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1 Concepts

1.1 Unbiased cellular summary covariates

Given the read counts of genes i = 1,...,n4 for a cell as vector g = {g;} and no additional information to favor one gene
over another (a.k.a unbiased in the biological definition instead of its statistical definition), the L° norm of vector g is
#:9; # 0. Its L! norm is >, 9i- They each equate the number of zero-read genes and the log total read count after a linear
and a log transformation. The use of log total read count instead of total read count as a covariate is natural because the

variables themselves (log expression) are in log space.

2 Derivations

2.1 Minimum mean square error (MMSE) estimator for Inp in Binom(n,p)

See https://en.wikipedia.org/wiki/Beta_distribution#Geometric_mean.

Consider a single data point &k sampled from the binomial distribution Binom(n, p), in which n is known. Without any
other information, we assume p ~ U(0,1) = Beta(1,1) follows a standard uniform prior distribution. Then the posterior
distribution for p is Beta(k + 1,n — k + 1) as the conjugate of binomial distribution. The posterior probabilistic density

function is
pail(l - p)ﬁ71 (1)
B(a, ) ’

where a =k+1, 8=n—k+1, B(e, ) =T(a)T'(8)/T (e + B), and T is the Gamma function.

P(p) =

™ME_mail: lwang55@mgh.harvard.edu



The MMSE estimator for Inp is

Inp = Elnp
1 ! 1 B—1
= — 27 (1 —2)" " Inzdr
B J, =02

I R 1
= B(a.5) da J, 271 — )P lda
1 9B(a,p)
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Oln B(a, 8)
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OlnT(a) IOlnT(a+p)
da Oa

= Pla) —dla+p), (2)

where v is the digamma function.

3 Proofs

3.1 Inexistence of unbiased estimator for Inp in Binom(n,p)

Consider the random variable X ~ Binom(n,p) with fixed n and p, where n € N* is known and p € (0,1) is unknown.

To find an unbiased estimator for Inp, assume it exists as ﬂl\p(n;X ). Since the domain of the unbiased estimator is

{0,1,...,n}, we can rewrite it as
@(n; X)= Zéx7wvw(n), where v, (n) = @(n, x), (3)
=0
and §;; = 1if i = j and 0 otherwise is the Kronecker delta function. This represents @(n;X ) as a value vector
v(n) = (vg(n),...,vn(n)) of size n + 1. Solving v(n) would solve the unbiased estimator.

The definition of unbiased estimator requires that for all p € (0,1),

lnp = Exﬁ(n;X)

z=0
- Y s
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Note the r.h.s is a polynomial of p up to order n, whose coefficients are linear functions of v(n). However, the Taylor
expansion of the l.h.s is an infinite order polynomial with nonvanishing coefficients. Therefore a solution for v(n) that
satisfies this equation for all p € (0,1) does not exist. Correspondingly the unbiased estimator @(n, X) for Inp does not

exist.
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Supplementary Figure 1: Synthetic datasets from different simulation methods mimicked the read count distributions of the real dataset
with different similarities in survival functions. a For Perturb-seq, 5,017 genes in 8,472 cells were simulated from 18,583 genes in 4,622 cells in
the real dataset. b For MARS-seq, 32,854 genes in 8,472 cells were simulated from 29,161 genes in 9,760 cells in the real dataset. Expressed cell for a
given gene (x axis in columns 2 and 4) is defined as those cells with non-zero read count for the gene. Colors indicate different simulation methods.
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Supplementary Figure 2: Other methods failed to model the sparsity in the multinomial mRNA sampling process and recovered distorted
null P-values of single-cell co-expression (X) as shown by histogram density (Y). Left to right and top to bottom: log(CPM+1), log(CPM+1)
with cellular summary covariates, Sanity, bayNorm-mode, bayNorm-mean, sctransform, MAGIC, DCA, DeepImpute, scDoc, DrImpute, and Enlmpute.
Genes were split into 10 equal bins from low to high expression. The null P-value distribution of co-expression between each bin pair formed a separate
histogram curve. Central curve shows the median of all histogram curves. Shades show 50%, 80%, and 100% of all histograms. Gray line indicates
uniform distribution. LogCPM’s 0-biased P-values indicated that the null synthetic dataset could recapitulate the technical confounding effect from the
multinomial sampling process of RNA sequencing. See Fig. 2d for the panel for Normalisr and the description of drawing style.
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Supplementary Figure 3: Decision tree to introduce covariates on the Perturb-seq dataset (a) or to validate them on the MARS-seq
dataset (b) iteratively as a Taylor expansion. Each step (top to bottom) shows the covariates (I: total log read count in each cell, ng: number of
0-read genes in each cell, besides constant intercept) and the resulting histograms (Y) of null co-expression P-values (X), based on the same drawing
style as in Fig. 2c. The covariate set was optimized towards a uniform distribution of null co-expression P-values from the synthetic null dataset. Red:
the covariate set with the best P-value histogram and fewest covariates was selected for Normalisr from the Perturb-seq dataset and confirmed in the
MARS-seq dataset.
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Supplementary Figure 4: Method performances vary in recovering uniformly distributed null P-values in single-cell DE. a Distribution of
null P-values in single-cell DE (X) as shown by histogram density (Y). b Quantile-quantile plot of expected (X) and actual (Y) null P-values. Each dot
represents the FPR (Y) at the corresponding significance cutoff for P-value (X). Genes were evaluated in 10 bins from low to high expression (color).

The panels for Normalisr are in Fig. 2a.



a 109 g S
0.51 =4 9] £
> £ £ 8 s
S 0.04. 1S € 2 o
ﬁ =} o © B
—0.5 1 S = B
3 3 ’
-1.04+ T T 04— T T -1.04 T T -1.04+ T T -1.04~ T T
-04 00 04 -04 0.0 04 -04 00 04 -04 00 04 -04 00 04
True logFC True logFC True logFC True logFC

Seurat
MAGIC

Deeplmpute

T T T -1.0 4~ T T -1.0 4~ T T -1.0 4~ T T -1.04~ T T
-04 00 04 -04 00 04 -04 00 04 -04 0.0 04 -04 00 04
True logFC True logFC True logFC True logFC

1.0 1.0 100%
0.5 1 75%
0.0 {+ el 50%

-0.51 25%

-1.04 T T —1.0 4~ T T —1.0 4~ r r 0%
-04 00 04 -04 00 04 -04 00 04
True logFC True logFC True logFC

scDoc

Drimpute
Enimpute

Normalisr

1.0
O
e

o 0.8 1
0.6

bayNorm-mode

ay

o
©
L

sctransform

0.4 MAST

LogFC scale

MAGIC

R2 with true lo

1071 A

0.2 1
3 Deeplmpute
T 0.0 % T scDoc

0 0.5 1 0 0.5 1 Enlmpute
Proportion of expressed cells Proportion of expressed cells

Normalisr

bayNorm-mode

Y
o
°©

sctransform

MAST

LogFC scale

MAGIC

R2 with true logFC

-

o
L
1

Deeplmpute
T scDoc

0 . 051 0 05 1 Enlmpute
Proportion of expressed cells Proportion of expressed cells

Supplementary Figure 5: Normalisr had low bias and variance in logFC estimation on different synthetic datasets based on the Perturb-
seq dataset. a Recovered logFCs (Y) were compared against the synthetic ground-truth (X) for genes (dot) from low to high expression (color) for
different methods on the synthetic null dataset. Gray lines indicate X=Y. The panel for Normalisr is in Fig. 3a. bc Normalisr accurately recovered
logFCs with low bias (left, Y as regression coefficient) and low variance (right, Y as R?) when evaluated on synthetic datasets from Splatter (b) and
SymSim (c). Horizontal gray lines indicate bias- or variance-free performance.
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Supplementary Figure 6: Null DE evaluation results were reproducible on the MARS-seq dataset of dysfunctional T cells from frozen
human melanoma tissue. Evaluations were reproduced for Fig. 2a and Fig. S4 (ab), Fig. 2b (c), and Fig. 2¢ (d). abc Normalisrhad uniformly
distributed null P-values in single-cell DE. d Normalisr was much faster than other methods.
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Supplementary Figure 7: Null co-expression evaluation results were reproducible on the MARS-seq dataset of dysfunctional T cells from
frozen human melanoma tissue. Evaluations were reproduced for Fig. 2d and Fig. S2 (a), and Fig. 2e (b). Only Normalisr had uniformly distributed
null P-values in single-cell co-expression from the synthetic data that mimicked MARS-seq of dysfunctional T cells from frozen human melanoma tissues.
BayNorm failed parts of the evaluations with undocumented errors and could not be compared.
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Supplementary Figure 8: DE logFC evaluation results were reproducible on the MARS-seq dataset of dysfunctional T cells from frozen
human melanoma tissue. Evaluations were reproduced for Fig. 3a and Fig. S5a (a), Fig. 3b (b), and Fig. S5bc (cd). a Normalisr accurately recovered
logFCs (Y) when compared against the ground-truth (X) for genes from low to high expression (color) on the synthetic null dataset. Gray line indicates
X=Y. bed Normalisr accurately recovered logFCs with low bias (left, Y as regression coefficient) and low variance (right, Y as R?) when evaluated
on synthetic datasets from null co-expression (b), Splatter (¢), and SymSim (d). Horizontal gray lines indicate bias- or variance-free performance.
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Supplementary Figure 9: Quantile-quantile plot of theoretical (X) and actual (Y) P-values of CRISPRIi DE (Fig. 1c) from NTC gRNAs.
DE was performed separately with competition-naive and -aware methods and separately for genes targeted by positive control gRNAs at the TSS
and other genes. Data points were randomly down-sampled to avoid overly dense plots.
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Supplementary Figure 10: Top principal components of gRINA variation could account for most of the confounding effects on the small-
scale CRISPRIi screen. Density histograms (Y) of P-values (X) from the competition-aware method remained almost identical between considering
(left-to-right) all other gRNAs and their top 500, 200, or 100 principal components. Gray lines indicate the expected uniform distribution for null
P-value. Shades indicate absolute errors estimated as 24/N + 1, where N is the count in each bin.
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Supplementary Figure 11: CRISPRI off-target effects were weaker than genuine trans-associations. Estimated mean off-target rate (X) reduced
to 34% at Q < 1077 for significant trans-associations.
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Supplementary Figure 12: MARS-seq melanoma dataset contained few outlier cells/samples with very low variances. The histograms (Y)

show the distributions of inverse normalized relative variances (X) for each cell in the dysfunctional v.s. naive T cell setting. Outlier cells had distinctively
lower variances than the major population (top). Our outlier removal strategy successfully removed these outliers (bottom).
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Supplementary Figure 13: Single-cell transcriptome-wide co-expression network of dysfunctional T cells from human melanoma before

GO program removal. Legend is in Fig. S14. Zooming in on a digital device is advised.
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Supplementary Figure 14: Single-cell transcriptome-wide co-expression network of dysfunctional T cells from human melanoma after GO
program removal. Removed GO programs were cytosolic part (GO:0044445) and chromosome condensation (GO:0030261). Fig. 7c further removed
the non-coding cluster and the minor connected components. Zooming in on a digital device is advised.
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Supplementary Figure 15: Normalisr identified DEs between dysfunctional and naive T cells in human melanoma MARS-seq. a Normal-
isr detected expression changes associated with T cell dysfunction, shown in a volcano plot of single-cell DE between logFC (X) and -log P-value (Y,
Fig. 1c). Red/blue indicates up-/down-regulated genes (Benjamini-Hochberg Q-value < 10_20). b Up-regulated genes significantly overlapped with
published T cell dysfunction signature gene sets (red) in terms of odds ratio (OR) and two-sided hypergeometric P-value, including (left-to-right) the
Mel75 exhaustion signature in scRNA-seq of human melanoma [49], the dysfunctional-activating signature in bulk RNA-seq of implanted mouse MC38
tumors [47], and the chronic T cell exhaustion signature in bulk RNA-seq of lymphocytic choriomeningitis virus infected mice [48].



