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Supplementary Figures 

 

 

Supplementary Figure 1. XRD (a), Raman (b), XPS (c) and FESEM images (d) of 

the pristine BC, BC-300, BC-500 and BC-800. 

 

To get insights on the carbonization mechanism of the bacterial cellulose, the 

microstructure and morphology of the product carbonized at different considerations 

(the pristine BC, 300 
o
C 1h, 300 

o
C 1h and 500 

o
C 2h, 300 

o
C 1h and 800 
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abbreviated as BC-P, BC-300, BC-500 and BC-800) were characterized by XRD, 

Raman, XPS, FESEM and Elemental analysis, as summarized in Supplementary 

Figure 1 and Supplementary Table 1-2. The bare BC precursor shows three diffraction 

peaks at 14.3
o
, 16.7

o
 and 22.5

o
. A broad peak of amorphous carbon appears at 21.5

o
 

after pyrolyzed at 300 
o
C and maintains almost unchanged with the temperature 

increasing. Similarly, the Raman spectra of BC-300, BC-500 and BC-800 are almost 

the same. FESEM images in Supplementary Figure 1d show that these composite 

fibers become thinner gradually with the increasing temperature. 

Unlike the minor discrepancy in XRD and Raman, the surface functional groups 

on BC-P, BC-300, BC-500 and BC-800 are totally different. The C 1s spectrum of the 

BC precursor can be fitted into three peaks of C-C/C-H, C-OH and C(O)-O at binding 

energies of 284.8, 286.7 and 288.1 eV. Except for these three peaks, both BC-300, 

BC-500 and BC-800 possess strong bonds ascribed to C-N groups at around 285.4 eV. 

It is obvious that the proportion of C-N bonds compared with C-C/C-H declines as the 

increase of temperatures. In the O 1s spectrum, three bands of O-C, O=C and O-C-O 

are detected at 530.7, 531.9 and 533.7 eV for BC-300. As the rise of temperature, the 

amount of O=C species increases while those of O-C and O-C-O decrease 

dramatically. Finally, the O=C groups occupy about 63.4wt.% in BC-800, becoming 

the main part of oxygen. It has been reported that O=C groups can boost the affinity 

between the carbon anode and sodium ions, a favorable feature for performance 

enhancement. A weak N 1s signal is observed for the pristine BC even before NH3 

treatment. The small amount of “intrinsic” nitrogen atoms come from the residual 
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nitrogen-containing compounds left by the culture media and secretions. At 300 
o
C, 

pyridinic and pyrrolic N are two main N functional groups. As temperature rises, part 

of the pyridinic N converts into pyrrolic, graphitic and oxidized N. Finally, the total 

content of pyrrdinic and pyrollic N occupies 88.1% in BC-800, which can strongly 

bond to polysulfides and increase electronic conductivity. In a whole, as concluded in 

Supplementary Table 2, the content of N/O is the highest at 300 
o
C and it decreases 

with the rise of temperature.  

To accurately examine the variation of elemental content, elemental analysis was 

employed. As listed in Supplementary Table 1, the pristine BC consists of 46.86wt.% 

C, 0.12wt.% N, 46.37wt.% O and 6.65wt.% H. Apparently, a small amount 

(0.12wt.%) of nitrogen is existed in BC-P, in line with the XPS result. When treated at 

300 
o
C, most of the O/H volatilizes and a large amount of N (31.45wt.%) is doped. As 

increase of temperature, the amount of N/O/H reduces and the content of C increases 

remarkably. Finally, the C, N, O and H in BC-800 are 89.77wt.%, 6.45wt.%, 

2.56wt.% and 1.22wt.%, respectively. The elemental content and variation trend 

versus temperatures obtained by elemental analysis are highly consistent with the 

above-mentioned XPS results. In a whole, a carbon matrix containing a certain 

amount of O=C, pyridinic N, pyrrolic N with little H is obtained at 800 
o
C.  

 



5 
 

 

Supplementary Figure 2. XRD patterns (a) and FESEM images (b-d) of the 

FeCl3·6H2O starting material, Fe-300, Fe-500 and Fe-800. 

 

To understand the growth mechanism of Fe3N, FeCl3·6H2O was sintered in NH3 

atmosphere at different conditions (300 
o
C 1h, 300 

o
C 1h and 500 

o
C 2h, 300 

o
C 1h 

and 800 
o
C 2h; abbreviated as Fe-300, Fe-500, Fe-800). XRD patterns for products 

obtained at different conditions were shown in Supplementary Figure 2a. Note that 

there is a few of FeCl3 in the starting material due to the loss of crystal water. After 

heated at 300 
o
C, most of the sample converts into Fe2O3 with a small proportion of 

unreacted FeCl3·6H2O. The product obtained at 300 
o
C presents as large particles. In 

the case of 500 
o
C, the Fe3N dominates while a small amount of Fe2O3, FeCl3, 

FeCl3·6H2O could still be discovered. The product obtained at 500 
o
C is composed of 
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several small particles. Finally, a porous structured Fe3N is obtained at 800 
o
C. In a 

whole, the FeCl3·6H2O turns into Fe2O3 at the low temperature range (around 300 
o
C) 

and then fully converts into Fe3N at 800 
o
C.  

 

 

Supplementary Figure 3. FESEM (a-f, h-i) and TEM (g) images of Fe3N-NMCN.  
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Supplementary Figure 4. Adsorption/desorption isotherms and pore-size distribution 

curves of BC-Ar (a-b), BC-NH3 (c-d) and Fe3N-NMCN (e-f). 
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the highest BET surface area of 535 m
2
 g

-1
 while those of BC-Ar and BC-NH3 are 411 

and 425m
2
 g

-1
.  

The total pore volume, micropores volume and mesopores volume for 

Fe3N-NMCN are 0.55, 0.17, 0.38 cm
3
 g

-1
, respectively. The ratio of micropores is 

31.0%. As for BC-NH3 and BC-Ar, both the total pore volume and the proportion of 

micropores are reduced. It is likely that the heat treatment in NH3 and loading of Fe3N 

can introduce some mesopores and then enhance surface areas, which is beneficial for 

the immobilization of sulfur thus enabling a high-loading cathode. 

 

 

Supplementary Figure 5. Raman spectrum of Fe3N-NMCN.  
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Supplementary Figure 6. Calculation of Fe3N content in the Fe3N-NMCN composite. 

a-b TGA tests of the bare Fe3N powder (a) and the Fe3N-NMCN composite (b). c-d 

XRD patterns of the final products after TGA tests from the bare Fe3N powder (c) and 

the Fe3N-NMCN composite (d). 
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mol
-1

), there should be 1.5 mol Fe2O3 after the TGA test since the mole number of Fe 

is constant. During this process, the weight increment is 132.0wt.% 

(=159.6×1.5/181.4). This result is highly consistent with the TGA curve of the bare 

Fe3N powder in Supplementary Figure 6a, where the weight increase between room 

temperature and 800 
o
C is about 134wt.% and the main weight variation is in the 

range of 350 and 800 
o
C.  

Therefore, it can be deduced that the weight loss (89wt.%) of Fe3N-NMCN 

before 353 
o
C (Supplementary Figure 6b) is exclusively originated from the 

consumption of carbon matrix in Fe3N-NMCN and is not related to Fe3N, while the 

weight increment (132wt.%=14.5wt.%/11wt.%) between 353 and 800 
o
C is only from 

the oxidation of Fe3N to Fe2O3. From above analyses, it has been determined that the 

weight percentage of Fe3N in Fe3N-NMCN is 11wt%.  

 

Elemental analysis (Supplementary Table 4) was conducted to obtain the total 

content of C, N, H and O in these composites. As demonstrated, the doped N in 

BC-NH3 and BC-Ar are 6.45wt.% and 0.34wt.%, respectively. Note that the small 

amount of “intrinsic” nitrogen atoms in BC-Ar comes from the residual 

nitrogen-containing compounds left by the culture media and secretions. In addition, 

Supplementary Table 4 shows that the weight ratio of C, N, H, O in the Fe3N-NMCN 

are 61.50wt.%, 10.21wt.%, 1.48wt.% and 12.38wt.%, respectively. According to the 

above TGA result, the loading of Fe3N is 11wt.% and thus the N from the Fe3N is 

calculated to 0.85wt.% (=11×14/(56×3+14)=0.85wt.%). Thus, the doped N in the 
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composite is 9.36wt.% (10.21-0.85=9.36wt.%). In a whole, the N doped in BC-Ar, 

BC-NH3 and Fe3N-NMCN are 0.34wt.%, 6.45wt.% and 9.36wt.%, respectively.  

 

 

Supplementary Figure 7. XPS depth profiles after 0, 60, 120, 180 s of sputtering. 
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Supplementary Figure 8. FESEM images (a-b) and voltage-capacity curve (c) of the 

compact S@Fe3N-NMCN electrode obtained through a calendaring-infiltration 

strategy.  

 

 

 

Supplementary Figure 9. XRD pattern of S@Fe3N-NMCN.  

 

   

Supplementary Figure 10. N2 adsorption/desorption curves (a) and corresponding 

pore-size distribution curve (b) of S@Fe3N-NMCN.  
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Supplementary Figure 11. FESEM and corresponding EDS mapping images of 

S@BC-Ar, S@BC-NH3 and S@Fe3N-NMCN, respectively. 
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Supplementary Figure 12. XRD (a), FESEM images (b-e) and EDS mapping 

images (f-i) of Super P-Na2S6, BC-Ar-Na2S6, BC-NH3-Na2S6 and Fe3N-NMCN-Na2S6, 

respectively. 

 

 

Supplementary Figure 13. N 1s XPS spectra of Fe3N-NMCN and 

Fe3N-NMCN-Na2S6.  

10 20 30 40 50 60 70 80

 

 

In
te

n
s
it

y
 (

a
rb

. 
u

n
it

s
)

2Theta (degrees)

Sealing Tape

Super P-Na
2
S

6

Fe
3
N

BC-Ar-Na
2
S

6

Fe
3
N-NMCN-Na

2
S

6

BC-NH
3
-Na

2
S

6

100 nm 100 nm 100 nm 100 nm

Super P-Na2S6 BC-Ar-Na2S6 BC-NH3-Na2S6 Fe3N-NMCN-Na2S6

Super P-Na2S6

BC-Ar-Na2S6

BC-NH3-Na2S6

Fe3N-NMCN-
Na2S6

C O Na

Na

C O Na S

C O

S

S N

NaC O S N Fe

a b c d e

f

g

h

i

408 406 404 402 400 398 396 394

Fe-N

Fe
3
N-NMCN

Fe
3
N-NMCN-Na

2
S

6

Fe-N

oxidized-N

oxidized-N

graphitic-N

graphitic-N

pyrrolic-N

pyrrolic-N

pyridinic-N

pyridinic-N

In
te

n
s
it

y
 (

a
rb

. 
u

n
it

s
)

Binding energy (eV)



15 
 

  

Supplementary Figure 14. TG curve of S@BC-NH3. 

 

 

 

Supplementary Figure 15. First three CV curves of S@BC-NH3 at a scan rate of 0.2 
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Supplementary Figure 16. Discharge/charge curves (a) and cycling performance (b) 

of S@Fe3N-NMCN with 1M NaClO4 in EC/DEC (1:1 by volume) electrolyte in Na-S 

batteries. 

 

 

 

Supplementary Figure 17. Na storage performance of the Fe3N-NMCN substrate.  
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Supplementary Figure 18. Galvanostatic discharge/charge curves of S@BC-NH3.  

 

  

Supplementary Figure 19. Electrochemical performance of S@BC-Ar.  
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Supplementary Figure 20. Galvanostatic discharge/charge curves of 

S@Fe3N-NMCN at different specific currents.  

 

 

Supplementary Figure 21. EIS spectra and corresponding equivalent circuit 

diagrams of S@BC-Ar, S@BC-NH3, S@Fe3N-NMCN before (a, c) and after cycle (b, 

d).  
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Supplementary Figure 22. (a) CV of S@Fe3N-NMCN at different scan rates of 0.2, 

0.5, 0.8, 1, 1.5 and 2 mV s
-1

, (b) Plots of peak currents and square roots of scan rates.
 

 

 

 

Supplementary Figure 23. Rate and cycling performance of S@BC-NH3. 
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Supplementary Figure 24. (a) CV of S@BC-NH3 at different scan rates of 0.2, 0.5, 

0.8, 1, 1.5 and 2 mV s
-1

, (b) Plots of peak currents and square roots of scan rates.
  

 

 

Supplementary Figure 25. Voltage-capacity curves of the S@Fe3N-NMCN electrode 

during the long term cycling test at 8375 mA g
-1

 after 10 cycles at 167.5 mA g
-1

.
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Supplementary Figure 26. EIS of batteries with S@Fe3N-NMCN after different 

cycles at a specific current of 83.75 mA g
-1

. 
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Supplementary Figure 27. CV curve for in situ Raman. 

 

 

Supplementary Figure 28. Optical images of the separators from batteries with 

S@BC-Ar, S@BC-NH3 and S@Fe3N-NMCN, respectively. 

 

 

 

Supplementary Figure 29. FESEM images of cycled Na metal paired with 

S@BC-Ar, S@BC-NH3 and S@Fe3N-NMCN, respectively.  
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Supplementary Figure 30. FESEM images of cycled S@BC-Ar, S@BC-NH3 and 

S@Fe3N-NMCN electrodes, respectively.  

 

 

Supplementary Figure 31. EDS mapping images of cycled S@BC-Ar.  

 

 

Supplementary Figure 32. EDS mapping images of cycled S@BC-NH3.  
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Supplementary Figure 33. EDS mapping images of cycled S@Fe3N-NMCN.  

 

 

Supplementary Figure 34. Effect of electrolyte/sulfur (E/S) ratio on discharge 

capacity of the S@Fe3N-NMCN electrode (a) and discharge profiles at different E/S 

ratios (b). 
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Supplementary Figure 35. In situ lab. XRD of the S@Fe3N-NMCN electrode at a 

specific current of 167.5 mA g
-1

 with a low E/S ratio of 7.27 uL mg
-1

 in an 

electrochemical window of 2.8 - 0.5 V (b) and corresponding discharge/charge profile 

(a). c-d S 2p XPS spectra at the original state (c), discharged to 1.1 V (d) and 

discharged to 0.5 V (e). 

There may be three reasons for the fact that Na2S is not presented in the in situ XRD 
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employed to conduct the in situ experiment. Therefore, diffraction peaks of Na2S can 

hardly be observed by the in situ XRD.  

 

 

Supplementary Figure 36. Electrochemical performance of Se@Fe3N-NMCN.  
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Supplementary Figure 37. Discharge/charge curves of S@Fe3N-NMCN with 1M 

LiTFSI in DOL/DME (1:1 by volume) containing 0.1M LiNO3 additive (a) and 1M 

LiPF6 in EC/DEC/EMC (1:1:1 by volume) electrolyte (b) in Li-S batteries.  

 

 

Supplementary Figure 38. Side view FESEM image of S@Fe3N-NMCN. 
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Supplementary Figure 39. Side view FESEM images of sodium foils. 
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Supplementary Table 1. Elemental analysis of BC-P, BC-300, BC-500 and BC-800. 

weight percentage (wt.%) BC-P BC-300 BC-500 BC-800 

C 46.86 56.83 71.85 89.77 

N 0.12 31.45 20.65 6.45 

O 46.37 9.07 4.76 2.56 

H 6.65 2.64 2.74 1.22 

 

 

Supplementary Table 2. XPS analysis of BC-P, BC-300, BC-500 and BC-800. 

Weight percentage (wt.%) BC-P BC-300 BC-500 BC-800 

C 56.07 48.26 63.37 84.12 

N 0.36 40.90 26.02 7.63 

O 43.57 10.84 10.61 8.25 

 

 

Supplementary Table 3. BET surface areas, total pore volume, micropores volume 

and mesopores volume of BC-Ar, BC-NH3 and Fe3N-NMCN. 

Sample Surface 

area  

(m
2
 g

-1
) 

Total pore 

volume 

(cm
3
 g

-1
) 

Micropores 

volume  

(cm
3
 g

-1
) 

Mesopores 

volume 

 (cm
3
 g

-1
) 

Ratio of 

micropores 

(%) 

BC-Ar 411 0.41 0.12 0.29 29.3 

BC-NH3 425 0.44 0.13 0.31 29.5 

Fe3N-NMCN 535 0.55 0.17 0.38 31.0 

 

 

Supplementary Table 4. Elemental analysis of BC-Ar, BC-NH3 and Fe3N-NMCN.  

Weight percentage 

(wt.%) 

BC-Ar BC-NH3 Fe3N-NMCN 

C 90.70 89.77 61.50 

H 1.70 1.22 1.48 

N 0.34 6.45 10.21 

O 7.26 2.56 12.38 
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Supplementary Table 5. Fitted EIS results of batteries with S@BC-Ar, S@BC-NH3 

and S@Fe3N-NMCN before cycle. 

Sample Rs (Ω) Rp (Ω) 

S@Fe3N-NMCN 3.97 67.46 

S@BC-NH3 0.81 93.88 

S@BC-Ar 1.39 119.70 

 

 

Supplementary Table 6. Fitted EIS results of batteries with S@BC-Ar, S@BC-NH3 

and S@Fe3N-NMCN after cycle. 

Sample Rs (Ω) Rf (Ω) Rct (Ω) 

S@Fe3N-NMCN 7.02 2.03 1.40 

S@BC-NH3 3.60 2.10 1.53 

S@BC-Ar 4.71 6.21 1.92 

 

 

Supplementary Table 7. EIS fitting results of batteries with S@Fe3N-NMCN after 

different cycles. 

Sample Rs (Ω) R1 (Ω) 
Pristine 3.95 71.25 

After 5 cycles 2.70 6.86 
After 15 cycles 3.06 0.89 
After 25 cycles 2.69 0.75 
After 35 cycles 3.02 0.71 
After 45 cycles 2.97 0.81 
After 55 cycles 2.42 1.00 
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Supplementary Table 8. Comparisons of cathode materials for RT Na-S batteries  

Samples  
S 

loading  
Electrolyte  

Cycle performance  

Rate capability  

Rate  
Cycle 

number  

Decay 

rate  

(per cycle)  

 

 

 

 

 

This work  

 

 

 

 

 

85wt.%  

1 M NPF
6
 in 

DOL/DIGLYME  
5C  2868  

Almost no 

decay  

  1238.6, 1073.7, 

936.6, 866.2, 

798.6, 706.9, 

671.9, 664.2, 

658.4 mAh g
-1

 at 

167.5, 335, 837.5, 

1675, 3350, 8375, 

10050, 13400, 

16750 mA g
-1 

 

Nickel hollow spheres 

concatenated by 

nitrogen-doped carbon 

fibers
[1]

 

S@Ni-NCFs  

36%  
1 M NaClO

4
 in 

TEGDME  
0.5C  270  0.17%  

738.7, 565.6, 

481.1, 401.9, 

311.1, 249.8 and 

181.7 mAh g
-1

  

at 335, 503, 838, 

1675, 3350, 5025 

and 8375 mA g
-1

  

 sulfurized 

polyacrylonitrile 

nanofiber
[2]

  

SPAN  

41%  
1 M NaPF

6
 in 

EC/DEC  
0.1C  200  0.11%  

310, 210, 110, 72 

mAh g
-1

  at 16.8, 

168, 838, 1675 

mA g
-1

  

Microporous carbon 

template derived from 

sucrose
[3]

 

S@C  

35%  
1 M NaPF

6
 + 0.25M 

NaNO
3
 in TEGDME  

1C  1500  0.016%  

700, 550, 470, 

370 mAh g
-1

 at 

168, 419, 838, 

1675 mA g
-1

  

Carbon fiber cloth
[4]

 

CFC/S  
24.4%  

1.5 M NaClO
4
+ 0.2 

M NaNO
3
 in 

TEGDME  

0.1C  300  0.23%  

491, 265, 141, 80, 

48 mAh g 
−1

 at 

83.8, 168, 335, 

838,1675 mA g
-1

  

Nitrogen doped carbon 

from MOF
[5]

 

cZIF-8/S  

50%  
1 M NaClO

4
 in 

TEGDME  
0.2C  250  0.17%  

1000, 850, 650, 

480, 220 mAh g
-1

 

at 168, 335, 838, 

1675, 3350 mA 

g
-1

  

Hollow carbon sphere 

coated with MoS
2

[6]

 

S@HCS/MoS
2 

 

44%  
1 M NaClO

4
 in 

TEGDME  
1C  1000  0.06%  

1309, 856, 663, 

559, 476 mAh g
-1

 

at 168, 335, 838, 

1675, 3350 mA 

g
-1

  

Free-standing carbon 

nanofibers embedded 

with cobalt 

nanoparticles
[7]

 

Co@NPCNFs/S  

38%  
1 M 

NaClO
4
+EC/DEC  

0.1C  800 

0.07% at 

100
th

  

0.038% at 

800
th

  

871, 683, 275, 

154 mAh g
-1

 at 

168, 838, 1675, 

5025 mA g
-1

  

VO
2
 nanoflowers 

wrapped by RGO
[8]

 

RGO/VO
2

 

 

40%  
1 M NaClO

4
 in 

TEGDME  
2C 1000  0.07%  

558.1, 308.1, 234, 

194 mAh g
-1

 at 

335, 838, 1675, 

3350 mA g
-1
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High-surface-area 

mesoporous carbon 

with nanocopper
[9]

 

HSMC-Cu-S  

50%  
1 M NaClO

4
 in 

EC/DMC  
0.03C  110  0.127%  

700, 560, 440, 

320, 100 mAh g
-1

 

at 50.3, 101, 

1005, 2010, 5025 

mA g
-1

  

 Double-shell carbon 

microspheres 

assembled by hollow 

carbon nanobeads
[10]

 

PCMs-S  

34%  

1M NaClO
4
 in

 

PC/EC + 5wt.% 

FEC  

100 mA g
-1

  350  0.17%  

402, 205, 74, 57 

mAh g
-1

 at 100, 

200, 500, 2000 

mA g
-1

 

Thioether bond 

functionalized 

carbon
[11]

 

SC  

21.5%  
1 M NaClO

4
+PC+ 

5wt.% FEC  
100 mA g

-1

  200  0.17%  

500, 430, 405, 

390, 345, 300 mA 

h g
-1

 at 100, 200, 

400, 800, 1600, 

3200 mA g
-1

  

Mesoporous carbon 

hollow nanospheres
[12]

 

S@iMCHS  

46%  

1 M NaClO
4
+ 

PC/EC + 5 wt.% 

FEC  

100 mA g
-1

  200  0.056%  

391, 386, 352, 

305, 174, 127 

mAh g
-1

 at 100, 

200, 500, 1000, 

2000, 5000 mA 

g
-1

  

Hollow carbon 

nanospheres with Fe 

on the surface
[13]

 

S@Fe-HC  

40%  

1 M NaClO
4
+ 

PC/EC + 5 wt.% 

FEC  

100 mA g
-1

  1000  0.06%  

820, 498, 383, 

313, 269 and 220 

mAh g
-1

 at 100, 

200, 500, 1000, 

2000, 5000 mA 

g
-1

  

Nitrogen-doped 

porous carbon 

nanotubes with nickel 

sulfide nanocrystals
[14]

 

 NiS
2
@NPCTs/S 

56%  

1 M NaClO
4
  in 

EC/PC+ 3 wt.% 

FEC  

1000 mA g
−1

  750  0.078%  

760, 691, 557, 

457, 346, 203 

mAh g
-1

  at 100, 

200, 500, 1000, 

2000, 5000 mA 

g
−1
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