CAH4	MSSRNVATALRMFATLGRSQAGEASAMMGTGSALLAQRAAALGGASAVNKGCSCRCGRVA	60
CAH5	MSSRNVATALRMFATLGRSQAGEASAMMGTGSALLAQRAAALGGASAVNKGCACRCGRVA	60
CAH4	CMGACMPMRHLHAHPNPPSDPDQALEYLREGNKRFVNNKPHDSHPTRNLDRVKATAAGQK	120
CAH5	CMGACMPMRHLHAHPNPPSDPDQALEYLREGNKRFVNNKPHDSHPTRNLDRVKATAAGQK ************************************	120
CAH4	PFAAFLSCADSRVPVEIIFDQGFGDVFVTRVAGNIVTNEITASLEFGTAVLGSKVLMVLG	180
CAH5	PFAAFLSCADSRVPVEIIFDQGFGDVFVTRVAGNIVTNEITASLEFGTAVLGSKVLMVLG	180
CAH4	HSACGAVAATMNGAAVPGVISSLYYSISPACKKAQAGDVDGAIAENVKVQMEQLKVSPVL	240
CAH5	HSACGAVAATMNGAAVPGVISSLYYSISPACKKAQAGDVDGAIAENVKVQMEQLKVSPVL	240
CAH4	QGLVKEGKLKIVGGVYDLATGKVTEIA- 267	
CAH5	QGLVKEGKLKIVGGVYDLATGKVTEIA* 267	

Supplemental Figure S1. Multiple sequence alignment of the CAH4 and CAH5 protein sequence. Arrow indicates the transit peptide cleavage site.

Supplemental Figure S2.

Supplemental Figure S2. RT-qPCR of other CCM genes. The figure shows comparative relative expression of CCM genes in wild type (D66) and RNAi knockdown strains for (A) *CAH1* (B) *LCI1* (C) *CAH3* (D) *LCIB* (E) *Nar1.2.* Error bars represent standard deviation from three biological replicates. For all the CCM genes, transcript levels were calculated using $2^{-\Delta\Delta C}_{T}$ relative to the reference gene *CBLP* and reported relative to the corresponding wild type D66 cells.

Supplemental Figure S3.

Supplemental Figure S3. Growth of strains complementing the *cah4/5* RNAi knockdown line at different CO_2 levels. Growth analysis showing D66, *cah4/5-2*, *cia3*, *cia5*, *com1*, *com2* and *com3*. Cells were diluted to 6.6 × 106 cells ml⁻¹, followed by 1:10 serial dilution 3 times at very low CO_2 , ambient CO_2 and high CO_2 at pH 7.2. Cells were grown for 6 days. The *cia3* and *cia5* mutants were included as a CCM-deficient control. Cells were initially grown in TAP media at low CO_2 in the light before spotting them onto plates.

Supplemental Figure S4.

Supplemental Figure S4. Additional TEM images of whole cells of the D66 strain. Images were from (A) high CO_2 and (B) ambient CO_2 levels. At ambient levels of CO_2 , the mitochondria are arranged along the plasma membrane of the Chlamydomonas cell.

Supplemental Figure S5.

Supplemental Figure S5. Additional confocal images of whole cells of the CSI_FC1G05 expressing pLM005-*CAH5*-Venus-3xFLAG. Images were from (A) high CO_2 and (B) ambient CO_2 levels. At ambient levels of CO_2 , the CAH5 proteins are localized along the periphery of the Chlamydomonas cell.

Supplemental Table S1. List of primers used in this study. For the two miRNA primers the underlined nucleotides are the ones used to target the *CAH4* and *CAH5* gene. Please move the table heading so that it is located above the table.

miRNA	Sequence
CAH4/5F	ctagtCCGAGTCTAGATAGCTGTCAAtctcgctgatcggcaccatgggggtggtg gtgatcagcgcta <u>TTGAGAGCTATCTAGACTCGG</u>
CAH4/5R	ctagcCCGAGTCTAGATAGCTCTCAAtagcgctgatcaccaccaccccatggt gccgatcagcgaga <u>TTGACAGCTATCTAGACTCGGA</u>

qPCR	Sequence
CAH4/5 F	TCAGCCCGGCCTGCAAGAAGG
CAH4/5 R	CGCACACGCCCACGATCT
CBLP F	ATGTGCTGTCCGTGGCTTTC
CBLP R	CAGACCTTGACCATCTTGTCCC
CAH3 F	ATTCGATTTCGCCTACGGCA
CAH3 R	CATGTTGCCAATGAACGCCA
LCIB F	TGATCAAGCACTTCCCCTCG
LCIB R	GAGCCGAAGATGGCCTCAAT
CAH1 F	ACGCGCACCTGGCCTCAAT
CAH1 R	GTTGGCGTACCTGGGGGTTGCGGAA
CCP1 F	ACCAAGGCCGACCTCAACTACCTG
CCP1 R	CAGTCCATCGTGGACGAGTACTGGGG
HLA3 F	AGCAGACCATCAAGAAGGTGTTCGACG
HLA3 R	GCAGCTTCGAGGGCGACTCG
NAR1.2 F	GTGTGCTGCGCCGTGTGGTC
NAR1.2 R	GCCCAGCATCATGCCCAGAGGAATCA