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Supplementary Materials

A Analysis of pore-scale flow
A.1 Processing of PIV data

In our analysis of the pore-scale flow, the root mean square velocity of a pixel is calculated as

the temporal root mean square of the magnitude of the fluctuation from the temporal mean (67),

urms(x) =
�h||u(x, t) � hu(x, t)it||2it

�1/2. We normalize this quantity by the velocity magnitude

averaged over time and space (over all pixels) for each pore, huit,x = hh||u(x, t)||itix. To quantify

velocity fluctuations arising from unstable flow, we compute the velocity fluctuations u0(x, t) =

u(x, t) � hu(x, t)it. This fluctuation field enables us to calculate the velocity gradient tensor

associated with flow fluctuations, s0i j = @u
0
i/@x j, pixel-by-pixel. In general, to compute the

discrete derivatives, we use the central di↵erence method, in which the derivative of f with

respect to x evaluated around x = x0 is given by
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On the boundaries of data sets, this central di↵erence is replaced with the forward or backward

finite di↵erence (first or second term respectively).

A.2 Distributions of key flow parameters

To characterize the distribution of key flow parameters in the porous medium in the stable

laminar case, we use our PIV measurements well below the onset of elastic turbulence (at

�̇I = 0.48 s�1) to determine the base laminar flow field throughout the pore space. We then

estimate the shear rate �̇ =
⇣
@ui/@x j + @uj/@xi

⌘
/3 using the in-plane component �̇ ⇡ @u/@y +

@v/@x, since our 2D PIV cannot resolve out-of-plane velocity components. This approximation

then allows us to estimate the magnitude of the spatially-varying Weissenberg number Wi(x) ⌘

N1
�
�̇(x)

�
/2�

�
�̇(x)

�
pixel-by-pixel using the rheologically-measured N1 and �. The distribution



of the measured Wi(x) for 19 imaged pores is shown in Fig. S8A. As shown by the data,

the characteristic interstitial Weissenberg number WiI ⌘ N1(�̇I)/2�(�̇I) defined using imposed

macroscopic flow conditions and macroscopic characteristics of the porous medium represents

the upper limit of this distribution.

Elastic instabilities have been studied in a range of simplified geometries, and are typically

parametrized using the Weissenberg number (19–33, 40, 63, 68–82). Thus, we also parametrize

the di↵erent flow rates tested primarily using the Weissenberg number; however, we note that

the onset of unstable flow due to streamline curvature can be described using a linear stability

analysis of the Stokes equation for a viscoelastic fluid (23, 68). This analysis indicates that the

largest destabilizing term, which leads to the generation of unstable flow locally, is proportional

to M ⌘
p

Wi · De, where the Deborah number De ⌘ �(�̇)||u|| compares the polymer relaxation

time � to the flow time scale (||u||)�1 and  is a measure of the local streamline curvature (20).

In this picture, elastic stresses build up in the flow, generating elastic turbulence when M ex-

ceeds a critical value Mc, found to be ⇡ 6 to 20 in experiments performed in diverse simplified

geometries (20,23,26,31,68,83,84). Thus, the transition to elastic turbulence could also be pa-

rameterized using a characteristic interstitial MI ⌘
q

N1(�̇I )
⌘0�̇I
· �(�̇I)(Q/A)I , again defined using

imposed macroscopic flow conditions and macroscopic characteristics of the porous medium;

here the characteristic streamline curvature is set by the pore length scale, with I = 1/
⇣
2
p
�k

⌘
.

We again use our measurements of the spatially-varying shear rate �̇(x), as well as direct mea-

surements of the spatially-varying local streamline curvature (x), to compute the spatially-

varying M(x) =
p

Wi (x) · De (x), pixel-by-pixel. The distribution of the measured M(x) for

all 19 imaged pores is shown in Fig. S8B. As shown by the data, the characteristic interstitial

MI defined using imposed macroscopic flow conditions and macroscopic characteristics of the

porous medium represents the upper limit of this distribution. For our experiments, MI ranges

from 3.3 to 8.1. The range of Mc,i at which pores become unstable is measured to be ⇡ 5.5 to



7.9, in good agreement with the range of ⇡ 6 to 20 observed in simplified geometries.

A.3 Determination of pore-scale critical Weissenberg number

To determine the critical Weissenberg number in each pore, we first plot the fraction of time

unstable Ft for each pore. To superpose the plots, we shift each curve by the Wi50, defined by

the point where Ft = 0.5, linearly interpolating between data points as needed: this procedure

enables us to avoid noise in the limits Ft ⇡ 0 and Ft ⇡ 1. We define a constant shift of Wic =

Wi50 � 0.35 (Table S1), which minimizes the error in the power law fit Ft ⇠ (WiI/Wic � 1)↵ f ,

where the exponent ↵ f ⇡ 0.4 ± 0.1 is obtained from the best fit across all pores. Pores where

Wic is ambiguous are omitted from this fit and the distribution shown in Fig. 2E-F.

B Power density balance

We start with the scalar partial di↵erential equation for the rate of change of mechanical energy

per unit volume, obtained by dotting the Cauchy momentum equation with velocity (85):

@

@t
1
2
⇢u2

!
+ r · 1

2
⇢u2u � Pr · u + r · [⌧ · u] � ⇢u · g = �r · Pu � ⌧ : ru, (S1)

where u(x, t) is the fluid velocity, ⇢ is the fluid density, P(x, t) is the fluid pressure, ⌧ (x, t) is the

fluid stress tensor, and g is gravitational acceleration.

The first term @
@t

⇣
1
2⇢u

2
⌘

represents the change in kinetic energy, which is of order Re and

thus negligible. The second term r · 1
2⇢u

2u represents the acceleration over a control volume;

this term disappears, since the inlet and outlet of our capillary have the same surface area, so

there is no acceleration across the medium. The third term Pr ·u represents the reversible work

of compression, which is negligible for an incompressible fluid r · u = 0. The fourth term

r · [⌧ ·u] represents viscous work done across control surfaces; this term disappears, since there

is no viscous work done at the capillary walls and the flow is unidirectional across the inlet and



outlet control surfaces. The fifth term ⇢u · g represents gravitational work done, which scales

with the Reynolds and Froude numbers: ⇢u · g ⇠ Re/Fr2 = ⇢gD2
p/⌘0 ⇡ 0.0028 ⌧ 1 and is thus

negligible. This leaves only the last two terms for our experiments:

�r · Pu = ⌧ : ru. (S2)

The left hand side represents the rate of work done by the fluid pressure and the right hand

side represents the rate of viscous energy dissipation, per unit volume. The velocity gradient

tensor can be decomposed into a symmetric and asymmetric component ru = s + !, where

s = (ru + ruT)/2 is the rate of strain tensor and ! = (ru � ruT)/2 is the vorticity tensor.

B.1 Macroscopic averaging

Taking the volume integral of Eq. S2 and applying the divergence theorem to the left hand side

yields the macroscopic power balance over the control volume. This volume is composed of

the four capillary walls and a surface perpendicular to the walls well upstream and downstream

of the bead packing, such that the flow is unidirectional u = uxx̂ across the inlet/outlet surfaces

n = ±x̂:

�
Z

A

Pu · ndA =
Z

V
⌧ : (s + !)dV

=) (Q/A)A�P = Vh⌧ : (s + !)iV

=) �P
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h⌧ : (s + !)iV

Q/A
. (S3)

B.2 Time averaging

Drawing inspiration from the treatment of inertial turbulence, in which flows similarly exhibit

strong spatio-temporal fluctuations, we decompose the velocity into a time-averaged and a fluc-

tuating component u(x, t) = u0(x) + u0(x, t), from which it follows that the rate of strain and

vorticity tensors also decompose s(x, t) = s0(x) + s0(x, t) and !(x, t) = !0(x) + !0(x, t). The



pressure similarly decomposes into a mean and fluctuating component P(x, t) = P0(x)+P0(x, t),

with hP0it = 0 and thus hPit = P0. The time-averaged pressure drop is obtained by taking the

time average h it = 1
tc

R +tc/2
�tc/2

( )dt of Eq. S3 over a moving window t = ±tc/2, where tc is a

su�ciently large time window for meaningful averaging (86):

h�Pit
�L

=
hh⌧ : (s + !)itiV

Q/A
. (S4)

Evaluating the right hand side of this equation requires knowledge of the full dependence of the

stress ⌧ on polymer strain history in 3D (47), which is currently inaccessible in our experiments.

However, motivated by the observations that the flow is quasi-steady and does not appreciably

accumulate strain over a polymer relaxation time, we use a generalized Newtonian fluid model

in which the stress depends on a nonlinear extensional viscosity ⌘e, which incorporates the

strain history of the quasi-steady flow, and on a nonlinear shear viscosity ⌘s, depending on the

local flow field.

We then decompose the dissipation function h⌧ : ruit into a mean and fluctuating compo-

nent. Because our calculations of Hencky strain (described in the Materials and Methods of

the main text) suggest that extensional viscosity does not appreciably contribute to the global

viscous dissipation, we express the fluid stress as a function of the local rate of strain tensor,

⌧i j(si j) (38). Since the stress is nonlinear for a non-Newtonian fluid, the function for stress

⌧i j(s0,i j + s0i j) cannot easily be separated into a mean and fluctuating term; instead, we expand

⌧i j with a Maclaurin series, applying the definition of fluctuations hs0i jit ⌘ 0 and h!0i jit ⌘ 0, but
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which is accurate to fourth order O(hs04i j it). The first term reflects the viscous dissipation of the

mean flow, ultimately yielding Darcy’s law when volume averaged, by definition: h⌧i j|s0,i j(s0,i j +

!0,i j)iV/(Q/A) = ⌘(�̇I)(Q/A)/k. The second term reflects viscous dissipation due to unstable

flow fluctuations, and we define it as the rate of added dissipation h�it.

B.3 Unstable dissipation function

The term in square brackets in Eq. S5 has units of a dynamic viscosity, prompting the ansatz

that it should be proportional to ⌘(�̇0), where �̇0 ⌘ 2s0,xy = @u0/@y + @v0/@x and ci j is the

proportionality constant:
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For a power-law fluid, ⌧i j = As(si j)↵s , where As and ↵s are material constants. This constitutive

relationship allows us to compute ci j:
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where, assuming isotropic unstable flow fluctuations, ⌘(s0,i j) ⇡ ⌘(s0,xy) ⌘ ⌘(�̇0/2).



The term⇤i j ⌘ !0,i j/s0,i j cannot be directly measured from a 2D flow field; simple averaging

for the unknown elements in the third direction k would trivially return ⇤ik = 0. However,

estimating the magnitude of ⇤i j using just the in-plane component indicates that the entire

term is typically much less than order one: averaging over all pixels and flow rates yields

h(1 + ⇤i j)(↵s � 1)/2iV,Q = 0.026 ⌧ 1, as shown in Fig. S11. We therefore neglect this term.

Thus, c = ↵s21�↵s; c = 1 for a Newtonian fluid and 0 < c < 1 for shear-thinning fluids. Using

our measured fluid rheology, we find c = 0.98—reflecting that our fluid has nearly constant

shear viscosity for the shear rates tested.

The unstable dissipation function h�it then depends primarily on the fluctuating rate of strain

tensor hs02i j it. Again assuming isotropic flow fluctuations, as is frequently done in the case of

inertial turbulence (87, 88),
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This quantity, which quantifies the rate of added viscous dissipation due to unstable flow fluc-

tuations, can now be fully determined from our PIV measurements. In the main text, we write

this in the form h�it ⇡ ⌘hs0 : s0it for simplicity, and our computations use the full form shown

in Eq. S8.



B.4 Apparent viscosity

Having computed the unstable dissipation rate h�it using our direct pore-scale flow visual-

ization, via Eq. S8, we use this quantity to determine the overall apparent viscosity of the

flowing polymer solution. First, we directly compute h�it,V by averaging h�it over the imaged

area of each pore, and then averaging over all the imaged pores. Above the critical global

Weissenberg number Wic = 2.6, h�it,V increases sharply with an apparent power law scaling

h�it,V = Ax(Wi/Wic � 1)↵x . We fit Ax = 279 ± 1 W/m3 and ↵x = 2.6 ± 0.4, as shown in Fig. 4B

of the main text. Then, we substitute h�it,V into Eqs. S4-S5 to obtain our final result:

h�Pit
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⌦
⌧ |s0 : ru0

↵
V
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+
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⌘(�̇I)Q/A

k
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=) ⌘app(�̇I) = ⌘(�̇I) +
kh�it,V
(Q/A)2 . (S9)

B.5 Origin of the peak in ⌘app (WiI)

The power balance quantified by Eq. S9 yields a peak in ⌘app (WiI), in good agreement with

the experimental measurements, as shown in Fig. 4C of the main text. As described below, this

peak reflects the WiI-dependence of the dissipation rate of chaotic flow fluctuations h�it,V ⇠

(WiI/Wic � 1)↵x . In particular, to have a peak in ⌘app (WiI) at WiI =Wip >Wic,

0 =
d

d(WiI)
h�it,V

(Q/A)2

!
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d

d(WiI)
(WiI �Wic)↵x

Wi2/(↵n�↵s)
I

◆

Wip

=) Wip =
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2 � ↵x(↵n � ↵s)
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where in the second line we have applied the definition of the Weissenberg number and the

measured rheological relationships shown in Fig. S1, which yield Q ⇠ �̇I ⇠ Wi1/(↵n�↵s)
I . Thus,



we expect that the measured apparent viscosity will anomalously increase beyond the Darcian

baseline for Wi > Wic and will peak when Wi = Wip as given above. Fitting our experimental

data yields Wic = 2.6, ↵x = 2.6, ↵n = 1.23, ↵s = 0.934, yielding a predicted peak at WiI =

Wip = 4.4, in excellent agreement with our measured Wic,max = 4.4. For even larger WiI >Wip,

the dissipation rate due to chaotic flow fluctuations h�it,V does not increase with WiI as quickly

as (Q/A)2, and our analysis suggests that ⌘app decays back to ⌘ — indicating that the viscous

dissipation associated with the base laminar flow increasingly dominates, although strain history

e↵ects, inertia, and chain scission will likely also play a role in this regime. Investigating these

high WiI e↵ects, and more generally investigating the underpinnings of the dependence of h�it,V
on WiI , will be a useful direction for future research.

B.6 Upper bound estimate for the contribution from strain history e↵ects

Motivated by our observation that most of the unstable flow fluctuations are slow (on time scales

longer than �), we develop an upper bound estimate of the last term in Eq. 3 of the main text.

In general, this is history dependent, but we expect that it will be bounded by the steady state

extensional viscosity expected for the polymer solution. In particular, the additional polymer

contribution to extensional viscosity ⌘e,p should add a third term to the right hand side of Eq.

S9:
kh⌘e,p"̇2it,V

(Q/A)2 , (S12)

where as a strict upper bound, we take Tr �! 1000 or ⌘e,p ⇠ 103⌘0 (48). Following previ-

ous work (10, 12), we estimate the characteristic extensional rate as "̇ ⇡ Q/(�V A)/Dp ⇠ 0.1

to 0.6 s�1 in our experiments, where Dp is the mean bead diameter. Given that our measure-

ments of Hencky strain indicate negligible extension in the pore bodies, we approximate the

fraction of the total volume over which the maximal extension takes place as d3
t /

⇣
d3

t + d3
b

⌘
,

where dt = 0.16Dp and db = 0.24Dp are the pore throat and body diameters for a bead packing,



respectively. Thus, we estimate h⌘e,p"̇2it,V ⇠
⇣
103⌘0

⌘ h
Q/(�V A)/Dp

i2 h
d3

t /
⇣
d3

t + d3
b

⌘i
⇠ 0.6 to

20 W/m3. The entire term of Eq. S12 is then ⇠ 0.6 at all tested WiI . Adding this term as an

upper bound to the model of Eq. S9 gives the green region in Figure S12. The actual additional

contribution of polymer-induced extensional viscous dissipation should fall somewhere in this

region, since Hencky strains are unlikely to actually reach this infinite extension limit. This ne-

glected contribution of polymer extensional viscosity in the pore throats can thus likely account

for the ⇠ 10% discrepancy between our model in S9 and the peak in the apparent viscosity.

Quantifying the exact role of this term requires modeling the full strain history of polymers in

the unstable flow field, and will be an important direction for future work.

C Supplementary Movie Captions

Movie S1. Velocity field of example pore (pore B) just below onset of instability (�̇I = 2.6 s�1;

WiI = 2.6). Applied flow is left to right. Each frame is 4 min apart (720x speed). Arrows

indicate the vector field, and colors indicate velocity magnitude as measured by particle image

velocimetry (PIV). Velocities do not change appreciably over time above the error of PIV.

Movie S2. Velocity field of example pore (pore B) above onset of instability (�̇I = 7.3 s�1;

WiI = 3.6). Applied flow is left to right. Each frame is 4 min apart (720x speed). Arrows

indicate the vector field, and colors indicate velocity magnitude as measured by particle image

velocimetry (PIV). Velocities exhibit strong spatio-temporal fluctuations, consistent with the

onset of an elastic instability.

Movie S3. Fluctuating velocity field of example pore (pore B) near cusp of instability (�̇I =

4.8 s�1; WiI = 3.2). Applied flow is left to right. Each frame is 4 min apart (720x speed). Colors



indicate fluctuating velocity magnitude as measured by particle image velocimetry (PIV). Right

shows kymograph of fluctuating velocity field for an example column of pixels (marked by red

lines). Pu↵s of fluctuations decay in time.

Movie S4. Fluctuating velocity field of example pore (pore B) well above onset of instabil-

ity (�̇I = 9.7 s�1; WiI = 3.9). Applied flow is left to right. Each frame is 4 min apart (720x

speed). Colors indicate fluctuating velocity magnitude as measured by particle image velocime-

try (PIV). Right shows kymograph of fluctuating velocity field for an example column of pixels

(marked by red lines). Fluctuations are sustained in time.

Movie S5. Fluctuating velocity field of example pore (pore B) well above onset of instability

(�̇I = 9.7 s�1; WiI = 3.9) shown at high time resolution. Applied flow is left to right. Each

PIV frame averaged over over 1/6 s. Video shown at 5x speed. Colors indicate fluctuating

velocity magnitude as measured by particle image velocimetry (PIV). Right shows kymograph

of fluctuating velocity field for an example column of pixels (marked by red lines). Fluctuations

are sustained in time.



Figure S1: Bulk rheology measurements of the shear stress and first normal stress di↵er-
ence as a function of shear rate for the polymer solution used in all experiments. Error bars
represent standard deviation over four samples. A power law fit for shear stress �(�̇) ⇡ As(�̇)↵s

gives As ⇡ 0.369(8) Pa · s1+↵s , ↵s ⇡ 0.934(7) ± 0.001. A power law fit for the first normal stress
di↵erence N1(�̇) ⇡ An(�̇)↵n gives An ⇡ 1.46(3) Pa · s1+↵n , ↵n ⇡ 1.23(1) ± 0.04.

Figure S2: Bulk rheology measurements of the same polymer solution before and after
injection into the porous medium. Comparison of rheology for fresh polymer solution and
sheared polymer solution passed through the porous medium at highest tested flow rate of Q =
5 mL/hr. Error bars represent standard deviation over three replicate samples.



Figure S3: Bulk rheology measurement of the solution intrinsic viscosity. A Shear viscosity
measurements of polymer solution diluted with pure solvent. B Fit of the measured zero-shear
viscosity ⌘0 with concentration c gives ⌘0/⌘s = 1 + [⌘]c where the pure solvent viscosity is
⌘s = 0.226 ± 0.009 Pa · s and the intrinsic viscosity is [⌘] = (3 ± 1) ⇥ 10�4 ppm�1.

Figure S4: Raw pressure drop data at di↵erent imposed flow rates. A Time-averaged pres-
sure drop data corresponding to Figs. 1B and 4C. Red dashed line shows the prediction of
Darcy’s Law using the shear viscosity of the bulk solution. Error bars represent one standard
deviation of the pressure drop measurements taken over a 1 h measurement window; when not
shown, error bars are smaller than the symbol size. B Pressure drop measurements taken while
ramping up (dark blue) and down (light green) flow rate show no measurable hysteresis, similar
to observations in model 2D porous media (28, 35, 65).



Figure S5: Characterization of spatiotemporal fluctuations in flow velocity. A Magnitude
of velocity fluctuations u0 normalized by the mean velocity huit,x for a pore at WiI = 3.9, the
same pore at WiI = 4.4, and another pore at WiI = 3.9. Pore labels are described in Table S1.
B Accompanying kymograph of fluctuations taken from a vertical line along the center of each
pore (spatially averaging 3 pixels in the x-direction). The PIV frame rate of 6 frames per second
shows finer time resolution than Figs. 2A-D of the main text, allowing for the spectral analysis
shown in Fig. S6.



Figure S6: Spatial and temporal power spectra of velocity fluctuations. A The Fourier
transform of the spatial signal u0(x) averaged over the temporal points in the kymograph to
smooth out noise. Best fit power-law scalings decay with wave numbers ⇠ k�� with � ⇡ �0.8
to 1.1, in agreement with the range � ⇡ 1 to 3 reported for elastic turbulence in various other
geometries (33, 40, 44, 63). The upper wavenumbers are limited by the pixel size 0.62 µm, and
the lower wavenumbers are limited by the frame size (200 or 320 µm). B The Fourier transform
of the temporal signal u0(t), averaged to smooth noise over 3 time points and a box of pixels
taken from the center of the pore (10 ⇥ 7 for pore T, 5 ⇥ 13 for pore U), vertically shifted by
a constant factor for clarity (C = 1 for pore T at WiI = 3.9, C = 2 for pore T at WiI = 4.3, C
= 6 for pore U at WiI = 3.9). Best fit power-law scalings decay with frequencies ⇠ f �↵ with
↵ = 1.1 to 1.4. The upper frequency is capped at 2 Hz because of the PIV framerate and time
averaging, and lower frequencies deviate . .2 Hz because of the finite experiment duration.
These scalings agree with the broad range of ↵ ⇡ 1 to 3.7 reported for elastic turbulence in
various other geometries (35, 36, 40, 44, 64–66). Inset shows the complementary cumulative
distribution function (c.d.f.) indicating that the majority of measured power spectral density is
contained in fluctuations longer than one polymer relaxation time � ⇡WiI/�̇I ⇡ 0.4 s.



Figure S7: Distribution of the magnitude of flow fluctuations u0 normalized by the mean
huit,x in a representative pore B at di↵erent imposed Weissenberg numbers. For the laminar
WiI = 1.6, the fluctuations are contained near zero, representing experimental PIV noise. At
higher WiI , the fluctuations grow in magnitude, and hence the persistence of bursts above our
chosen threshold u0/huit,x > 0.2 increase continuously.

Figure S8: Distributions of flow parameters for 19 imaged pores in the laminar steady flow
regime. (A) The local Wi is broadly distributed; the characteristic macroscopically-defined WiI

represents the upper bound of this distribution. (B) The local M is also broadly distributed; the
characteristic macroscopically-defined MI represents the upper bound of this distribution.



Figure S9: Evaluating the possible role of flow correlations between neighboring pores.
A Multi-pore imaging at three di↵erent flow rates indicates that localized regions of unstable
flow (blue, green, yellow) coexist amidst regions of stable flow (purple). B To quantify pos-
sible correlations in the flow across neighboring pores, we measure the temporal variation of
the instantaneous fraction of space Fx,i that is unstable (u0/huit,x > 0.2, where huit,x is taken
over the entire multi-pore field of view) in each pore i, and assess the correlation between the
di↵erent Fx,i at each time, indicated by each blue point in the panels shown. The pore labels i
are indicated in the third panel of A. The Pearson correlation coe�cients obtained from the data
for pores i and j are indicated by ⇢i, j. Only one pair of neighboring pores (C and E) shows a
statistically significant correlation (p < 0.05, two-tailed t-test), but only with a weak correlation
of ⇢C,E = 0.17; all other pairs of pores show no significant correlation in flow state. Thus, un-
stable pores may be weakly correlated to their closest neighbors, but these unstable regions are
fairly independent from pores further away — supporting our finding of ”porous individualism”
in which di↵erent pores become unstable at di↵erent imposed flow conditions.



Figure S10: Distribution of measured Hencky strains along sample pathlines of duration
�0 ⇡ 1 s. Colors indicate di↵erent macroscopic flow rates (reported as WiI). Distributions are
taken over three pores, each with five sample track starting locations, and 15 time points with
di↵ering flow fields.

Figure S11: Magnitude estimate of correctional term in simplified power balance. The
complementary cumulative distribution function of the in-plane component of the correctional
term (1 + ⇤xy)(1 � ↵s)/2, distributed over all tested flow rates and pixels. For a vast majority
of pixels, the magnitude of this term is much less than 1. The average value of h(1 + ⇤xy)(1 �
↵s)/2iv,Q = 0.026 ⌧ 1 indicates that 1 � (1 + ⇤xy)(1 � ↵s)/2 ⇡ 1.



Figure S12: Upper bound estimate of excess extensional viscous dissipation. Reproduc-
tion of Fig. 4C, with added region to indicate upper bound expectation for the role of excess
extensional viscous dissipation due to polymer elongation, as detailed in section B.6.



Pore name x (mm) y (mm) Wic

A 58.52 2.99 2.62
B 60.55 2.79 3.11
C 59.88 0.65 3.56
D 1.36 2.34 3.53
E 1.55 2.04 3.13
F 1.02 1.94 3.94
G 1.31 1.78 2.90
H 60.93 3.05 3.23
I 59.93 2.30 3.13
J 59.74 1.71 3.11
K 59.82 1.01 3.92
L 59.57 0.70 4.02
M 61.10 1.01 -
N 0.65 2.65 -
O 1.55 1.55 -
P 1.24 1.35 -
Q 1.47 1.06 -
R 1.03 0.91 -
S 60.18 2.71 -
T 17.33 1.41 -
U 18.10 2.50 -

Table S1: Additional data on pores selected for imaging. Locations of the 19 pores (labeled
A–S) selected at random throughout the medium for imaging and PIV. Positions are in reference
to an arbitrary reference fiducial point. For pores with a well-defined onset, the fit Wic is given
(see section A.3). Pores T and U are imaged continuously at select flow rates for Figs. S5–6
only, and are not used in any main text analysis. Locations for pores T and U are in reference
to a di↵erent arbitrary reference fiducial point.
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