not myocardial infarction. *J Clin Endocrinol Metab* 2014;99:4565-73.
- 32. Ohlsson C, Labrie F, Barrett-Connor E, *et al.* Low serum levels of dehydroepiandrosterone sulfate predict all-cause and cardiovascular mortality in elderly Swedish men. *J Clin Endocrinol Metab* 2010;95:4406-14.
- 33. Ohlsson C, Barrett-Connor E, Bhasin S, *et al.* High serum testosterone is associated with reduced risk of cardiovascular events in elderly men. The MrOS (Osteoporotic Fractures in Men) study in Sweden. *J Am Coll Cardiol* 2011;58:1674-81.
- 34. Tivesten Å, Vandenput L, Carlzon D, *et al.* Dehydroepiandrosterone and its sulfate predict the 5-year risk of coronary heart disease events in elderly men. *J Am Coll Cardiol* 2014;64(17):1801-10.

- 35. Kische H, Gross S, Wallaschofski H, *et al.* Associations of androgens with depressive symptoms and cognitive status in the general population. *PLoS ONE* 2017;12:e0177272.
- 36. LeBlanc ES, Wang PY, Janowsky JS, *et al.* Association between sex steroids and cognition in elderly men. *Clin Endocrinol* 2010;72:393-403.
- 37. Magnani JW, Moser CB, Murabito JM, *et al.* Association of sex hormones, aging, and atrial fibrillation in men: The Framingham Heart Study. *Circ Arrhythm Electrophysiol* 2014;7:307-12.
- 38. D'Agostino RB, Vasan RS, Pencina MJ, *et al*. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. *Circulation* 2008;117:743-53.
- 39. Murabito JM, Rosenberg CL, Finger D, *et al.* A genome-wide association study of breast and prostate cancer in the NHLBI's Framingham Heart Study. *BMC Med Genet* 2007; 8(Suppl I).
- 40. Li JJ, Wittert GA, Vincent A, *et al.* Muscle grip strength predicts incident type 2 diabetes: population-based cohort study. *Metab Clin Exp* 2016;65:883-92.
- 41. McGrath S, Zhao X, Steele R, *et al.* Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. *Stat Methods Med Res* 2020;29:2520-37.

- 42. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. *Am J Epidemiol* 1992;135:1301-09.
- 43. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. *Stata J* 2006;6:40-57.

PRISMA Checklist: Systematic review and meta-analyses on associations of endogenous testosterone concentration with health outcomes in community-dwelling men.

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5. For this type of review it is PEO instead.
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5, Supplementar table 2
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5-6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Supplementar table 1
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6, Supplemental tables 2-3.

Section/topic	#	Checklist item	Reported on page #			
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6, Suppl. Data			
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.				
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6, Supplementar table 8.			
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7			
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	7			
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7			
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7			
RESULTS						
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8, Fig. 1			
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Supplementar tables 7-8, 9- 10			
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9, Supplementa table 8			
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-12, Figs 3 4; Supplementa figure 3			

Section/topic	#	Checklist item	Reported on page #
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-12, Figs. 3- 4, Supplementary figure 3
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-11, Supplementary figure 2
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	10-12, Fig 2; Supplementary figures 1-3
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	12-16
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	14-15
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	13-16
FUNDING	•	·	
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	17

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097