Supporting Information

Maltohepatose-Presenting Nanoscale Glycoliposomes for the Delivery of Rifampicin to *E. coli*

Bin Wu, William Ndugire, Xuan Chen, Mingdi Yan* Department of Chemistry, The University of Massachusetts Lowell, Lowell, MA 01854

*Corresponding Author: Mingdi_Yan@uml.edu

Table of Contents

1. Synthesis of compound 16	S2
2. Synthesis of compound 17	S3
3. Standard calibration curve of rifampicin	S4
4. Calculation of apparent first-order release constant k_{obs} and permeability	
coefficient P_{app} for rifampicin release from liposomes	S4
5. Standard calibration curves of Man-DPPE and G7-DPPE	
6. Bacterium-liposome interactions by FRET	S6
7. Bacterium-liposome interactions by confocal fluorescence microscopy	
8. ¹ H NMR, ¹³ C NMR, ³¹ P NMR and ESI-MS spectra	S8-S32
9. References	

1. Synthesis of compound 16.

Compound **16** was synthesized following the reaction sequence in **Scheme S1** and previous procedures with modifications.^{1,2}

15 14 16 13 Synthesis of compound 16: (a) NaN₃, DMF, 90 °C, overnight Scheme S1. (TsCl), triethylamine, (quantitative vield); (b) tosyl chloride 4dimethylaminopyridine (DMAP), dichloromethane, 0 °C-R.T., 12 h (90%); (c) NaI, DMF, 60 °C, 3 h (85%).

2-(2-(2-Azidoethoxy)ethoxy)ethanol (14)

2-(2-(2-Chloroethoxy)ethoxy)ethanol (**13**, 5.0 g, 30 mmol) and sodium azide (3.9 g, 60 mmol) were added to DMF (40 mL). The mixture was stirred at 90 °C under Ar atmosphere overnight. The solvent was evaporated under reduced pressure at 50 °C, and water was added. The solution was then extracted with ethyl acetate for three times. The organic phase was combined, washed with brine, and dried over Na₂SO₄. After evaporation of the solvent, the crude product was purified by flash column chromatography (hexanes/ethyl acetate 1:1 v/v), giving compound **14** as a colorless oil (5.2 g, quant.) ¹H NMR (500 MHz, CDCl₃) δ 3.78 – 3.72 (m, 2H), 3.72 – 3.67 (m, 2H), 3.65 – 3.59 (m, 2H), 3.46 – 3.37 (m, 2H).

2-(2-(2-Azidoethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (15)

In a solution of compound **14** (4.3 g, 24.5 mmol) in dry DCM (50 mL), triethylamine (4.1 mL, 29.4 mmol), DMAP (295 mg, 2.4 mmol) and 4 Å molecular sieves were added. The mixture was stirred at room temperature for 20 mins and then cooled down to 0 °C. A solution of tosyl chloride (5.6 g, 29.4 mmol) in dry DCM (20 mL) was added. After the reaction mixture was warmed up to room temperature, it was stirred overnight. The mixture was poured into 1 M HCl, extracted by DCM three times. The organic phase was combined, washed with NaHCO₃ solution, brine, dried over Na₂SO₄, and the solvent was evaporated. The crude product was purified by flash column chromatography (hexanes/ethyl acetate, 3:2 v/v), giving compound **15** as a colorless oil (7.26 g, 90%). ¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.78 (m, 2H), 7.39 – 7.32 (m, 2H), 4.19 – 4.15 (m, 2H), 3.72 – 3.69 (m, 2H), 3.64 (t, *J* = 5.4 Hz, 2H), 3.61 (s, 4H), 3.39 – 3.33 (m, 2H), 2.45 (s, 3H).

Azido-2-(2-(2-iodoethoxy)ethoxy)ethane (16)

Compound 15 (3.3 g, 10.0 mmol) and potassium iodide (4.98 g, 30.0 mmol) were added to DMF (50 mL). The mixture was stirred at 50 °C under Ar atmosphere for 5 hours. After the solvent was evaporated under reduced pressure, the residue was washed with water and extracted with ethyl acetate three times. The organic phase was combined, washed with brine, and dried over Na₂SO₄. After evaporation of the

solvent, the crude product was purified by flash column chromatography (hexanes/ethyl acetate 2:1 v/v), giving compound **16** (2.43 g, 85%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃): δ 3.77 (t, 2 H, *J* = 6.6 Hz), 3.70 (t, 2H, *J* = 5.1 Hz), 3.68 (s, 4 H,), 3.40 (t, 2 H, *J* = 5.1 Hz), 3.27 (t, 2 H, *J* = 6.6 Hz).

2. Synthesis of compound 17

Compound 17 was synthesized as shown in Scheme S2 following a reported procedure.³

Scheme S2. Synthesis of compound **17**: (a) succinic anhydride, triethylamine, R.T., 4 h (83%).

DPPE-NH₂ (300 mg, 0.425 mmol) and Et₃N (150 µL) were dissolved in 25 mL of CHCl₃/MeOH (9:1). Succinic anhydride (60 mg, 0.6 mmol) was added, and the solution was stirred at room temperature for 5 h. The reaction mixture was acidified by adding 50 mL of CHCl₃ and then 50 mL of 0.02 M citrate/0.02 M phosphate buffer (pH 5.5), and the mixture was stirred for 30 min. The aqueous phase was extracted three times with 60 mL of CHCl₃, and the combined organic phases were dried over anhydrous sodium sulfate, and solvent was removed in vacuo to give the product **17** as a viscous solid (315 mg, 83%). 'H NMR (500 MHz, CDCl₃) δ 7.51 (t, J = 4.8 Hz, 1H, NHCO), 5.23 (dt, J = 9.0, 4.4 Hz, 1H, CH₂CHCH₂), 4.38 (dd, J = 12.0, 3.4 Hz, 1H, CH₂CHCH₂OP), 4.16 (dd, J = 12.0, 6.6 Hz, 1H), 4.08 – 3.92 (m, 4H, CH₂CHCH₂OP and POCH₂CH₂NH), 3.47 (q, J = 4.8 Hz, 2H, PCOCH₂CH₂NH), 3.04 (q, J = 7.2 Hz, 4H, 2×CH₃(CH₂)₁₂CH₂CCO), 1.67 – 1.53 (m, 4H, 2×CH₃(CH₂)₁₂CH₂CH₂CO), 1.36 – 1.22 (m, 57H, 2×CH₃(CH₂)₁₂CH₂, (CH₃CH₂)₃N), 0.88 (t, J = 6.9 Hz, 6H, 2×CH₃(CH₂)₁₂CH₂).

3. Standard calibration curve of rifampicin

Figure S1. Standard calibration curve of rifampicin, constructed by measuring the absorbances of varying concentrations of rifampicin solutions in DMSO at 475 nm.

4. Calculation of apparent first-order release constant k_{obs} and permeability coefficient P_{app} for rifampicin release from liposomes.

The model reported by Anderson and coworkers was used.⁴ The following equation describes the concentration of drug inside the liposomes vs. dialysis time:

$$-\frac{dC_i^t}{dt} = k_{obs}(C_i^t - C_o^t) \tag{S1}$$

where C_i^t and C_o^t are the drug concentrations inside and outside the liposomes at time t, respectively, and k_{obs} is the first-order rate constant.

Since the total mass of the drug in the sample is a constant, and C_i^t is equal to C_o^t at equilibrium, the following equation is derived:

$$C_o^t = \frac{1}{V_0} [(V_i + V_0)C_0^\infty - V_i C_i^t]$$
(S2)

where V_i and V_0 are the volumes of the aqueous solutions inside and outside the liposomes, respectively.

Considering that $V_i \ll V_0$, Eq. 1 becomes

$$\frac{dC_0^t}{dt} = k_{obs}(C_0^\infty - C_0^t) \tag{S3}$$

which can be solved to give

$$In[(C_0^{\infty} - C_0^0) / (C_0^{\infty} - C_0^t)] = k_{obs}t$$
(S4)

The apparent permeability coefficient P_{app} can be obtained from the following equation:

$$P_{app} = k_{obs} V / A \tag{S5}$$

where V is the entrapped volume and A is the surface area of the liposomes. The V/A ratio can be obtained from the following: V/A = d/6, where d is the hydrodynamic diameter of the liposome.

(a) 0.35 (b) 0.7 0.3598x + 0.0589 5.6757x+0.0531 0.3 0.6 $R^2 = 0.9977$ $R^2 = 0.9887$ **Absorbance (a.u.)** 0.2 0.15 0.1 **Absorbance (a.u.**) 0.4 0.3 0.2 0.05 0.1 0 0 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 Concentration of Man-DPPE (mM) Concentration of G7-DPPE (mM)

5. Standard calibration curves of Man-DPPE and G7-DPPE

Figure S2. Calibration curves for (a) Man-DPPE, and (b) G7-DPPE. Solutions of varying concentrations of G7-DPPE or Man-DPPE were treated with anthrone solution (0.5 wt% in 98% sulfuric acid) following the procedure described in the Experimental section of the manuscript. The absorbance at 620 nm of the resulting solution was measured, and the data were plotted against the concentration of the glycolipid.

6. FRET

Figure S3. Bacterium-liposome interactions by FRET for NBD/Rh-labeled fluid (a) liposomes, and (b) Man-glycoliposomes: fluorescence spectra of liposomes alone (black), liposomes after mixing with Triton X-100 (green) or *E. coli* immediately (red) and after 1 h incubation (blue). Excitation: 460 nm.

Sample	Fluorescence intensity at 590 nm (a.u.)		Fluorescence intensity at 536 nm (a.u.)			I590 nm/I536 nm			
	G7-	Man-	liposome	G7-	Man-	liposome	G7-	Man-	liposome
NBD/Rh-labeled fluid liposomes	64.9	81.2	86.2	25.7	19.5	21.7	2.5	4.2	4.0
Addition of Triton X-100	23.4	21.0	24.3	36.2	32.8	37.3	0.6	0.6	0.7
Addition of bacteria, immediate	54.8	68.7	75.3	16.8	13.2	15.1	3.3 (32%)	5.2 (23%)	5.0 (25%)
Addition of bacteria, after 1 h incubation	62.9	73.9	78.3	14.6	11.1	12.2	4.3 (72%)	6.7 (60%)	6.4 (60%)

Table S1. Fluorescence intensity at 590 nm (Rh) and 536 nm (NBD) of NBD/Rh-labeled glycoliposomes before and after incubations with *E. coli* ORN208.

7. Confocal fluorescence microscopy

Figure S4. Confocal fluorescence images of NBD/Rh-labeled fluid G7-glycoliposomes incubated with *E. coli* ORN208 during a course of 5 min. Scale bars: 2 μm.

8. ¹H NMR, ¹³C NMR, and ³¹P NMR spectra

Figure S5. ¹H NMR spectrum of methyl 2,3,4,6-tetra-*O*-benzyl-α-D-mannopyranoside (1) in CDCl₃.

Figure S6. ¹H NMR spectrum of 2,3,4,6-tetra-O-benzyl- α/β -D-mannopyranose (2) in CDCl₃.

Figure S7. ¹H NMR spectrum of (*t*-butyloxycarbonyl) methyl 2,3,4,6-tetra-*O*-benzyl-α-D-mannopyranoside (3) in CDCl_{3.}

Figure S8. ¹³C NMR spectrum of (*t*-butyloxycarbonyl) methyl 2,3,4,6-tetra-*O*-benzyl-α-D-mannopyranoside (3) in CDCl₃.

Figure S10. ¹³C NMR spectrum of 4 in CDCl₃.

Figure S13. ¹H NMR spectrum of 6 in CDCl₃.

Figure S14. ¹³C NMR spectrum of 6 in CDCl₃.

Figure S15. ³¹P NMR spectrum of 6 in CDCl₃.

Figure S16. ¹H NMR spectrum of Man-DPPE in CDCl₃/CD₃OD/D₂O (7:4:0.1 v/v/v).

Figure S17. ¹³C NMR spectrum of Man-DPPE in CDCl₃/CD₃OD/D₂O (7:4:0.1 v/v/v).

--- 0. 401

Figure S19. ¹H NMR spectrum of 9 in CDCl₃

Figure S20. ¹³C NMR spectrum of 9 in CDCl_{3.}

Figure S21. ¹H NMR spectrum of 10 in D_2O .

57

Figure S22. 13 C NMR spectrum of 10 in D₂O.

Figure S23. ¹H NMR spectrum of 11 in D₂O.

Figure S24. 13 C NMR spectrum of 11 in D₂O.

Figure S25. ¹H NMR spectrum of 17 in CDCl₃.

Figure S26. ¹H NMR spectrum of G7-DPPE in CDCl₃/CD₃OD (7:4 v/v).

Figure S27. ¹³C NMR spectrum of G7-DPPE in CDCl₃/CD₃OD (7:4 v/v).

Figure S28. ³¹P NMR spectrum of G7-DPPE in in CDCl₃/CD₃OD (7:4 v/v).

MS calcd. for C₈₉H₁₆₁N₂O₄₇PS [M-H]⁻, m/z: 2071.9655, 2072.9688, 2073.9722; [M-2H]²⁻, m/z: 1035.4791, 1035.9808, 1036.4825. Found: 2071.9679, 2072.9680, 2073.9733, 1035.4800, 1035.9821, 1036.4822.

9. References

- 1 Norberg, O., Deng, L., Yan, M. & Ramstroem, O. Photo-Click Immobilization of Carbohydrates on Polymeric Surfaces: A Quick Method to Functionalize Surfaces for Biomolecular Recognition Studies. *Bioconjugate Chem.* **2009**, *20*, 2364-2370.
- 2 Deng, L., Norberg, O., Uppalapati, S., Yan, M. & Ramstroem, O. Stereoselective synthesis of light-activatable perfluorophenylazideconjugated carbohydrates for glycoarray fabrication and evaluation of structural effects on protein binding by SPR imaging. *Org. Biomol. Chem.* **2011**, *9*, 3188-3198.
- 3 Schmitt, L., Dietrich, C. & Tampe, R. Synthesis and Characterization of Chelator-Lipids for Reversible Immobilization of Engineered Proteins at Self-Assembled Lipid Interfaces. *J. Am. Chem. Soc.* **1994**, *116*, 8485-8491.
- 4. Xiang, T.; Xu, Y.; Anderson, B. D., The barrier domain for solute permeation varies with lipid bilayer phase structure. *J. Membr. Biol.* **1998**, *165*, 77-90.