Supplementary Information

Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition

Dubé CE, Ziegler M, Mercière A, Boissin E, Planes S, Bourmaud CAF, Voolstra CR

Contents

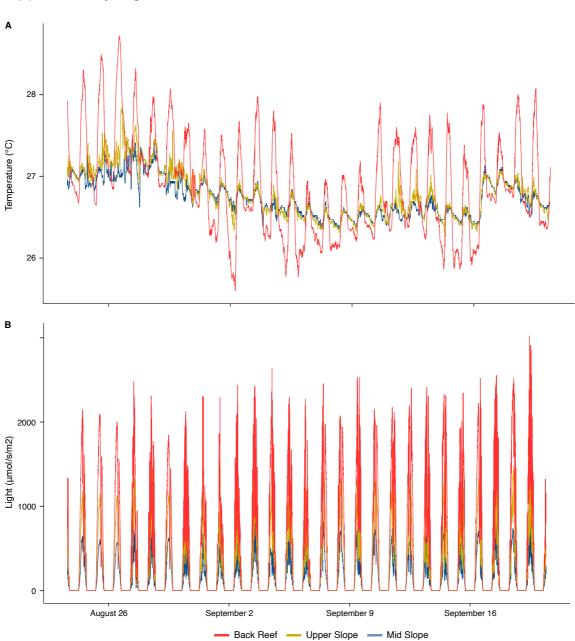
Supplementary Table 1. Two- and one-way permutational multivariate analysis of variance (PERMANOVA) showing the effect and interaction of 'Genotype' and 'Habitat' on bacterial ASV composition (two-way analysis represents the overall variation and one-way analysis represents genetic and environmental variation, separately).

Supplementary Table 2. One-way permutational multivariate analysis of variance (PERMANOVA) showing the effect of 'Colony size' on bacterial ASV composition.

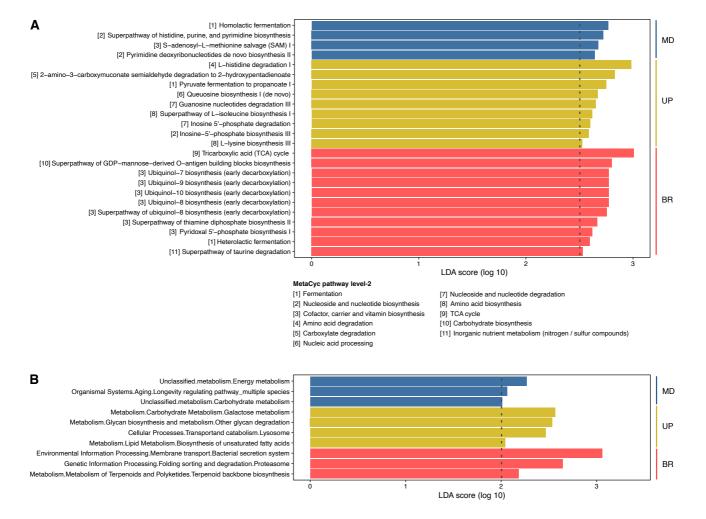
Supplementary Figure 1. Temperature (A) and light (B) profiles measured at each of the habitats over time.

Supplementary Figure 2. LEfSe analysis displaying predicted functional profiles of the habitat-specific bacterial ASVs for MetaCyc pathways (**A**) and levels 1–3 for individual KOs (**B**).

Supplementary Table


Supplementary Table 1. Two- and one-way permutational multivariate analysis of variance (PERMANOVA) showing the effect and interaction of 'Genotype' and 'Habitat' on bacterial ASV composition (two-way analysis represents the overall variation and one-way analysis represents genetic and environmental variation, separately).

Factor per analysis	df	F	R2	р
Overall variation (Two-way)				
Genotype	5	1.9494	0.0678	0.0001
Habitat	2	2.8612	0.0398	0.0001
Genotype X Habitat	7	1.1788	0.0574	0.0024
Genetic variation (One-way and Post-hoc test)				
Mid Slope	3	1.2255	0.1432	0.042
MD_G2 and MD_G6	1	1.4013	0.0910	0.020
<u>Upper Slope</u>	5	1.8340	0.0984	0.0001
UP_G1 and UP_G3	1	1.3465	0.0381	0.043
UP_G1 and UP_G4	1	2.3949	0.0403	0.001
UP_G1 and UP_G5	1	1.8782	0.0471	0.001
UP_G1 and UP_G6	1	2.5177	0.0530	0.001
UP_G2 and UP_G3	1	1.3646	0.1852	0.032
UP_G2 and UP_G4	1	1.5121	0.0496	0.006
UP_G2 and UP_G5	1	1.3187	0.1165	0.023
UP_G2 and UP_G6	1	1.4811	0.0801	0.003
UP_G3 and UP_G4	1	1.3745	0.0452	0.018
UP_G3 and UP_G5	1	1.5943	0.1375	0.003
UP_G3 and UP_G6	1	1.7262	0.0922	0.002
UP_G4 and UP_G5	1	1.6254	0.0469	0.001
UP_G4 and UP_G6	1	2.4165	0.0570	0.001
UP_G5 and UP_G6	1	2.0292	0.0469	0.001
Back Reef	4	1.1111	0.2410	0.072
Environmental variation (One-way)				
G1	1	1.8359	0.0950	0.0001
G2	1	1.3700	0.1741	0.0062
G3	1	1.3509	0.1838	0.0338
G4	1	1.3700	0.1741	0.0049
G5	1	2.0273	0.1556	0.0012
G6	1	1.4294	0.0700	0.0035


Supplementary Table 2. One-way permutational multivariate analysis of variance (PERMANOVA) showing the effect of 'Colony size' on bacterial ASV composition.

Factor per analysis	df	F	R2	р
Overall variation (One-way)				
Colony size classes	19	1.1520	0.1599	0.027
Genotype variation (One-way)				
G1	12	0.9267	0.3079	0.735
G4	11	0.9575	0.3450	0.636
G5	5	1.1300	0.4466	0.288
G6	9	1.1412	0.4829	0.088

Supplementary Figures

Supplementary Figure 1 | Temperature (A) and light (B) profiles measured at each of the habitats over time.

Supplementary Figure 2 | LEfSe analysis displaying predicted functional profiles of the habitat-specific bacterial ASVs. Barplots show the 24 differentially abundant MetaCyc pathways (level 2 in brackets) ($\bf A$) and the 10 KEGG pathways (level 3) ($\bf B$) identified in the microbiomes of particular reef habitats, based on a Linear Discriminant Analysis (LDA, p < 0.05 for factorial Kruskal–Wallis and pairwise Wilcoxon tests). Each color denotes the habitat, wherein the distinguishing functional traits were identified (Back reef = red, Upper slope = yellow, Mid slope = blue). Only MetaCyc and KEGG pathways meeting an LDA significant threshold > 2.5 and 2.0, respectively, are shown. The threshold of the logarithmic LDA score is represented by the dotted line. See Supplementary Data 5 for abundances of predicted gene counts of MetaCyc and KEGG pathways (level 1 to 3).