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Supplementary Methods

1. Modeling DNA methylation
For reasons to become clear in the next section, CpelNano follows Nanopolish1 and clusters
the CpG sites along the reference genome into groups, so that the last C nucleotide of a group
and the first C nucleotide of the next group are separated by at least 10 bases. It then forms
the base sequence between the first C nucleotide and the last G nucleotide in each group and
extends each sequence by 5 bases upstream and 4 bases downstream (Fig. 1a). This process
defines DNA segments Gl, l = 1, 2, . . ., along the genome, which we refer to as CG-groups,
that include at least one CpG site. We found that 84.1% (18,770,638) of the CG-groups in
the human reference genome (autosomal chromosomes, built GRCh38.p12) contain 11 bases,
and therefore include 1 CpG site, whereas the remaining 15.9% (3,549,239) of the CG-groups
contain from 12 to 1,002 bases and include 2 to 212 CpG sites.

CpelNano also partitions each chromosome into non-overlapping genomic regions Rk,
k = 1, 2, . . ., which we refer to as estimation regions, using the following recursive scheme
(Fig. 1b). For k = 0, 1, . . ., a 3-kb window is placed along the genome starting at the first
nucleotide after the most downstream nucleotide in Rk (when k = 0, the starting nucleotide
is taken to be the first nucleotide in the chromosome). This window defines the estimation re-
gion Rk+1, provided that its most downstream nucleotide does not intersect a CG-group. Note,
however, that if this is not true and if the window contains more than 50% of an intersecting
CG-group, its size is increased to form the smallest region Rk+1 that fully contains the inter-
secting CG-group. Otherwise, the window is decreased to form the largest region Rk+1 whose
downstream nucleotide does not intersect a CG-group. We found 66 estimation regions in the
human genome (of size between 2,994 and 3,000 bases) containing 1 CG-group, which include
1 or 2 CpG sites each, and 919,255 estimation regions (of size between 2,905 and 3,071 bases)
containing at least 2 CG-groups, which include from 2 to 487 CpG sites each.

Within an estimation region R that contains N CpG sites n = 1, 2, . . . , N , CpelNano
characterizes the true state of DNA methylation using the N × 1 random state vector XXX =

[X1 X2 · · · XN ]
T , where Xn = 0, if the n-th CpG site is unmethylated, and Xn = 1, if the

CpG site is methylated. As a consequence of the well-known maximum-entropy principle2, the
probability distribution of methylation that is consistent with methylation means and pairwise
correlations at each CpG site is given by

p(xxx) := Pr[XXX = xxx] =
1

ζ
exp {−U(xxx)} , for every xxx ∈ X , (1)
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Figure 1. CG-groups and estimation regions. (a) Example of clustering CpG sites along the genome into groups
of CG dinucleotides that are separated by at least 10 bases. The CG-groups G1 and G2 are formed from two
CG clusters by inserting the bases between the first C nucleotide and the last G nucleotide in each cluster and
by extending each sequence by 5 bases upstream and 4 bases downstream. (b) Example of partitioning a given
chromosome into estimation regions. Estimation region R1 is less than 3,000 bases long, whereas R2 is more
than 3,000 bases long. This guarantees that each estimation region fully contains CG-groups. Note that the CPEL
model given by Eqs. (7)-(9) is associated with different parameters α, β, and γ within each estimation region,
whose values must be estimated from nanopore data corresponding to the specific region.
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where X is the set of all 2N possible methylation patterns associated with R,

U(xxx) = −
N∑

n=1

an(2xn − 1)−
N−1∑
n=1

bn(2xn − 1)(2xn+1 − 1) (2)

is the potential energy function of XXX , an and bn are two parameters associated with the n-th
CpG site, and

ζ =
∑
xxx∈X

exp{−U(xxx)} (3)

is a normalizing constant known as the partition function. Note that parameter an affects the
propensity of the n-th CpG site to be methylated without the influence of nearby CpG sites,
whereas parameter bn accounts for the possibility that the methylation states of two contiguous
CpG sites n and n+ 1 would be correlated.

The previous probability distribution generalizes the classical one-dimensional Ising model
of statistical physics3 by including “external field” parameters an, n = 1, 2, . . . , N , and “inter-
action” parameters bn, n = 1, 2, . . . , N − 1, which are not necessarily constant. Note however
that this distribution does not account for evidence suggesting that the likelihood of a given
CpG site to be methylated depends strongly on the fraction of CpG sites in a local neighbor-
hood, as well as on the methylation status of nearby CpG sites whose influence diminishes as
their nucleotide distance from the given CpG site increases4, 5. To address this issue, CpelNano
follows a previous approach by Jenkinson et al.6, 7 and sets

an = α + βρn and cn =
γ

dn
, (4)

where α, β, and γ are parameters characteristic to the estimation region R, ρn is the CpG
density, defined as the fraction of dinucleotides that are CpG sites in a symmetric neighborhood
of 1,000 nucleotides centered at the n-th CpG site, given by

ρn =
1

1,000
× [# of CpG sites within ±500 nucleotides downstream and upstream of n] , (5)

and dn is the distance of the n-th CpG site from its downstream CpG site n+ 1, given by

dn = [# of base-pair steps between the cytosines of CpG sites n and n+ 1] . (6)

Notably, parameter α accounts for intrinsic factors that affect the propensity of CpG sites to be
methylated, whereas parameters β and γ modulate the influence of CpG density and distance
on methylation, respectively, which we assume here to be applied uniformly on all CpG sites in
each estimation region R.
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As a consequence of Eqs. (1)-(6), CpelNano characterizes the true methylation vector XXX
over an estimation region R that contains N CpG sites n = 1, 2, . . . , N using the probability
distribution

p(xxx;θθθ) =
1

ζ(θθθ)
exp {−U(xxx;θθθ)} , for every xxx ∈ X , (7)

with potential energy function

U(xxx;θθθ) = −α
N∑

n=1

(2xn − 1)− β

N∑
n=1

ρn(2xn − 1)− γ

N−1∑
n=1

(2xn − 1)(2xn+1 − 1)/dn (8)

and partition function
ζ(θθθ) =

∑
xxx∈X

exp{−U(xxx;θθθ)}, (9)

where θθθ = [α β γ]T is the vector of the underlying parameters associated with region R. We
refer to this probability distribution as the correlated potential energy landscape (CPEL) model.
This is an exponential family of distributions with three sufficient statistics8,

S1(XXX) :=
N∑

n=1

(2Xn − 1), (10)

S2(XXX) :=
N∑

n=1

ρn(2Xn − 1), (11)

and

S3(XXX) :=
N−1∑
n=1

(2Xn − 1)(2Xn+1 − 1)/dn, (12)

each summarizing all information available in a given data sample about the values of the model
parameters α, β, and γ, respectively, in terms of the methylation states 2Xn − 1 at individual
CpG sites and the methylation co-occurrences (2Xn − 1)(2Xn+1 − 1) at pairs of consecutive
CpG sites.

Notably, the CPEL model summarizes the common understanding that methylation of a
CpG site depends on two distinct factors: the local CpG architecture, specified by CpG densities
and distances, as well as the biochemical environment provided by the methylation machinery,
quantified by parameters α, β, and γ. Moreover, Eqs. (7)-(9) lead to a form of the classical
Ising model of statistical physics that has been successful in predicting the probability of DNA
methylation over regions of the genome from CpG density and distance alone6. However, addi-
tional sequence-specific factors may influence DNA methylation9, 10, which could be included
in future versions of the model if necessary.
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2. Maximum-likelihood parameter estimation
Use of the CPEL model for methylation analysis of nanopore sequencing data requires esti-
mation of its parameters θθθ. Performing this task requires availability of a set yyy of nanopore
data that contain sufficient information about the true methylation state xxx over an estimation
region R. Given such observations, a value θ̂θθ can then be found that maximizes the likelihood
that the observed nanopore data yyy have been generated by the CPEL model with parameters θ̂θθ
by solving the following optimization problem:

θ̂θθ = argmax
θθθ

f(yyy;θθθ) = argmax
θθθ

∑
xxx∈X

q(yyy | xxx)p(xxx;θθθ). (13)

In this equation, q(yyy |xxx) is the conditional probability distribution of observed nanopore data YYY ,
given that the true methylation state in R isxxx (also known as emission probabilities), and f(yyy;θθθ)

is the marginal probability distribution of YYY when the parameter values of the generating CPEL
model are given by θθθ. Notably, both p and q depend on the genetic context, but for notational
convenience, we do not explicitly denote this dependence here.

CpelNano uses observations YYY obtained through Nanopolish1. Although Nanopolish1

has been developed for detecting 5mC methylation, it does so by finding abrupt changes in
the nanopore current signals during sequencing, which define “events” of relatively stationary
behavior indicating discrete motion of the DNA sequence through the nanopore1, 11. Moreover,
and for a given genomic region R that fully contains a set {Gl, l = 1, 2, . . . , L} of CG-groups,
it evaluates the conditional probabilities (emission probabilities) ql(yyyl |xxxl) of the vector YYYl of all
signal values mapped to a CG-group Gl(xxxl) whose CpG sites are methylated or unmethylated
in accordance to the corresponding methylation state xxxl. By setting YYY = [YYY1 YYY2 · · · YYYL]

T and
by making the reasonable assumption that, given the methylation state xxx in R, the signal values
associated with individual CG-groups Gl, l = 1, 2, . . . , L, are conditionally independent, we
obtain

q(yyy | xxx) =
L∏
l=1

ql(yyyl | xxxl), (14)

which is employed by CpelNano to compute the emission probabilities q(yyy|xxx) using Nanopolish1.

Unfortunately, the current version of Nanopolish1 has been trained to compute the emis-
sion probabilities ql(yyyl | xxxl) only when the values of xxxl are all ones (fully methylated state) or
all zeros (fully unmethylated sate). To take this issue into account, note that

f(yyy;θθθ) =
∑
xxx∈X

q(yyy | xxx)p(xxx;θθθ) =
∑
xxx∈X̄

q(yyy | xxx)p(xxx;θθθ) +
∑

xxx∈X\X̄

q(yyy | xxx)p(xxx;θθθ), (15)
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where X̄ is the set of all methylation states in X for which the CpG sites within the CG-
groups in R are all methylated or unmethylated, and X \ X̄ are the remaining states. Then, by
considering evidence that DNA methylation at CpG sites that are closely clustered to each other
are most often strongly correlated4, 5, we can assume that

p(xxx;θθθ) ≃ 0, for every xxx ∈ X \ X̄ , (16)

in which case we can approximately set

f(yyy;θθθ) =
∑
xxx∈X̄

q(yyy | xxx)p̄(xxx;θθθ), (17)

where

p̄(xxx;θθθ) =

{
p(xxx;θθθ), for xxx ∈ X̄
0, for xxx ∈ X \ X̄ .

(18)

This implies that

p̄(xxx;θθθ) =
1

ζ̄(θθθ)
exp

{
−Ū(xxx;θθθ)

}
, for every xxx ∈ X̄ , (19)

where

Ū(xxx;θθθ) =

{
U(xxx;θθθ), for xxx ∈ X̄
∞, for xxx ∈ X \ X̄ ,

(20)

and
ζ̄(θθθ) =

∑
xxx∈X̄

exp{−Ū(xxx;θθθ)}. (21)

Notably, p̄(xxx;θθθ) → p(xxx;θθθ) as X̄ → X , which shows that the previous approximation can be
eliminated by a better training of Nanopolish1.

With each CG-group Gl, we can now associate the random variable

Zl =

{
1, if Xn = 1 at every CpG site n ∈ Gl

0, if Xn = 0 at every CpG site n ∈ Gl,
(22)

which we refer to as the methylation index of the CG-group, since its value indicates whether the
CG-group is fully methylated or fully unmethylated. It can be shown from Eqs. (8), (19), (20),
& (22) that, ifZZZ = [Z1 Z2 · · · ZL]

T is the random vector of methylation indices associated with
the CG-groups in an estimation region R, then its probability distribution π(zzz;θθθ) := Pr[ZZZ =

zzz;θθθ] is given by

π(zzz;θθθ) =
1

ζ(θθθ)
exp {−V (zzz;θθθ)} , for every zzz ∈ Z, (23)
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with potential energy function

V (zzz;θθθ) = −α

L∑
l=1

Nl(2zl − 1)− β

L∑
l=1

ρ̄lNl(2zl − 1)− γ

L−1∑
l=1

(2zl − 1)(2zl+1 − 1)/d̄l (24)

and partition function
ζ(θθθ) =

∑
zzz∈Z

exp{−V (zzz;θθθ)}, (25)

where Z is the set of all possible 2L methylation index values in R. In these equations, which
we refer to as the reduced CPEL model,

ρ̄l =
1

Nl

∑
n∈Nl

ρn (26)

is the average CpG density within the l-th CG-group Gl containing Nl CpG sites in Nl, and d̄l

is the distance between the last CpG site in the CG-group Gl and the first CpG site in the CG-
group Gl+1.

Although the reduced CPEL model always depends on parameters α and β, it also depends
on the interaction parameter γ, provided that R contains at least two CG-groups. In this case, the
original CPEL model can be estimated from available data obtained by Nanopolish1 by fitting
the reduced CPEL model to that data. For this reason, CpelNano does not model regions R that
contain only one CG-group, which are nevertheless very few (we found only 66 such regions
in the human genome) and insignificant (each contains only 1 or 2 CpG sites). In addition,
and for reliable parameter estimation, it only models regions that contain at least 10 CpG sites,
with average coverage of at least 5× per CG-group, and for which methylation information is
available for at least 2/3 of their CG-groups.

Note now that, every methylation pattern xxx ∈ X̄ can be generated by a unique vector of
methylation indices zzz ∈ Z . Consequently, ifxxx = sss(zzz) is the methylation pattern in X̄ associated
with zzz, then Eq. (17) implies that

f(yyy;θθθ) =
∑
xxx∈X̄

q(yyy | xxx)p̄(xxx;θθθ)

=
∑
zzz∈Z

q(yyy | sss(zzz))p̄(sss(zzz);θθθ)

=
∑
zzz∈Z

q(yyy | sss(zzz))π(zzz;θθθ), (27)
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by virtue of the fact that π(zzz;θθθ) = p̄(sss(zzz);θθθ). This result, together with Eqs. (13) & (14), leads
to the following maximum-likelihood parameter estimation problem:

θ̂θθ = argmax
θθθ

f(yyy;θθθ)

= argmax
θθθ

∑
zzz∈Z

π(zzz;θθθ)q(yyy | sss(zzz))

= argmax
θθθ

∑
zzz∈Z

π(zzz;θθθ)
L∏
l=1

ql(yyyl | sssl(zl)), (28)

where sssl(zl) is either the fully methylated pattern within Gl (when zl = 1) or the fully unmethy-
lated pattern (when zl = 0). By solving this problem, CpelNano facilitates estimation of the
parameters of the original CPEL model via maximum likelihood. We summarize the main steps
of this approach with an example in Fig. 2.

REMARKS:

1. We show in Section 4 below that, when the true methylation state XXX over a genomic re-
gion R is modeled via a CPEL model, it forms a (non-homogeneous) Markov chain. As
a consequence, CpelNano addresses the statistical challenge of nanopore noise by em-
ploying a data-generative hidden Markov model (HMM) approach. This approach con-
siders the fact that the true Markovian methylation stateXXX cannot be directly observed by
nanopore sequencing (i.e., it is a “hidden” state) but only indirectly through an observable
state YYY of average nanopore current values, which is conditionally specified by using the
emission probabilities ql(yyyl | sssl(zl)) computed from Nanopolish1. The first objective of
CpelNano is to learn the CPEL model of XXX by observing YYY .

2. Although a number of artificial neural network approaches have been recently proposed
in the literature for detecting 5mC methylation using nanopore sequencing, including
DeepMod12 and DeepSignal13, only Nanopolish1 can be used to compute the emission
probabilities required for inferring a presumed stochastic DNA methylation model from
nanopore data. This is due to the fact that neural network approaches only address the
inverse problem of learning the probabilities of methylation at individual CpG sites from
nanopore data. Although Nanopolish1 has been designed to perform the same task, it does
so by also addressing the forward problem of computing the probabilities of observed
nanopore data generated by a given input methylation sequence.
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Figure 2. Maximum-likelihood estimation of the CPEL model. Within an estimation region R that fully contains
five CG-groups G1, G2, G3, G4, and G5, CpelNano estimates the parameters α, β, and γ of the CPEL model
p(xxx;θθθ) by maximizing the likelihood that observed average current events yyy = {yyy1, yyy2, yyy3, yyy4, yyy5} (blue) have
been generated by the reduced CPEL model π(zzz;θθθ), where zzz = {z1, z2, z3, z4, z5} are the methylation indices
associated with the CG-groups. This requires knowledge of the emission probabilities q(yyy | xxx) = q(yyy | sss(zzz)) of
the observed nanopore current signals given the methylation state xxx = sss(zzz) within R in which all CpG sites inside
each CG-group are either methylated (orange) or unmethylated (green), which are computed by Nanopolish1.
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3. Gigante et al.14 have proposed a method for estimating the mean methylation level at CpG
sites within a CG-group Gl using Nanopolish1. They did so by considering the fact that

Pr[XXXl = sssl(1) | YYYl = yyy
(m)
l ]

Pr[XXXl = sssl(0) | YYYl = yyy
(m)
l ]

=
Pr[YYYl = yyy

(m)
l |XXXl = sssl(1)] Pr[XXXl = sssl(1)]

Pr[YYYl = yyy
(m)
l |XXXl = sssl(0)] Pr[XXXl = sssl(0)]

(29)

in our notation, where yyy
(m)
l , m = 1, 2, . . . ,M , are multiple independent nanopore reads

associated with Gl. By setting

Pr[XXXl = sssl(0) | YYYl = yyyl] ≃ 1− Pr[XXXl = sssl(1) | YYYl = yyyl], (30)

which can be justified by assuming that, given a nanopore read yyyl, the CpG sites within the
CG-group Gl can approximately be only fully methylated or fully unmethylated [which is
related to our Eq. (16)], it can be shown that

Pr[XXXl = sssl(0)] ≃ 1− Pr[XXXl = sssl(1)]. (31)

Then, Eqs. (29)-(31) lead to

µ
(m)
l := Pr[XXXl = sssl(1) | YYYl = yyy

(m)
l ] ≃

[
1 +

1− π

π

q(yyy
(m)
l | sssl(0))

q(yyy
(m)
l | sssl(1))

]−1

, (32)

where π := Pr[XXXl = sssl(1)] is the probability of the CG group Gl to be fully methylated,
and q(yyy

(m)
l | sssl(z)) = Pr[YYYl = yyy

(m)
l | XXXl = sssl(z)], for z = 0, 1, which is computed by

Nanopolish1. Notably,

Pr[XXXl = sssl(1) | YYYl = yyy
(m)
l ] ≃ Pr[Xn = 1 | YYYl = yyy

(m)
l ], for every n ∈ Gl, (33)

due to Eq. (30). Therefore, and as a consequence of Eqs. (32) & (33), µ(m)
l approximately

provides the methylation mean at any CpG site n ∈ Gl. Finally, and by making the
(reasonable) assumption that methylation reads are randomly generated by the sequencer,
the methylation mean at any CpG site in Gl is approximately computed by

µn =
1

M

M∑
m=1

µ
(m)
l , for every n ∈ Gl, (34)

where µ
(m)
l is calculated from Eq. (32) by setting π = 1/2 for each m. We should note,

however, that this approach has several drawbacks: (i) a value must be assumed for π
which must be the same for all CG-groups in the genome; (ii) computing different means
at each CpG site inside a CG-group is not possible, unless Nanopolish1 is better trained to
facilitate such a feature (this is not an issue with CpelNano); (iii) computation of higher
order methylation statistics, such as pairwise correlations, entropies, and probability dis-
tributions, is not possible.
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3. Parameter estimation using the EM algorithm
The previous parameter estimation approach must be modified in order to consider the avail-
ability of multiple independent nanopore reads yyy(m)

l , m = 1, 2, . . . ,M , associated with each
CG-group Gl. Therefore, CpelNano is designed to solve the following maximum-likelihood
problem:

θ̂θθ = argmax
θθθ

M∏
m=1

∑
zzz∈Z

π(zzz;θθθ)q(yyy(m) | zzz), (35)

with

q(yyy(m) | zzz) =
L∏
l=1

[
ql(yyy

(m)
l | sssl(zl))

]w(m)
l , (36)

where w
(m)
l = 1, if the m-th observation is present in Gl, and w

(m)
l = 0, if this observation is

missing. Notably, and due to the required summation over all possible methylation indices zzz
within an estimation region R, evaluating the likelihood function in Eq. (35) is not computation-
ally feasible when R contains many CG-groups and, therefore, directly performing maximum-
likelihood parameter estimation using this equation is not appropriate. However, CpelNano
addresses this issue by employing the expectation-maximization (EM) algorithm which results
in iteratively applying the following two steps:

Expectation step: Given nanopore data yyy = {yyy(1), yyy(2), . . . , yyy(M)} and a currently esti-
mated value θ̂θθi−1 of the parameters θθθ, the conditional expected value of the logarithm of
the likelihood function p(yyy,ZZZ) with respect to the methylation index vector ZZZ is com-
puted by

J(θθθ; θ̂θθi−1) =
M∑

m=1

∑
zzz∈Z

π(zzz | yyy(m); θ̂θθi−1)
[
lnπ(zzz;θθθ) +

L∑
l=1

w
(m)
l ln ql(yyy

(m)
l | sssl(zl))

]
, (37)

where π(zzz | yyy(m); θ̂θθi−1) is the posterior probability distribution of the methylation index
vector ZZZ given the nanopore data yyy(m).

Maximization step: Given J(θθθ; θ̂θθi−1), a new parameter estimate θ̂θθi is found by

θ̂θθi = argmax
θθθ

J(θθθ; θ̂θθi−1). (38)

11



CpelNano implements the expectation step as follows. From Eqs. (23) & (24) note that

ln π(zzz;θθθ) = − ln ζ(θθθ) + αϕ1(zzz) + βϕ2(zzz) + γϕ3(zzz), (39)

where θθθ = [α β γ]T ,

ϕ1(zzz) :=
L∑
l=1

Nl(2zl − 1), (40)

ϕ2(zzz) :=
L∑
l=1

ρ̄lNl(2zl − 1), (41)

and

ϕ3(zzz) :=
L−1∑
l=1

(2zl − 1)(2zl+1 − 1)/d̄l. (42)

Consequently, Eq. (37) becomes

J(θθθ; θ̂θθi−1) = −M ln ζ(θθθ) + αω1(θ̂θθi−1) + βω2(θ̂θθi−1) + γω3(θ̂θθi−1) + ω4(θ̂θθi−1), (43)

where

ωj(θ̂θθi−1) :=
M∑

m=1

∑
zzz∈Z

ϕj(zzz)π(zzz | yyy(m); θ̂θθi−1), for j = 1, 2, 3, (44)

and

ω4(θ̂θθi−1) :=
M∑

m=1

∑
zzz∈Z

ϕ
(m)
4 (zzz)π(zzz | yyy(m); θ̂θθi−1), (45)

with

ϕ
(m)
4 (zzz) :=

L∑
l=1

w
(m)
l ln ql(yyy

(m)
l | sssl(zl)). (46)

On the other hand, to implement the maximization step in Eq. (38), CpelNano sets the gradient
of J(θθθ; θ̂θθi−1) with respect to θθθ= [α β γ]T equal to zero at θθθ = θ̂θθi. In this case, and from Eqs. (24)
& (25), as well as Eqs. (40)-(43), the following system of nonlinear equations are obtained∑

zzz∈Z

ϕj(zzz)π(zzz; θ̂θθi) =
1

M
ωj(θ̂θθi−1), for j = 1, 2, 3, (47)

which are solved for θ̂θθi by using NLsolve, v5.5.0 (https://github.com/JuliaNLSolvers/
NLsolve.jl), a Julia implementation of the trust region approach15. Note that these formulas
require evaluation of the posterior probability distribution π(zzz | yyy;θθθ) of the methylation index
vector ZZZ, as well as evaluation of expectations and correlations of ZZZ with respect to its prior
and posterior probability distributions. We discuss these computations next.
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4. Computational implementation
We now provide formulas associated with the general Ising model p(xxx) given by Eqs. (1)-(3),
which are used by CpelNano for efficient computations. These also apply to the CPEL model
given by Eqs. (7)-(9), as well as to the reduced CPEL model given by Eqs. (23)-(25), since these
models are special cases of the general Ising model. For example, the reduced CPEL model can
be obtained from the general Ising model by replacing xxx, n, and N in Eqs. (1)-(3) with zzz, l, and
L, respectively, and by setting al = Nl(α + βρ̄l) and bl = γ/d̄l.

Partition function. By employing the transfer matrix method3, it can be shown that

ζ = uuuT
1WWW1WWW2 · · ·WWWN−1uuuN , (48)

where

uuu1 =

[
e−a1/2

e+a1/2

]
, uuuN =

[
e−aN/2

e+aN/2

]
, (49)

and

WWWn =

[
e−(an+an+1)/2+bn e−(an−an+1)/2−bn

e+(an−an+1)/2−bn e+(an+an+1)/2+bn

]
, for n = 1, 2, . . . , N − 1. (50)

This formula is used to compute partition functions by successive vector/matrix multiplications.

Expectations. CpelNano computes the expectations

en := E[2Xn − 1], for n = 1, 2, . . . , N, (51)

via successive vector/matrix multiplications using the following formula:

en =
1

ζ
uuuT
1WWW1 · · ·WWWn−1WWW

(e)
n WWWn+1 · · ·WWWN−1uuuN , (52)

where
WWW (e)

n =WWWn ◦EEE (53)

is the Hadamard product between matrices WWWn and

EEE =

[
−1 −1

1 1

]
. (54)

From the en’s, the expectations µn := E[Xn] are then computed by µn = (en + 1)/2.
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Correlations. The pairwise correlations

cn := E[(2Xn − 1)(2Xn+1 − 1)], for n = 1, 2, . . . , N − 1, (55)

are computed via successive vector/matrix multiplications using the following formula:

cn =
1

ζ
uuuT
1WWW1 · · ·WWWn−1WWW

(c)
n WWWn+1 · · ·WWWN−1uuuN , (56)

where
WWW (c)

n =WWWn ◦CCC (57)

is the Hadamard product between matrices WWWn and

CCC =

[
1 −1

−1 1

]
. (58)

From the cn’s, the pairwise correlations rn := E[XnXn+1] are then computed by rn = [cn +

2(µn + µn+1)− 1]/4.

Sampling. The general Ising model is equivalent to a first-order Markov chain with inhomoge-
neous transition probabilities. Indeed, it can be shown that

Pr[Xn = xn | Xn−1 = xn−1, . . . , X1 = x1] =

{
p1(x1), for n = 1

pn(xn | xn−1), for n = 2, 3, . . . , N ,
(59)

where
p1(x1) =

w1(x1) exp{a1x1}∑
uw1(u) exp{a1u}

, (60)

and
pn(xn | xn−1) =

wn(xn) exp {an(2xn − 1) + bn−1(2xn−1 − 1)(2xn − 1)}∑
uwn(u) exp {an(2u− 1) + bn−1(2xn−1 − 1)(2u− 1)}

, (61)

for n = 2, 3, . . . , N , with

wn(xn) =
∑
xn+1

· · ·
∑
xN

exp

{
N∑

n′=n+1

an′(2xn′ − 1) +
N−1∑
n′=n

bn′(2xn′ − 1)(2xn′+1 − 1)

}
, (62)

for n = 1, 2, . . . , N − 1, and
wN(xN) = 1. (63)

Notably, function wn(xn) is efficiently computed by CpelNano using the following matrix/vector
formula:

wn(xn) = gggTn (2xn − 1)GGGn(2xn − 1)WWWn+2WWWn+3 · · ·WWWN−1uuuN , (64)
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where

gggn(x) =

[
e−(an+1+bnx)/2

e+(an+1+bnx)/2

]
, (65)

and

GGGn(x) =

[
e−(an+1+bnx)/2−an+2/2+bn+1 e−(an+1+bnx)/2+an+2/2−bn+1

e+(an+1+bnx)/2−an+2/2−bn+1 e+(an+1+bnx)/2+an+2/2+bn+1

]
. (66)

Consequently,

p(xxx) = p1(x1)
N∏

n=2

pn(xn | xn−1), (67)

which allows CpelNano to recursively draw a sample xxx of the methylation state XXX from the
Ising model p(xxx), by first drawing a sample x1 from the initial probability distribution p1(x1)

and by sequentially drawing samples xn, n = 2, 3, . . . , N , from the transition probabilities
pn(xn | xn−1).

Marginalization. From the general Ising model p(xxx) of the methylation stateXXX = [X1, X2, . . . ,

XN ]
T over an estimation region R, the probability distribution g(xxx′) of the methylation state

XXX ′ = [Xk, Xk+1, . . . , Xk+K−1]
T over a subregion S of R that contains K contiguous CpG sites

k, k+1, . . . , k+K−1 can be obtained using marginalization; i.e., by setting g(xxx′) =
∑

xxx′′ p(xxx),
where xxx′′ = [x1, . . . , xk−1, xk+K , . . . , xN ]

T . From Eqs. (1)-(3), it can be shown that

g(xxx′) =
ζ1(xk)ζ2(xk+K−1)

ζ
exp{−W (xxx′)}, (68)

where ζ is the partition function of the general Ising model, given by Eqs. (2) & (3), and

W (xxx′) = −
k+K−1∑
n=k

an(2xn − 1)−
k+K−2∑
n=k

bn(2xn − 1)(2xn+1 − 1), (69)

ζ1(xk) =
∑
xxx′′
1

exp
{ k−1∑

n=1

an(2xn − 1) +
k−1∑
n=1

bn(2xn − 1)(2xn+1 − 1)
}
, (70)

ζ2(xk+K−1) =
∑
xxx′′

exp
{ N∑
n=k+K

an(2xn − 1) +
N−1∑

n=k+K−1

bn(2xn − 1)(2xn+1 − 1)
}
, (71)

with xxx′′
1 = [x1, x2, . . . , xk−1]

T and xxx′′
2 = [xk+K , xk+K+1, . . . , xN ]

T . Efficient computation of the
the partition functions ζ1(x) and ζ2(x) for x = 0, 1 is performed by employing formulas similar
to the one used to compute the partition function ζ .
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Posterior distribution of methylation indices. To compute the posterior distribution π(zzz |yyy;θθθ)
of the methylation index vector ZZZ, note that

π(zzz | yyy;θθθ) = q(yyy | zzz)π(zzz;θθθ)∑
zzz′∈Z q(yyy | zzz′)π(zzz′;θθθ)

. (72)

This equation, together with Eqs. (23), (24), & (36), implies that

π(zzz | yyy;θθθ) = 1

ζ(θθθ,yyy)
exp{−V (zzz;θθθ,yyy)}, (73)

where

V (zzz;θθθ,yyy) = −
L∑
l=1

Al(zl;α, β,yyy)(2zl − 1)−
L−1∑
l=1

Bl(2zl − 1)(2zl+1 − 1), (74)

and
ζ(θθθ,yyy) =

∑
zzz∈Z

exp{−V (zzz;θθθ,yyy)}, (75)

with
Al(zl;α, β,yyy) = Nl(α + βρ̄l) + w

(m)
l

ln ql(yyyl | sssl(zl))
2zl − 1

, (76)

and
Bl = γ/d̄l. (77)

Consequently, π(zzz | yyy;θθθ) is the probability distribution of an Ising model obtained by replac-
ing xxx, n, and N in Eqs. (1)-(3) with zzz, l, and L, respectively, and by setting al = Al(zl;α, β,yyy)

and bl = Bl. In this case, computations can be efficiently preformed using the previous formulas
by replacing N with L, −an with Al(0;α, β,yyy), +an with Al(1;α, β,yyy), and bn with Bl.

Mean methylation level. CpelNano computes the mean methylation level (MML) µ over a
subregion S of an estimation region R that contains K contiguous CpG sites k, k + 1, . . . , k +

K − 1 by setting

µ =
1

K

k+K−1∑
n=k

µn. (78)

Here, µn is the mean methylation at CpG site n, which is calculated by setting µn = (en+1)/2,
where en is computed from Eqs. (52)-(54).
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Normalized methylation entropy. To compute the normalized methylation entropy (NME) h
over a subregion S of an estimation region R that contains K contiguous CpG sites k, k +

1, . . . , k +K − 1, CpelNano uses the following formula:

h =
1

Kln2

{
lnζ − (1− µk) ln ζ1(0)− µk ln ζ1(1)

− (1− µk+K−1) ln ζ2(0)− µk+K−1 ln ζ2(1)

−
k+K−1∑
n=k

(α + βρn)(2µn − 1)−
k+K−2∑
n=k

γ

dn
[4rn − 2(µn + µn+1) + 1]

}
. (79)

Here, µn is the mean methylation at CpG site n, rn is the pairwise correlation between CpG
sites n and n + 1, which is calculated by setting rn = [cn + 2(µn + µn+1) − 1]/4, where cn is
computed from Eqs. (56)-(58), and ζ , ζ1, ζ2 are the partition functions computed from Eqs. (48)-
(50), as well as Eqs. (70) & (71).

Coefficient of methylation divergence. CpelNano also computes the coefficient of methylation
divergence (CMD), d12, between two probability distributions g1 and g2 of the methylation state
over a subregion S of an estimation region R that contains K contiguous CpG sites k, k +

1, . . . , k + K − 1, which are obtained by marginalizing two CPEL models, p1 and p2, of the
methylation state over R. This quantity is defined by

d12 :=
D(g1 ∥ g) +D(g2 ∥ g)
H(g1, g) +H(g2, g)

, (80)

where g(xxx) is a probability distribution of the methylation state over S, which is obtained by
marginalizing a CPEL model p whose potential energy function is the average of the potential
energy functions associated with p1 and p2. Moreover,

D(f1 ∥ f2) =
∑
uuu

f1(uuu) log2
f1(uuu)

f2(uuu)
(81)

is the Kullback-Leibler (KL) divergence between two probability distributions f1 and f2, and

H(f1, f2) = −
∑
uuu

f1(uuu) log2 f2(uuu) (82)

is the cross-entropy between two random vectors with probability distributionsf1 and f2.
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It can be shown that
d12 = 1− h1 + h2

h1 + h2

, (83)

where hi is the NME associated with the the i-th probability distribution gi, and hi is the nor-
malized cross methylation entropy between gi and g, which is the formula used by CpelNano to
compute the CMD. This is done by evaluating, in addition to the NMEs h1 and h2, the normal-
ized cross methylation entropies h1 and h2 by means of

hi =
1

Kln2

{
lnζ − (1− µ

(i)
k ) ln ζ1(0)− µ

(i)
k ln ζ1(1)

−(1− µ
(i)
k+K−1) ln ζ2(0)− µ

(i)
k+K−1 ln ζ2(1) −

k+K−1∑
n=k

(α + βρn)(2µ
(i)
n − 1)

−
k+K−2∑
n=k

γ

dn
[4r(i)n − 2(µ(i)

n + µ
(i)
n+1) + 1]

}
, for i = 1, 2, (84)

which is similar to Eq. (79). Here, α is the average of the two α parameters associated with the
potential energy functions of the CPEL models p1 and p2, and similarly for β and γ. Moreover, ζ
is the partition function of p, ζ1 and ζ2 are the partition functions obtained by marginalizing p

within the subregion S using Eqs. (70) & (71), and µ
(i)
n , r(i)n are the mean methylation and

pairwise correlation at CpG site n associated with pi.

5. Hypothesis testing
CpelNano is designed to identify analysis regions that demonstrate significant discordance in
DNA methylation between two conditions (e.g., normal/cancer) by means of a hypothesis test-
ing approach that uses permutation methods16 to perform unmatched sample pairs group com-
parisons, matched sample pairs group comparisons, or two-sample comparisons, depending on
the particular experimental design used in a given application (details follow). Due to multiple
hypothesis testing, and in addition to P -values, CpelNano also computes Q-values using the
Benjamini-Hochberg procedure for FDR control.

Unmatched sample pairs group comparison. When a group of M1 nanopore samples as-
sociated with one condition (e.g., normal) and a group of M2 unmatched nanopore samples
associated with another condition (e.g., cancer) are available, CpelNano performs hypothesis
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testing in each analysis region using the following differential test statistics:

TMML =
1

M1

M1∑
m=1

µ
(m)
1 − 1

M2

M2∑
m=1

µ
(m)
2 (85)

TNME =
1

M1

M1∑
m=1

h
(m)
1 − 1

M2

M2∑
m=1

h
(m)
2 (86)

TCMD =
1

M1M2

M1∑
m=1

M2∑
m′=1

dmm′ . (87)

In these formulas, µ(m)
1 , h(m)

1 and µ
(m)
2 , h(m)

2 are the MMLs and NMEs computed using the
CPEL models estimated from the m-th sample in the first group and the m-th sample in the sec-
ond group, and dmm′ is the CMD obtained by comparing the estimated probability distributions
of methylation associated with the m-th sample in the first group and the m′-th sample in the
second group. The test statistic TMML quantifies the difference between the average of the mean
methylation levels in the first and second groups, TNME assesses the difference between the
average of normalized methylation entropies, and TCMD quantifies the average of all observed
differences between the probability distributions of methylation in the two groups. Notably, this
approach requires a total of M1 +M2 CPEL model estimations.

For each test statistic T , a (two-tailed) hypothesis test requires knowledge of the null
cumulative distribution function F0(t) = Pr[ |T | < t | H0 ], which can then be used to cal-
culate the P -value associated with an observation t∗ of T by p = 1 − F0(|t∗|). Here, H0 is
the null hypothesis that, within an analysis region, each pair of samples exhibits no methy-
lation discordance regardless of the specific group sample assignment. To evaluate F0(t) for
an analysis region, CpelNano uses a “randomization model” that randomly assigns M1 sam-
ples to the first condition and the remaining M2 samples to the second condition, thus forming
L = (M1 + M2)!/M1!M2! group assignments. This permutation is justified by the fact that,
under the null hypothesis, the assignments are equally likely (with probability 1/L). Conse-
quently, CpelNano computes the null cumulative distribution function of the test statistic T by

F0(t) =
1

L

L∑
l=1

I[ |tl| < t ], (88)

where tl, l = 1, 2, . . . , L, are values of T computed from each of the L group assignments and
I[·] is the Iverson bracket, taking value 1 when its argument is true and 0 otherwise. This leads
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to an exact P -value computation, given by

p = 1− 1

L

L∑
l=1

I[ |tl| < |t∗| ] = 1

L

(
1 +

L−1∑
l=1

I[ |tl| ≥ |t∗| ]
)
. (89)

Notably, p can only take values 1/L, 2/L, . . . , 1 and, therefore, this method produces P -values
that are not smaller than 1/L. Moreover, by setting the test’s significance level to be a = k/L,
for some integer k such that p can take value k/L, it can be shown that the probability of the
Type I error (false positives) will be given by

Pr[Type I error] = Pr
[
P ≤ a | H0

]
=

k∑
l=1

Pr
[
P = k/L | H0

]
=

k∑
l=1

1/L =
k

L
= a, (90)

leading to a false positive rate of 100× a %. On the other hand, if a = k/L, for some integer k
such that p cannot take value k/L, then Pr[Type I error] < a and the test will be conservative.
Therefore, the hypothesis testing module of CpelNano can always control the false positive rate
in this case by using an appropriate value for the test’s significance level. For our real data
analysis in the Main Text, we had M1 = M2 = 5 and set a = 0.05, which implies that the
P -values will be no smaller than 3.96 × 10−3 and the false positive rate will be 4.76%, since
L = 252 and k = 12 in this case.

When L is large, the previous method becomes computationally intensive. For this rea-
son, and when L ≥ L0 (L0 is set to 1,000 by default), CpelNano automatically switches to a
hypothesis testing approach that estimates the P -value using a permutation test based on Monte
Carlo sampling. In this case, L distinct sample permutations are performed by assigning M1

samples to the first group and the remaining samples to the second group. The null cumulative
distribution function is then approximated by independently sampling, L0 − 1 times, the set of
L permutations with equal probability and by approximating F0(t) by

F̂0(t) =
1

L0

(
I[ |t∗| < t ] +

L0−1∑
l=1

I[ |tl| < t ]
)
, (91)

since this method produces L0 test statistic values, including the value t∗ computed from the
data. In this case, the P -value is approximated by

p̂ = 1− 1

L0

L0−1∑
l=1

I[ |tl| < |t∗| ] = 1

L0

(
1 +

L0−1∑
l=1

I[ |tl| ≥ |t∗| ]
)
. (92)

Note that the only possible values for p̂ are 1/L0, 2/L0, . . . , 1, which implies that p̂ ≥ 0.001

when L0 = 1,000. Moreover, if the significance level of the test is taken to be a = k/L0 for
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some integer k such that p̂ can take value k/L0, then it can be shown that Pr[Type I error] = a,
whereas if the significance level is taken to be a = k/L0 for some integer k such that p̂ cannot
take a value k/L0, then Pr[Type I error] < a. Consequently, this procedure also controls the
Type I error.

Matched sample pairs group comparison. CpelNano can also perform hypothesis testing
within an analysis region when M pairs of matched nanopore samples between two conditions
are available. This is done by using the previous randomization testing method, provided that
the total number L = 2M of possible matched group assignments is less than L0. In this case,
the M matched sample pairs are used to form L distinct permutations, each containing all M
pairs but with some group labels being reversed, values tl are computed for the l-th permutation
using each of the following two differential test statistics:

TMML =
1

M

M∑
m=1

[
µ
(m)
1 − µ

(m)
2

]
(93)

TNME =
1

M

M∑
m=1

[
h
(m)
1 − h

(m)
2

]
. (94)

However, if L ≥ L0, CpelNano automatically switches to the Monte Carlo based permutation
procedure employed in the unmatched case in which the L0 − 1 values of the test statistic
required by the method are determined by independently sampling the set of all L matched
group permutations with equal probability and by computing the test statistic value for each
permutation.

Unfortunately, this procedure cannot be used to perform hypothesis testing using the CMD
because of its symmetry; i.e., due to the fact that dmm′ = dm′m. For this reason, CpelNano sim-
ply calculates the average

(∑M
m=1 dmm

)
/M of all CMDs associated with the analysis regions

and outputs the result.

Two-sample comparison. CpelNano can perform hypothesis testing within an analysis region
even when only one sample is available for each condition. It does so by employing the same
“randomization model” used in the case of the unmatched sample pairs group comparison for
which M1 is the number of nanopore reads associated with the first condition overlapping
the analysis region and M2 is the number of reads associated with the second condition. In
this case, evaluation of the null cumulative distribution function F0(t) is performed by ran-
domly assigning M1 nanopore reads to the first condition and the remaining M2 samples to
the second condition. However, evaluating the MMLs, NMEs, and probability distributions of
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methylation necessary for computing the three test statistics given by Eqs. (85)-(87) requires
(M1 +M2)!/M1!M2! CPEL model estimations in this case, which can be much larger than the
L = M1 + M2 CPEL model estimations required by the unmatched sample pairs group com-
parison. For this reason, CpelNano automatically switches to the Monte Carlo version of the
permutation test when L ≥ L0, where L0 is now set to 100 by default.

6. Simulation-based evaluation of Nanopolish
To evaluate the methylation calling performance of Nanopolish1, we developed a simulation-
based benchmarking approach (Fig. 3), which can be appropriately modified to accommodate
other methylation callers if desired. This scheme employs the GSM2308632 WGBS data iden-
tified with the well-characterized human GM12878 Utah/Ceph lymphoblastoid cell line and
constructs a “ground-truth” CPEL methylation model, given by Eqs. (7)-(9), within Chr. 22 of
the human reference genome that contains 622,083 CpG sites. It does so by estimating the pa-
rameters α, β, and γ of the CPEL model, using a previous maximum-likelihood approach6, 7,
over 3-kb estimation regions that contain sufficient data to perform reliable estimation (specifi-
cally, regions that contain at least 10 CpG sites, with an average coverage of at least 5× per CpG
site, and for which methylation information is available for at least 2/3 of their CpG sites). To
determine parameter values within the remaining estimation regions, the method uses all esti-
mated α, β, and γ values and computes their empirical probability distributions (Fig. 4). It then
assigns parameter values to these regions by drawing samples from the corresponding empirical
distributions.

To generate DNA fragments that satisfy the length distribution and coverage requirements
of nanopore reads, the benchmarking method computes the length distribution of nanopore
reads in available nanopore sequencing data (NA12878) identified with the GM12878 Utah/Ceph
lymphoblastoid cell line17. In agreement with Li et al.18, 19, the read lengths in these data were
found to follow an exponential distribution with rate 1.18×10−4, which was estimated from the
real data via maximum-likelihood (Fig. 5). The method then produces DNA fragments by deter-
mining their start location and length along Chr. 22. The start location of a fragment is specified
by randomly drawing a number between 1 and L − M + 1, where L = 50,818,468 bp is the
length of Chr. 22, and its length M (in bp) is computed by sampling the previous exponential
length distribution. To control for methylation coverage, fragment generation is repeated until
the average of all nucleotide coverages within Chr. 22 is no less than 25×, with the coverage at
each nucleotide being computed as the number of DNA fragments overlapping the nucleotide.
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Figure 3. Scheme for benchmarking Nanopolish1. Simulation-based benchmarking method for evaluating the
methylation calling performance of Nanopolish1. This approach uses human cell-line WGBS and nanopore
sequencing data to generate DNA fragments of known methylation states, which are then processed by the
DeepSimulator18, 19 to produce realistic nanopore reads. Evaluation is performed by comparing the output of
the caller to the known ground-truth methylation states of the input DNA fragments that generate these reads.

23



e
st

im
a

tio
n

 r
e

g
io

n
s 

(%
)

e
s
tim

a
ti
o

n
 r

e
g

io
n

s 
(%

)

-100 -50 0 50 100
0

1

2

3

4

5

6

-20 -10 0 10 20
0

5

10

15

-10 -5 0 5 10
0

5

10

15

20

e
st

im
a

tio
n

 r
e

g
io

n
s 

(%
)

CPEL parameter a

CPEL parameter b

CPEL parameter g

Figure 4. Distributions of CPEL model parameter values. Distributions of the values of the CPEL model parame-
ters α, β, and γ in Chr. 22, which are estimated via maximum-likelihood from human Utah/Ceph lymphoblastoid
WGBS data (GSM2308632).
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Figure 5. Length distribution of nanopore reads. Distribution of read lengths observed in the NA12878 human
Utah/Ceph lymphoblastoid nanopore data (blue) was found to be approximately exponential (red dots) with rate
1.18× 10−4.

Subsequently, and for each DNA fragment, the benchmarking method identifies all esti-
mation regions that overlap the fragment and, for each estimation region, it generates its methy-
lation state by sampling the ground-truth CPEL model associated with that region using the
Markov chain sampling approach discussed in Section 4. This information is then used to as-
sign a ground-truth binary methylation state to each CpG site in the DNA fragment by marking
its CG dinucleotides as being methylated (1) or unmethylated (0) based on their methylation
status in the associated estimation regions. Finally, and within each DNA fragment, the C’s of
all CG dinucleotides marked by 1 are replaced with M’s, a step that modifies the DNA sequence
in each fragment by incorporating the methylation of CG dinucleotides, as determined by the
methylation states drawn from the ground-truth CPEL model.

Each modified DNA fragment generated by the previous approach is processed by the
DeepSimulator18, 19 (used in its context-independent mode), a computational tool that faithfully
simulates the entire pipeline of nanopore sequencing and produces nanopore reads consisting
of the current values measured by the nanopore. However, and in order to take into account
methylated 6-mers, the pore model used by DeeepSignal, which is based on official statistics
provided by Oxford Nanopore Technologies, is replaced with the one used by Nanopolish1.
In addition, raw nanopore reads are generated by adding random noise on the event sequence
using the default option of the DeepSimulator18, 19 and by setting the cutoff frequency of the
low-pass filter, which removes high-frequency components from the signal generated from the
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event sequence, to its default value. Finally, and in order to investigate the effect of nanopore
noise on methylation calling, zero-mean Gaussian noise is added to the raw nanopore reads with
standard deviations 2, 2.5, 3, and 3.5, which encompasses values that are normally observed in
the pore model used by Nanopolish1.

The raw nanopore reads produced by the DeepSimulator18, 19 are subsequently used to
perform base calling via ONT’s Guppy (CPU mode) whose output is then aligned to the refer-
ence genome (GRCh38.p12) by minmap220. The aligned data, together with the raw nanopore
reads produced by the DeepSimulator18, 19, are then fed as inputs to Nanopolish1 whose output
is used to quantify methylation calling performance by computing several performance metrics,
which include accuracy (probability that a CpG site is correctly predicted to be methylated or
unmethylated), precision (probability that a CpG site is correctly predicted to be methylated),
true positive rate, and true negative rate.
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2. Pressé, S., Ghosh, K., Lee, J. & Dill, K. A. Principles of maximum entropy and maximum
caliber in statistical physics. Rev. Mod. Phys. 85, 1115–1141 (2013).

3. Baxter, R. J. Exactly Solved Models in Statistical Mechanics (Academic Press, San Diego,
1982).
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Figure S1. Performance characteristics of Nanopolish1. Accuracy (probability that a CpG site is correctly pre-
dicted to be methylated or unmethylated), precision (probability that a CpG site is correctly predicted to be methy-
lated), true positive rate, and true negative rate characteristics for nanopore noise with standard deviations sd = 2,
2.5, 3, 3.5. The results were obtained by using our simulation-based scheme for benchmarking Nanopolish1 (Sup-
plementary Methods, Fig. 3) and by setting the detection threshold of Nanopolish1 equal to zero. Nanopolish1

exhibited reduced per-read detection performance at higher levels of nanopore noise and achieved no more that
94% accuracy, precision, true positive rate, and true negative rate at all noise levels, which dropped to less than
90% for sd ≥ 3.
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Figure S2. Detection performance of Nanopolish1. (a) Receiver operating characteristic (ROC) curves;
(b) precision-recall (PR) curves. These results were obtained by using our simulation-based scheme for bench-
marking Nanopolish1 (Supplementary Methods, Fig. 3), by considering nanopore noise with standard deviations
sd = 2, 2.5, 3, 3.5, and by varying the detection threshold of Nanopolish1. The area under the curve (AUC) values
are also provided in each case. The results show a trade-off between the true positive rate and the false positive
rate, as well as between precision and true positive rate (recall). Moreover, the areas under the ROC curves in (a)
decrease with increasing noise, ranging between 0.947 and 0.912 for 3 ≤ sd ≤ 3.5, indicating that Nanopolish1

exhibits in our simulations only a 91.2% to 94.7% chance of distinguishing between truly methylated and truly
unmethylated CpG sites at those noise levels. Notably, and by using real data, Yuen et al. [Systematic benchmark-
ing of tools for CpG methylation detection from Nanopore sequencing. Nat. Commun. 12, 3438 (2021)] reported
an area under the ROC curve of 0.921 for Nanopolish1. A similar remark is also true for the areas under the PR
curves in (b), which range between 0.949 and 0.931 when 3 ≤ sd ≤ 3.5, as compared to the value of 0.924 re-
ported by Yuen et al. Interestingly, the area under the PR curve can be interpreted as the fraction of true detections
made by a randomly selected threshold [Boyd, K., Eng, K. H. & Page C. D. Area under the precision-recall curve:
Point estimates and confidence intervals. In: Machine Learning and Knowledge Discovery in Databases, Lecture
Notes in Computer Science, vol. 8190 (Springer, Berlin, 2013)]. We therefore conclude that, when 3 ≤ sd ≤ 3.5,
Nanopolish1 exhibits only a 93.1% to 94.9% chance that calls at individual CpG sites made by a randomly selected
detection threshold will be true methylation calls.
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Figure S3. Methylation calling performance of Nanopolish1. (a) Error rates in calling the true methylation state at
individual CpG sites for different levels of nanopore noise, as a function of the detection threshold of Nanopolish1

and the number of calls made. (b) Error rates in calling the true methylation co-occurrence at pairs of consecutive
CpG sites. These results were obtained by using our simulation-based scheme for benchmarking Nanopolish1

(Supplementary Methods, Fig. 3) and by considering nanopore noise with standard deviations sd = 2, 2.5, 3, 3.5.
Methylation co-occurrence identifies pairs of consecutive CpG sites that are both methylated or unmethylated.
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Figure S4. Parameter estimation benchmarking scheme. Simulation-based method for evaluating the EM-based
maximum-likelihood parameter estimation module of CpelNano. Within each estimation region of Chr. 22, values
of the CPEL model parameters are estimated from simulated data generated by using our simulation-based scheme
for benchmarking Nanopolish1 (Supplementary Methods, Fig. 3). These values are then compared to “true” values,
which are computed by fitting the CPEL model to GM12878 WGBS data. Performance evaluation is carried out
by computing cosine similarities, boxplots, and binned probability distributions.
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Figure S5. Quality of EM-based maximum-likelihood parameter estimation. Boxplots depicting distributions of
cosine similarities when comparing estimated to true values of the CPEL model parameters obtained by using our
simulation-based parameter estimation benchmarking scheme (Fig. S4). Results are shown for nanopore noise
with standard deviations sd = 2, 2.5, 3, 3.5 and nanopore data with coverages 5×, 10×, 15×, 20×, and 25×.
Center line of box: median value; box bounds: 25th and 75th percentiles; lower whisker: larger of minimum value
and 25th percentile minus 1.5× interquartile range; upper whisker: smaller of maximum value and 75th percentile
plus 1.5× interquartile range.
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Figure S6. Quality of estimated methylation means. Boxplots depicting distributions of absolute errors between
estimated methylation means at individual CpG sites and their true values. Means were estimated by using the EM-
based maximum-likelihood (EM-ML) module of CpelNano, as well as by fitting the CPEL model directly to the
methylation calls made by Nanopolish1 using maximum-likelihood (ML) and empirically (EMP) from such calls.
Results are shown for nanopore noise with standard deviations sd = 2, 2.5, 3, 3.5 and nanopore data coverages of
5×, 10×, 15×, 20×, and 25×. Center line of box: median value; box bounds: 25th and 75th percentiles; lower
whisker: larger of minimum value and 25th percentile minus 1.5× interquartile range; upper whisker: smaller of
maximum value and 75th percentile plus 1.5× interquartile range.
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Figure S7. Quality of estimated pairwise correlations. Boxplots depicting distributions of absolute errors between
estimated pairwise correlations in methylation and their true values. Correlations were estimated by using the EM-
based maximum-likelihood (EM-ML) module of CpelNano, as well as by fitting the CPEL model directly to the
methylation calls made by Nanopolish1 using maximum-likelihood (ML) and empirically (EMP) from such calls.
Results are shown for nanopore noise with standard deviations sd = 2, 2.5, 3, 3.5 and nanopore data coverages of
5×, 10×, 15×, 20×, and 25×. Center line of box: median value; box bounds: 25th and 75th percentiles; lower
whisker: larger of minimum value and 25th percentile minus 1.5× interquartile range; upper whisker: smaller of
maximum value and 75th percentile plus 1.5× interquartile range.
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Figure S8. Quality of EM-based maximum-likelihood parameter estimation. Binned joined probability distribu-
tions, and associated Pearson correlation coefficient (PCC) values, between estimated CPEL parameter values and
true values obtained by using our simulation-based parameter estimation benchmarking scheme (Fig. S4). Results
are shown for nanopore noise with standard deviation sd = 3 and nanopore data coverages of 10× and 20×.
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Figure S10. CMD distributions in the Utah/Ceph lymphoblastoid cell line. Densities and boxplot distributions (in-
sets) of coefficient of methylation divergence (CMD) values over selected genomic features of the human genome
(Chr. 22) when comparing the probability distributions of methylation estimated by CpelNano using nanopore data
(NA12878) and by a standard maximum-likelihood approach using WGBS data (GSM2308632). Center line of
box: median value; box bounds: 25th and 75th percentiles; lower whisker: larger of minimum value and 25th per-
centile minus 1.5× interquartile range; upper whisker: smaller of maximum value and 75th percentile plus 1.5×
interquartile range.
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Figure S11. Differential methylation analysis results in the targeted breast normal/cancer comparison. (a) Densi-
ties of differential mean methylation level (MML), normalized methylation entropy (NME), and average coefficient
of methylation difference (CMD) test statistic values in the normal/cancer (red) and the normal/normal (green)
comparisons. (b) Empirical cumulative distribution functions (eCDFs) of P -values obtained by permutation test-
ing. (c) eCDFs of Q-values obtained by the Benjamini-Hochberg procedure for FDR control.
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Figure S12. Additional examples of methylation discordance over genes and repetitive elements in the targeted
breast normal/cancer comparison. (a) Averages of mean methylation levels (MMLs) and normalized methylation
entropies (NMEs) over genomic regions overlapping BRAF, observed in two groups of five “normal” (green lines)
and five “cancer” (red lines) samples used for differential analysis. The average of all differences in the probabil-
ity distributions of methylation between the two groups, quantified by the coefficient of methylation divergence
(CMD), is also depicted (blue line). Dots indicate individual MML and NME values for each group and sample,
whereas boxes delineate genomic regions of significant (q ≤ 0.05) DNA methylation discordance. CGIs track:
CpG islands; REs track: L1 (blue) and Alu (purple) repetitive elements. (b) Results of methylation discordance as-
sociated with KRAS. (c) Results of methylation discordance associated with SLC12A4. (d) Results of methylation
discordance associated with TP53.
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Figure S13. Distribution of analysis regions in terms of CpG population. Histograms of CpG site populations
within analysis regions of the human genome for different values of smax. Cases for which the majority of the
analysis regions contain more than one CpG site are marked with a star.
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Figure S14. Distribution of analysis regions in terms of size. Histograms of the sizes of the analysis regions in the
human genome for different values of smax. The case of smax = 350 bp (red star) is associated with the smallest
value of smax for which the majority of the analysis regions contain more than one CpG site while their sizes
exhibit the least variation (see also Fig. S13).
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Supplementary Tables
Table S1. Methylation discordance and genes in the targeted breast normal/cancer comparison. The (annotated)
body of each listed gene was found to overlap with analysis regions exhibiting patterns (each row) of significant
discordance (marked by ⋆) in mean methylation level (MML), normalized methylation entropy (NME), or in the
probability distribution of methylation quantified by the coefficient of methylation divergence (CMD). Highlighted
genes are fully covered by the data.

Chr. Start End Gene MML NME CMD #
7 140719327 140924928 BRAF – – ⋆ 3

– ⋆ ⋆ 2
⋆ ⋆ ⋆ 2

9 35673918 35681159 CA9 – ⋆ – 1
⋆ ⋆ ⋆ 1

3 49357176 49358358 GPX1 – ⋆ – 1
– – ⋆ 3
– ⋆ ⋆ 1

11 67583595 67586656 GSTP1 – – ⋆ 3
⋆ – ⋆ 1
⋆ ⋆ ⋆ 4

12 25205246 25250936 KRAS ⋆ ⋆ ⋆ 10
17 41513745 41522529 KRT15 – – ⋆ 4

⋆ – ⋆ 4
⋆ ⋆ ⋆ 6

17 41523617 41528308 KRT19 – – ⋆ 2
⋆ – ⋆ 9
⋆ ⋆ ⋆ 4

17 49359145 49412097 RHOA ⋆ – ⋆ 2
⋆ ⋆ ⋆ 14

16 67943474 67969601 SLC12A4 – – ⋆ 4
⋆ – ⋆ 6
⋆ ⋆ ⋆ 21

17 7661779 7687550 TP53 – ⋆ – 2
– – ⋆ 7
⋆ ⋆ ⋆ 10

9 35681992 35690056 TPM2 ⋆ – – 1
– – ⋆ 4
⋆ ⋆ – 1
⋆ – ⋆ 2
⋆ ⋆ ⋆ 9
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Table S2. Methylation discordance and promoter regions in the targeted breast normal/cancer comparison. The
promoter region (annotated) of each listed gene was found to overlap with analysis regions exhibiting patterns
(each row) of significant discordance (marked by ⋆) in mean methylation level (MML), normalized methylation
entropy (NME), or in the probability distribution of methylation quantified by the coefficient of methylation diver-
gence (CMD). Highlighted genes are fully covered by the data.

Chr. Start End Gene MML NME CMD #
3 49356359 49360358 GPX1 – ⋆ – 1

– – ⋆ 3
– ⋆ ⋆ 1
⋆ ⋆ ⋆ 6

11 67581595 67585594 GSTP1 – – ⋆ 3
⋆ – ⋆ 5
⋆ ⋆ ⋆ 5

17 41520530 41524529 KRT15 – – ⋆ 2
⋆ – ⋆ 6
– ⋆ ⋆ 1
⋆ ⋆ ⋆ 2

17 41526309 41530308 KRT19 ⋆ – ⋆ 8
– ⋆ ⋆ 1
⋆ ⋆ ⋆ 2

16 67967602 67971601 SLC12A4 – – ⋆ 1
⋆ – ⋆ 1
⋆ ⋆ ⋆ 8

9 35688057 35692056 TPM2 ⋆ – ⋆ 1
⋆ ⋆ ⋆ 11
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Table S3. Methylation discordance and repetitive elements in the targeted breast normal/cancer comparison. The
listed repetitive elements (REs) were found to overlap with analysis regions exhibiting patterns (each row) of
significant discordance (marked by ⋆) in mean methylation level (MML), normalized methylation entropy (NME),
or in the probability distribution of methylation quantified by the coefficient of methylation divergence (CMD).
Highlighted REs are Alu (purple) or L1 (blue) repeats.

Chr. Start End RE MML NME CMD #

3 49,353,229 49,353,360 L2b – – ⋆ 1
3 49,353,229 49,353,360 L2b ⋆ ⋆ ⋆ 1
3 49,353,360 49,353,657 AluY ⋆ ⋆ ⋆ 2
3 49,353,659 49,353,960 AluSx1 ⋆ ⋆ ⋆ 2
3 49,353,960 49,354,019 L2b ⋆ ⋆ ⋆ 1
3 49,354,019 49,354,337 AluYb8 ⋆ ⋆ ⋆ 2
3 49,354,653 49,354,960 AluSx1 – – ⋆ 1
3 49,354,653 49,354,960 AluSx1 ⋆ ⋆ ⋆ 1
3 49,355,133 49,355,409 AluSx1 – – ⋆ 1
3 49,355,133 49,355,409 AluSx1 ⋆ ⋆ ⋆ 1
3 49,356,824 49,357,137 AluY – ⋆ – 1
3 49,357,992 49,358,002 (CCGCC)n – – ⋆ 1
3 49,358,240 49,358,260 (GCC)n – – ⋆ 1
3 49,360,467 49,360,757 AluSq2 ⋆ ⋆ ⋆ 2
3 49,360,793 49,361,101 AluSc ⋆ ⋆ ⋆ 2
3 49,361,600 49,361,893 AluSp ⋆ ⋆ ⋆ 2
3 49,361,905 49,362,198 AluSx1 ⋆ ⋆ ⋆ 1
3 49,362,667 49,362,724 L3 ⋆ ⋆ ⋆ 1
3 49,363,136 49,363,427 AluY ⋆ – ⋆ 1
3 49,363,136 49,363,427 AluY ⋆ ⋆ ⋆ 1
3 49,363,452 49,363,575 AluJo ⋆ ⋆ ⋆ 1
3 49,363,575 49,363,869 AluSx ⋆ ⋆ ⋆ 2
3 49,363,869 49,364,065 AluJo ⋆ ⋆ ⋆ 2
3 49,364,067 49,364,204 AluSx ⋆ ⋆ ⋆ 1
3 49,364,204 49,364,511 AluSp ⋆ ⋆ ⋆ 2
3 49,364,511 49,364,661 AluSx ⋆ ⋆ ⋆ 1
7 140,777,229 140,777,809 L3 – – ⋆ 1
7 140,777,229 140,777,809 L3 – ⋆ ⋆ 1
7 140,782,463 140,782,492 A-rich – – ⋆ 1
7 154,597,321 154,597,622 AluSc8 ⋆ ⋆ ⋆ 1
7 154,597,630 154,598,086 MLT1C ⋆ ⋆ ⋆ 3
7 154,598,803 154,598,849 (TTGTT)n ⋆ ⋆ ⋆ 1
7 154,599,291 154,599,413 MIRc ⋆ ⋆ ⋆ 2

Continued on next page
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Chr. Start End RE MML NME CMD #

7 154,599,494 154,599,528 (TTA)n ⋆ ⋆ ⋆ 1
7 154,599,528 154,599,865 L1PA6 ⋆ ⋆ ⋆ 2
7 154,602,840 154,603,384 L1MEf – – ⋆ 1
7 154,603,384 154,603,683 AluSq2 – – ⋆ 1
7 154,603,384 154,603,683 AluSq2 ⋆ ⋆ ⋆ 1
7 154,603,683 154,603,742 L1MEf ⋆ ⋆ ⋆ 1
7 154,603,743 154,604,043 L1ME3A ⋆ ⋆ ⋆ 1
7 154,606,614 154,607,278 Tigger2b Pri ⋆ – – 1
7 154,606,614 154,607,278 Tigger2b Pri ⋆ ⋆ ⋆ 1
7 154,607,278 154,607,588 AluY ⋆ – – 2
7 154,607,588 154,607,930 Tigger2b Pri ⋆ – – 1
7 154,607,588 154,607,930 Tigger2b Pri ⋆ ⋆ ⋆ 1
7 154,607,968 154,608,273 AluSc8 ⋆ ⋆ – 1
7 154,608,320 154,608,341 (AT)n ⋆ ⋆ – 1
7 154,608,341 154,608,635 AluSz ⋆ ⋆ – 1
7 154,608,341 154,608,635 AluSz ⋆ ⋆ ⋆ 1
7 154,608,894 154,609,206 L1MEd ⋆ ⋆ ⋆ 1
7 154,611,941 154,612,247 MSTD ⋆ ⋆ ⋆ 1
7 154,612,247 154,612,841 L1MD2 ⋆ ⋆ ⋆ 3
7 154,612,861 154,613,220 MLT1A ⋆ ⋆ ⋆ 2
7 154,613,339 154,613,649 AluSp ⋆ – ⋆ 1
9 35,680,372 35,680,526 FRAM – ⋆ – 1
9 35,681,312 35,681,539 MLT1D ⋆ ⋆ ⋆ 2
9 35,681,586 35,681,616 (TG)n ⋆ ⋆ ⋆ 1
9 35,683,272 35,683,374 GA-rich ⋆ ⋆ ⋆ 1
9 35,686,528 35,686,656 FLAM A ⋆ – ⋆ 1
9 35,686,939 35,687,123 MIR ⋆ – – 1
9 35,687,187 35,687,307 MER5A ⋆ – – 1
9 35,687,187 35,687,307 MER5A ⋆ ⋆ ⋆ 1
9 35,690,580 35,690,619 (CCTCC)n ⋆ ⋆ ⋆ 1
9 35,690,734 35,690,816 (CCCCG)n ⋆ ⋆ ⋆ 1
9 35,690,816 35,690,846 (CGCTCCC)n ⋆ ⋆ ⋆ 1
9 35,690,925 35,690,970 (GGAGGC)n ⋆ ⋆ ⋆ 1
9 35,691,254 35,691,305 (GCCGTGG)n ⋆ ⋆ ⋆ 1
9 35,691,709 35,691,829 FLAM A ⋆ ⋆ ⋆ 1
9 35,691,840 35,692,353 L2c ⋆ ⋆ ⋆ 3
9 35,692,407 35,692,805 Charlie1a ⋆ ⋆ ⋆ 2
9 35,692,807 35,693,115 AluSz ⋆ ⋆ ⋆ 1
9 35,693,622 35,693,926 AluJb – – ⋆ 1
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Chr. Start End RE MML NME CMD #

9 35,693,926 35,694,020 Charlie1a – – ⋆ 1
9 35,694,020 35,694,324 AluSx – ⋆ – 1
9 35,694,020 35,694,324 AluSx – – ⋆ 1
9 35,694,324 35,694,485 Charlie1a – – ⋆ 1
9 35,694,485 35,694,770 AluSx1 – ⋆ – 2
9 35,694,770 35,694,798 (AAAT)n – ⋆ – 1
9 35,694,808 35,695,277 Charlie1a – ⋆ – 1
9 35,694,808 35,695,277 Charlie1a ⋆ ⋆ ⋆ 2
9 35,695,278 35,695,579 AluSg ⋆ ⋆ ⋆ 1
11 67,577,502 67,577,623 MIR ⋆ ⋆ ⋆ 1
11 67,577,990 67,578,406 MamGyp-int – – ⋆ 1
11 67,577,990 67,578,406 MamGyp-int ⋆ – ⋆ 1
11 67,577,990 67,578,406 MamGyp-int ⋆ ⋆ ⋆ 1
11 67,579,281 67,579,440 L1MEh ⋆ – ⋆ 1
11 67,579,646 67,579,904 L1MEh ⋆ – ⋆ 2
11 67,579,991 67,580,258 L1MEh ⋆ – ⋆ 1
11 67,579,991 67,580,258 L1MEh ⋆ ⋆ ⋆ 1
11 67,580,258 67,580,551 AluSq ⋆ ⋆ ⋆ 2
11 67,580,551 67,580,847 L1MEh ⋆ ⋆ ⋆ 2
11 67,580,876 67,580,898 (A)n ⋆ ⋆ ⋆ 1
11 67,580,901 67,581,040 AluJb ⋆ ⋆ ⋆ 2
11 67,581,058 67,582,018 MER11C ⋆ – ⋆ 2
11 67,581,058 67,582,018 MER11C ⋆ ⋆ ⋆ 1
11 67,582,055 67,582,412 L1PA14 ⋆ – ⋆ 1
11 67,582,055 67,582,412 L1PA14 ⋆ ⋆ ⋆ 1
11 67,582,471 67,582,653 L1M5 ⋆ ⋆ ⋆ 1
11 67,582,665 67,583,019 L1PA11 ⋆ – ⋆ 1
11 67,582,665 67,583,019 L1PA11 ⋆ ⋆ ⋆ 1
11 67,583,020 67,583,297 AluSx ⋆ – ⋆ 1
11 67,583,020 67,583,297 AluSx ⋆ ⋆ ⋆ 1
11 67,583,297 67,583,405 (ATAAA)n – – ⋆ 1
11 67,583,297 67,583,405 (ATAAA)n ⋆ ⋆ ⋆ 1
11 67,584,869 67,584,914 MIR ⋆ – ⋆ 1
11 67,585,658 67,585,700 (GT)n ⋆ ⋆ ⋆ 1
11 67,589,083 67,589,373 THE1D – – ⋆ 1
11 67,589,373 67,589,531 MER65-int – – ⋆ 1
11 67,589,949 67,590,022 MER65-int ⋆ ⋆ ⋆ 1
11 67,589,990 67,590,061 MER57A-int ⋆ ⋆ ⋆ 1
11 67,591,388 67,591,691 AluSq2 – – ⋆ 1
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Chr. Start End RE MML NME CMD #

11 67,591,854 67,592,393 LTR49-int ⋆ ⋆ ⋆ 1
11 67,593,508 67,593,973 LTR22A ⋆ – ⋆ 1
11 67,593,508 67,593,973 LTR22A ⋆ ⋆ ⋆ 1
11 67,593,973 67,594,258 LTR1 ⋆ ⋆ ⋆ 1
12 25,238,658 25,239,260 L1ME4b ⋆ ⋆ ⋆ 1
12 25,240,034 25,240,102 L1MC4a ⋆ ⋆ ⋆ 1
12 25,240,103 25,240,176 FLAM C ⋆ ⋆ ⋆ 1
12 25,240,332 25,240,527 MER2B ⋆ ⋆ ⋆ 1
12 25,240,539 25,240,654 L2a ⋆ ⋆ ⋆ 1
12 25,244,206 25,244,530 L3b ⋆ ⋆ ⋆ 2
16 67,958,376 67,958,757 L2 – – ⋆ 1
16 67,958,376 67,958,757 L2 ⋆ ⋆ ⋆ 1
16 67,959,406 67,959,487 MIRc ⋆ ⋆ ⋆ 1
16 67,961,135 67,961,341 MIRb – – ⋆ 1
16 67,962,559 67,962,859 AluSx1 ⋆ – ⋆ 1
16 67,962,559 67,962,859 AluSx1 ⋆ ⋆ ⋆ 1
16 67,965,259 67,965,501 L4 C Mam ⋆ ⋆ ⋆ 2
16 67,965,773 67,965,888 MIRb ⋆ ⋆ ⋆ 1
16 67,966,039 67,966,204 MIRc ⋆ ⋆ ⋆ 1
16 67,967,727 67,967,874 MIR ⋆ – ⋆ 1
16 67,969,984 67,970,273 AluSq2 ⋆ ⋆ ⋆ 2
16 67,970,280 67,970,585 AluSx1 ⋆ ⋆ ⋆ 2
16 67,970,760 67,970,841 L2c – – ⋆ 1
16 67,970,868 67,971,163 AluJr – – ⋆ 1
16 67,970,868 67,971,163 AluJr ⋆ ⋆ ⋆ 1
16 67,971,449 67,971,744 AluY ⋆ ⋆ ⋆ 1
16 67,971,796 67,972,064 AluSx1 ⋆ ⋆ ⋆ 2
16 67,972,072 67,972,131 Alu ⋆ ⋆ ⋆ 1
16 67,972,131 67,972,168 (AAAT)n ⋆ ⋆ ⋆ 1
16 67,972,175 67,972,500 AluSz6 ⋆ ⋆ ⋆ 2
16 67,972,503 67,972,801 AluSq2 ⋆ ⋆ ⋆ 2
16 67,972,933 67,973,231 AluSq2 ⋆ ⋆ ⋆ 2
16 67,973,237 67,973,384 L1MB5 ⋆ ⋆ ⋆ 2
16 67,973,384 67,971,672 AluY ⋆ ⋆ ⋆ 1
16 67,973,672 67,973,704 (AAAT)n – – ⋆ 1
16 67,973,672 67,973,704 (AAAT)n ⋆ ⋆ ⋆ 1
16 67,973,704 67,973,745 L1MB5 – – ⋆ 1
16 67,973,806 67,974,103 AluJb – – ⋆ 1
16 67,973,806 67,974,103 AluJb – ⋆ ⋆ 1

Continued on next page

47



Chr. Start End RE MML NME CMD #

16 67,974,124 67,974,423 AluY – ⋆ ⋆ 1
16 67,974,124 67,974,423 AluY ⋆ ⋆ ⋆ 1
16 67,974,424 67,974,648 AluSz6 ⋆ ⋆ ⋆ 1
16 67,974,648 67,974,773 L1M5 ⋆ ⋆ ⋆ 2
16 67,975,040 67,975,346 AluSc8 ⋆ ⋆ ⋆ 1
17 7,666,567 7,666,868 AluSq2 ⋆ ⋆ ⋆ 1
17 7,668,548 7,668,856 AluJb – ⋆ – 1
17 7,668,548 7,668,856 AluJb ⋆ ⋆ ⋆ 1
17 7,669,141 7,669,244 MIRb ⋆ ⋆ ⋆ 1
17 7,669,895 7,670,197 AluSp – – ⋆ 2
17 7,670,203 7,670,293 MIRc – – ⋆ 1
17 7,670,752 7,670,858 MER47A – – ⋆ 1
17 7,670,752 7,670,858 MER47A ⋆ ⋆ ⋆ 1
17 7,670,873 7,671,171 AluSx – – ⋆ 1
17 7,670,873 7,671,171 AluSx ⋆ ⋆ ⋆ 1
17 7,671,172 7,671,300 FLAM C ⋆ ⋆ ⋆ 1
17 7,671,300 7,671,599 AluSx1 – – ⋆ 2
17 7,671,599 7,671,635 AluJb – – ⋆ 1
17 7,671,660 7,671,815 Tigger5 – – ⋆ 2
17 7,671,815 7,672,107 AluJo – – ⋆ 1
17 7,672,110 7,672,392 AluSx1 – – ⋆ 2
17 7,672,392 7,672,430 (AAAAT)n – – ⋆ 1
17 7,672,430 7,672,590 AluJb – – ⋆ 1
17 7,680,191 7,680,419 MER2 ⋆ ⋆ ⋆ 1
17 7,680,419 7,680,525 L1M5 ⋆ ⋆ ⋆ 1
17 7,681,086 7,681,158 L1M5 ⋆ ⋆ ⋆ 1
17 7,681,158 7,681,338 AluSq2 ⋆ ⋆ ⋆ 1
17 7,681,338 7,681,635 AluSq2 ⋆ ⋆ ⋆ 2
17 7,681,635 7,681,777 AluSq2 ⋆ ⋆ ⋆ 1
17 7,681,785 7,682,092 AluYm1 ⋆ ⋆ ⋆ 1
17 41,517,629 41,517,733 MIR3 ⋆ ⋆ ⋆ 1
17 41,517,886 41,518,058 FRAM – – ⋆ 1
17 41,519,347 41,519,392 (GTGA)n ⋆ ⋆ ⋆ 1
17 41,519,548 41,519,577 (CTCCC)n ⋆ – ⋆ 1
17 41,520,124 41,520,292 MIRb – – ⋆ 1
17 41,520,124 41,520,292 MIRb ⋆ ⋆ ⋆ 1
17 41,520,569 41,520,785 MIRc ⋆ – ⋆ 1
17 41,521,337 41,521,374 (GCCCCA)n – – ⋆ 1
17 41,521,484 41,521,571 MIRb – – ⋆ 1
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Chr. Start End RE MML NME CMD #

17 41,521,484 41,521,571 MIRb ⋆ – ⋆ 1
17 41,521,635 41,521,806 MIRb ⋆ – ⋆ 1
17 41,523,023 41,523,192 MIRb ⋆ – ⋆ 1
17 41,523,023 41,523,192 MIRb – ⋆ ⋆ 1
17 41,523,175 41,523,208 L2a ⋆ – ⋆ 1
17 41,523,175 41,523,208 L2a – ⋆ ⋆ 1
17 41,523,236 41,523,437 MIRc – ⋆ ⋆ 1
17 41,525,654 41,525,806 MIRb – – ⋆ 1
17 41,525,959 41,526,273 AluY ⋆ – ⋆ 1
17 41,525,959 41,526,273 AluY ⋆ ⋆ ⋆ 1
17 41,526,449 41,526,532 AluJb ⋆ – ⋆ 1
17 41,526,449 41,526,532 AluJb ⋆ ⋆ ⋆ 1
17 41,526,562 41,526,872 AluSz ⋆ – ⋆ 2
17 41,528,710 41,529,006 AluSz ⋆ – ⋆ 1
17 41,528,710 41,529,006 AluSz ⋆ ⋆ ⋆ 1
17 41,529,478 41,529,589 MIRc ⋆ – ⋆ 1
17 41,529,478 41,529,589 MIRc – ⋆ ⋆ 1
17 41,531,411 41,531,574 MIRb – ⋆ – 1
17 41,531,636 41,531,714 MER103C – ⋆ – 1
17 41,531,741 41,531,866 MIR3 – ⋆ – 1
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