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Materials and Methods 
 
kChip design 
 All kChips were designed in AutoCAD (Autodesk). Each kChip (62 mm ✕ 72 cm) 
possessed the following features: (a) An array of ~34,000 microwells (50 mm ✕ 60 mm 
microfluidic field) where each microwell (slot-shaped, 148.2 µm across, 296.4 µm long) was 
designed to group k = 2 droplets and arrayed with 50-μm inter-microwell spacing; (b) Internal 
posts within these microwells designed to (i) reduce overfilling (via droplets squeezing into a 
microwell), (ii) reduce underfilling (via droplets exiting microwells due to the oil flow associated 
with the kChip loading procedure), and (iii) inhibit the entry of large droplets inherent to the 
droplet pool (i.e. a low-pass size filter); (c) A series of 30 90-µm deep moat-like slots designed to 
trap small droplets (i.e. a high-pass size filter) spaced 50 µm apart from each other, 400 µm from 
the onset of the microfluidic field, and 3 mm inset from the edge of the kChip; and (d) A loading 
slot into which droplets were injected via micropipette. 

The optimal microwell geometries and distances between posts was optimized based on 
the choice of medium and concentration of fluorosurfactant (RAN Biotech 008 FluoroSurfactant), 
which we have previously shown affect the size of droplets produced by a Bio-Rad QX200 Droplet 
Generator, and by extension, droplet grouping and merging performance (33). 

Photomasks were generated from AutoCAD designs (FineLine Imaging). kChip designs 
were then fabricated to 110-120 μm feature height using photolithography on silicon wafers 
(Microchem SU8-2050). Microwells produced from this feature height were found to best trap 
droplets in a monolayer, as deeper features can allow droplets to stack causing loading of an 
undesired number of droplets (33). These wafers were then embedded into custom molds to create 
PDMS (Dow Corning Sylgard) kChips by soft lithography with consistent thickness (0.635 cm) 
and droplet-loading slot location and size. The side of the kChip that contained microwell features 
was then coated with 1.5 μm parylene C by vapor deposition (Paratronix) to inhibit water loss from 
droplets and stiffen the kChip to prevent interior collapse during droplet loading. 
 
kChip coculture construction 

The following steps were performed for each kChip, with 6 kChips run in sequence per 
day (for a total of 24 kChip run over 4 days, with 2 kChips repeated due to poor droplet loading). 
As previously described, a single labeled strain was projected to all unlabeled strains, each 
labeled/unlabeled input and each carbon source input received a unique color code, droplets were 
made from all inputs, and all droplets were pooled together (Fig 1A, Steps 1-2). With the assistance 
of a loading apparatus (fig S2A), the droplets were loaded onto a kChip in one pipetting step (Fig 
1A, Step 3).  

A kChip loading apparatus, which was required to load droplets into microwells, consisted 
of a “loader top” and “loader base” (fig S1A). The loader base held in place a piece of custom-cut 
glass (Brain Research Laboratories; 1.2 mm thickness) made hydrophobic via pretreatment with 
Aquapel. The top side of the kChip, which was not coated with parylene, spontaneously formed a 
seal with the loader top. Four neodymium magnet pairs were oriented such that the two acrylic 
pieces repelled each other. Working against this repulsive force, the loader top was lowered toward 
the loader base via tightening nuts until the desired standoff between the glass and kChip was 
attained (~500-700 µm) to create a space for flow under the microwells. Via an open slot passing 
through the loader top and kChip, the flow space was pre-wetted with an injection of oil (~3 mL 
to fill the entirety of the flow space) followed by the pooled droplets. Each kChip consisted of an 
array of microwells, each designed to randomly group a specific number of droplets. Here we used 



 

only “k = 2” microwells that each group two droplets. Buoyant in the surrounding oil, the droplets 
were distributed around the flow space via tilting the loading apparatus. After the droplets had 
passed through the flow space and entered the k = 2 microwells, additional oil (no fluorosurfactant) 
was flushed through the device to wash away excess droplets and fluorosurfactant. The kChip, 
coupled to the top piece, was removed, and sealed with a transparent PCR film (35), limiting inter-
microwell crosstalk (34). The edges of the film were trimmed off. A second set of four neodymium 
magnets were used to couple to the top piece/kChip to a microscope stage adapter.  

Setting up the kChip loading apparatus in preparation to receive droplets took 5-10 minutes 
and was completed ahead of time. The remaining setup time was ~30 minutes: Droplet making 
took ~3 minutes per eight inputs on the Bio-Rad QX200, droplet pooling and mixing took ~5 
minutes, loading the kChip took ~5-10 minutes, and scanning the kChip took ~12-15 minutes.  

The kChip was scanned initially at 2X magnification to identify the droplets in each 
microwell from their color codes (Fig S1B). Droplets were then merged within their microwells 
via exposure to an alternating current (AC) electric field (4.5 MHz, 10,000-45,000 volts) 
underneath the PCR film (Fig 1A, Step 4, Fig S1B). The field was generated by a corona treater 
(Electro-Technic Products), the tip of which was moved around the PCR film for ~10 seconds. 
Without application of the electric field or undue physical force, spontaneous merging of droplets 
was rare (detected as incorrectly loaded microwells in Fig S1B). The kChip was imaged 
subsequently to measure the yield of the labeled strain, defined as the GFP signal at 0, 24, and 72 
hr (Fig 1A, Step 5, fig S1B-C). We interpreted GFP signal as an indication of cell density of the 
labeled strain, as described previously (33, 34). 

Of the 22 kChips that were loaded well, two were removed downstream at the data analysis 
stage due to low GFP signal of the labeled strain (and cocultures containing these strains’ unlabeled 
versions across the other kChips were also removed from the data analysis). We previously showed 
there is minimal evaporation in droplets between 24 and 72 hrs (33), and expect this has little effect 
on microbe growth given our observation that different microbes reach saturation in droplets and 
96-well plate cultures on similar timescales. 

We developed an image analysis pipeline, previously described (33) to: (a) Identify 
droplets as circular objects within the image; (b) Decode the contents of each droplet based on the 
color code; (c) Assign each droplet to a microwell; (d) filter out poorly loaded microwells from 
the data; and (e) Measure the average fluorescence of the merged droplets in each microwell. 

Across the 20 kChips included in the data analysis, a total of 16,000 unique 
labeled/unlabeled/environment combinations were possible ([20 monocultures + (190 ✕ 2) 
cocultures] ✕ 40 environments = 16,000 combinations) (Fig 1B). After quality filtering data 
through our image analysis pipeline, the dataset contained 180,408 data points, with each of these 
combinations appearing 10.3 times on average and 97% appearing ≥3 times (fig S4). By integrating 
data among kChips, bidirectional pairwise interactions were deduced (Fig 1C, fig S5, S6). 

We previously have shown that bacteria grow on kChip with growth dynamics similar to 
standard culture platforms like Erlenmeyer flasks and microtiter plates (33, 34). We also expect 
the environment to be oxic throughout the time course of this experiment based on previous 
modeling of oxygen availability in droplets on kChip (though we have not measured this directly) 
(33, 34). We note that the maturation of fluorescent GFP maturation in droplets, which can only 
occur in the presence of oxygen, as additional evidence of this oxic environment. 

 
Fluorescence imaging 

All fluorescence microscopy was performed using a Nikon Ti-E inverted fluorescence 
microscope with fluorescence excitation by a Lumencor Sola light emitting diode illuminator 



 

(100% power setting). Images were taken across four fluorescence channels—three for the color 
codes and one additional channel for fluorescence-based assays. Each dye and the assay signal was 
detected with a different excitation wavelength generated by a collection of excitation filters: GFP 
by Semrock GFP-1828A (blue excitation); Alexa Fluor 555 dye by Semrock SpGold-B (green 
excitation); Alexa Fluor 594 dye by Semrock FF03-575/25-25 [excitation filter] + FF01-615/24-
25 [emission filter] (yellow excitation); and Alexa Fluor 647 dye by Semrock LF635-B (red 
excitation). The emission signals corresponding to each dye channel were used to identify the 
contents of a given droplet within each droplet grouping prior to droplet merging (Fig 3B). The 
final channel was used post-merge and at subsequent time points to quantify the assay signal (Fig 
3B). The camera possessed 16-bit depth (total pixel intensity range of 0-65,535 counts). Exposure 
times were chosen such that all assay signals and dye signals did not saturate (<20,000 counts). 
 
Validation experiment in microtiter plates 

To validate the interactions measured on the kChip, we cultured in 96-well plates all 
possible monocultures and cocultures from 7 bacterial strains in 4 different carbon sources. The 
resulting 84 conditions represent ~2% of the conditions measured on kChip. Each coculture 
condition in this follow-up experiment was grown in triplicate, and each monoculture in six 
replicates. The bacterial strains (RP1, KA, PAg2, LA, PP, PR2, PK, and a No-Strain control) were 
selected to cover a wide range of resource utilization profiles (fig S2), and the carbon sources 
(Uridine, Proline, Sucrose, Fumarate, and a No-Carbon control) were selected to cover a wide 
range of  bidirectional interaction types (fig 3A).  

The labeled and unlabeled bacterial strains were grown in monoculture in a starter phase 
(rich medium) and preculture phase (minimal medium) as described above. After washing the 
precultures with carbon-less M9 medium, and normalizing to a starting OD600 of 0.44 (22X), we 
mixed the labeled vs unlabeled bacteria in a matrix-like format in a 96-deepwell plate (100 µL 
each, 11X concentration each). Extra replicates of monocultures and intra-strain cocultures were 
added to the remaining columns of the same 96-deepwell plate. The four carbon sources were 
prepared in M9 media as described above, but to a concentration of 0.55% w/v. The experiment 
was initialized by mixing in triplicates (black-walled 96-well plates, Invitrogen) 136.4 µl of carbon 
source and 13.6 µl of bacterial mix (bringing the carbon and bacterial concentration to 0.5% w/v 
and 1X OD600 = 0.02, respectively). The plates were covered with gas-permeable AeraSeal 
membranes, and incubated for 72 hrs with shaking (220 rpm) and at room temperature (22-25ºC). 
Measurements of OD600 and GFP (ex. 480, em. 515, Optimal Gain, Z-Pos. 20 mm) were taken at 
0, 24, 48, and 72hrs with a microplate reader (Infinite 200 Pro, Tecan). Before the 72hr time point, 
each well in the plates was mixed 20 times with a liquid handler (Viaflo 96, Integra) to break up 
accumulated biofilms. After the 72hr time point, one plate-replicate of Proline and Sucrose were 
serially diluted, and the dilutions 10-4, 10-5, and 10-6 were plated onto Nutrient Agar (3g yeast 
extract, 5g peptone, and 15g agar, Bacto, in one liter of water) with and without 15mg/L 
Chloramphenicol (plasmid pMRE132 confers resistance). The agar plates were incubated at room 
temperature for two days, and then the colonies were counted with the aid of a stereo microscope 
(Leica MZ10 F). 

The OD600 values were normalized by subtracting the media-only control. The GFP values 
were normalized by dividing by the value of the media-only control from the corresponding time 
point, since each time point was measured using a different optical gain. Monoculture fold-growth 
calculated using GFP and OD600 values strongly agreed (fig S8A), indicating that bacterial growth 
can be well-quantified using GFP measurements. To compare the monoculture fold-growth in 96-
well plates and on the kChip (fig S8B), the kChip GFP signal of each bacterial strain was 



 

normalized by subtracting the 0.2 percentile signal at 0hrs. This subtraction corrects for the 
background fluorescence of the kChip wells with zero or very few cells (~580 arbitrary units of 
fluorescence), allowing for an estimation of the GFP signal at 0hr due to cells. To calculate the 
bacterial pairwise effects with GFP data from 96-well plates (fig S8C-D), we utilized the same 
formula and made the same background normalization as before (fig S5, S6), accounting for the 
inoculum effects on a per-replicate basis and for possible growth on media without carbon. For the 
Detection Limit (DL) in GFP measurements, we utilized the mean yield of strain A in coculture 
with strain B with no carbon source. No DL or background subtraction was used for the calculation 
of effects based on colony counts. Bidirectional interaction (fig S8E) types (Ө) and magnitudes 
(m) were calculated from the corresponding unidirectional interactions as described for the kChip 
measurements (Fig 1F, fig S6).  



 

 
Fig S1. kChip experimental workflow. A. A kChip is chosen with a desirable microwell array 
layout, e.g. all k = 2 microwell geometries designed to capture two droplets each. Positioned inside 
of an acrylic loading apparatus, the kChip is suspended via repulsive magnetic interactions over a 
glass substrate to create a droplet flow space. Droplets are pipetted into a loading slot and enter 
microwells as they move through. After loading droplets, the kChip is sealed with a PCR film. B. 
The kChip is initially imaged in multiple channels (2X magnification) to determine the identity of 
each droplet. Here a specific ratio of three Alexa Fluor fluorescent dyes (AF555, AF594, and 
AF647) is used to barcode each droplet; the composite color indicates the droplet identity. After 
merging the droplets, an additional assay channel is used, e.g. GFP, to measure growth over time. 
C. Images of labeled strains in example cocultures (with arbitrary unlabeled strain and carbon 
source) (10X magnification). Full strain names are provided in Table S1.  
 



 

 
Fig S2. Carbon source utilization profiles of soil bacterial strains. Each strain’s ability to grow 
on each carbon source was determined from kChip microwells containing a labeled strain in 
monoculture and a carbon source. Yield values (median GFP measurement across replicates) were 
background-subtracted (background = median yield of labeled strain with no carbon) and 
normalized to the maximum yield value observed (per strain per time point). Carbon sources and 
strains were hierarchically clustered at the 72 hr time point. 
  



 

 
Fig S3. Strain pairwise comparison metrics. A. Phylogenetic tree built with maximum 
likelihood estimate, utilizing alignment of full 16S sequences. Sequences of the full 16S rRNA 
gene (~1500bp) were obtained via sanger sequencing. Sequences were trimmed to quality 
threshold ≥ 20 before merging the forward and reverse reads of each bacterial 16S. The sequence 
for E. coli K12 was obtained directly from NCBI. Sulfolobus solfataricus, a thermophilic archaeon, 
was used in the phylogenetic reconstruction as an outgroup species to root the tree. MUSCLE with 
default parameters was used to align the sequences. PhyML-SMS with default parameters was 
used to select GTR+G+I as the best model and to infer the tree. Units are ‘Substitutions per base 
pair of the 16S gene. B. Pairwise phylogenetic distances between strains were calculated directly 
from the phylogenetic tree with R (Library Phytools, command ‘drop.tip’). C. Metabolic distances 
ordered by carbon source utilization similarity. These distances were calculated as the Euclidean 
distance between two carbon source utilization profiles (fig S2). Red line = separation of two 



 

taxonomic families. Orange font = strains of the order Enterobacterales. Green font = strains of 
the order Pseudomonadales. 
 

 
Fig S4. Combination sampling. A. Distribution of the number of replicates for all possible 
combinations of labeled strain/unlabeled strain/environment, including all 180,408 data points and 
representing all 17,600 possible combinations (i.e. all combinations of 20 labeled strains,  [20 + 2 



 

control] unlabeled strains, and [39 + 1 control] carbon sources). B. Fraction of combinations 
represented at least 1, 3, 5, 10, and 20 times for the entire dataset and per kChip.  
 

 
Fig S5. Interaction effect calculation. A. Formula for calculating effect of unlabeled strain B on 
yield of labeled strain A. B. Effect calculations for example coculture [Enterobacter ludwigii (EL) 
and Pseudomonas rhodesiae #2 (PR2)] on four example carbon sources.  
  



 

 
Fig S6. Pairwise interaction classification and quantitative metrics. A. Method for assigning 
pairwise interaction classification (commensalism, mutualism, parasitism, competition, 
amensalism, or neutralism). Confidence intervals for all one-way effects were generated by 
bootstrap resampling the effect calculation (fig S5). One-way interactions (facilitation, inhibition 
or no effect) were classified by the effect size and the fraction of the confidence interval that fell 
within the effect size’s quadrant. Two-way interactions were classified by combining two one-way 
classifications. B. Quantitative metrics used to describe pairwise interactions. These include 
metrics for type, strength, and diversity (with diversity only applying to a set of interactions). The 
type metric was also used to subset of interactions belonging to specific interaction classifications. 
  



 

 
Fig S7. Interaction distributions for full dataset at 24 hr. (Left) All pairwise interactions at 24 
hr on 33 distinct carbon sources. (Middle) Interaction classification of all data. (Right) Interaction 
classification excluding cases in which both strains comprising a coculture showed no detectable 
growth as monocultures on a given carbon source.  



 

 
Fig. S8. Growth and interaction measurements in 96-well plates validate kChip 
measurements. A. Fold-growth of seven bacterial species in monoculture (RP1, KA, PAg2, LA, 
PP, PR2, and PK) calculated with optical density (OD600) and fluorescence intensity (GFP) in 96-
well plates. Points are the mean of 6 replicates, and error bars are the standard error of the mean 
(s.e.m.). The colors denote the four different carbon sources (Uridine, Fumarate, Proline, and 
Sucrose). B. Monoculture fold-growth in 96-well plates and on kChip. kChip GFP yields were 
normalized by subtracting the 20th percentile yield at 0 hrs. C. Unidirectional pairwise effects 
among seven bacterial species in 96-well plates. The effects via colony counts and GFP 
measurements are calculated from two and three coculture replicates, respectively. D. 
Unidirectional effects calculated from GFP data from kChip and 96-well plates. E. Interaction type 
(Ө) calculated from kChip and 96-well plates data. The color of the points is the mean magnitude 
effect from both platforms. All Pearson correlation tests were calculated with a two-sided 
alternative hypothesis. 
  



 

 
Fig S9. With-self interactions. A. Each plot represents an interaction between a labeled strain and 
its unlabeled counterpart on a given carbon source. x-axis = mean GFP of labeled strain when in 
monoculture; y-axis = mean GFP of labeled strain when cocultured with its unlabeled counterpart 
at a starting density of 1:1; each point = different carbon source; error bars = standard error of the 
respective mean values; red line = average fraction of the labeled strain relative to its monoculture 



 

yield. B. Distribution of each strain’s average growth with their respective unlabeled self-strains. 
All data at 72 hr.  
  



 

 
Fig S10. Interaction distributions by strain pair and by carbon source. A-C. Distributions of 
quantitative interaction metrics for all data (A), data averaged by strain pair (B), and data averaged 
by carbon source (C). Calculations for averages are described in fig S6. D. Distributions of 
interaction type metric organized by carbon source. 
  



 

 
Fig S11. Interaction types for full dataset. Strain pairs and carbon sources were hierarchically 
clustered by interaction type. E = Enterobacterales. P = Pseudomonadales. All data at 72 hr.  
 



 

 
Fig S12. Binning of phylogenetic and metabolic distances. Phylogenetic distances occupied a 
bimodal distribution representing intra-family and inter-family pairs. Metabolic distances 
occupied a continuous distribution. Metabolic distances bins were drawn to capture roughly even 
numbers of pairs. In the dense center of the distribution, bins were evenly spaced by 0.25 metabolic 
distance units (Bins #3-6). The next outermost bins occupied 0.5 metabolic distance units (Bins #2 
and #7), and the most outermost bins occupied 1 metabolic distance unit (Bins #1 and #8). Bin #0 
represents with-self interactions (with a metabolic distance of 0).  En = Enterobacteriaceae. Ps = 
Pseudomonadaceae.  
  



 

 
Fig S13. Interaction metrics by phylogenetic and metabolic distance bins. Phylogenetic bins 
represent the intra-family interactions (En/En and Ps/Ps) and inter-family interaction (En/Ps). 
Metabolic bins represent increasingly metabolically different pairs and are described in fig S12. 

 



 

 
Fig S14. Interaction networks for each carbon source. For each carbon source, the pairwise 
interaction network is plotted at 24 hr (left) and 72 hr (right). The legend (bottom-right) indicates 
the strain identity of each node. Node size represents monoculture yield (background-subtracted 
and normalized to maximum monoculture yield per strain). Edge color represents interaction 
classification. Edge thickness represents interaction strength. 
  



 

 
Fig S15. Interaction classification by monoculture yield comparisons. Interaction classification 
when both strains are increasing in monoculture yield across carbon sources (A), one strain is 
increasing and the other is decreasing in monoculture yield (B), and one held constant at no-growth 
or maximum growth while the other strain is increasing in monoculture yield (C). Colors indicate 
interaction classification (with color legend in Fig 2). All data at 72 hr. 
  



 

 
Fig S16. Interactions by monoculture yields. A. Interaction classification for all monoculture 
yield combinations. Monoculture yields were normalized based on monoculture yields at the given 
time point. Colors indicate interaction classification (with color legend in Fig 2).  B-D. Average 
interaction metrics for all monoculture yield combinations. 
  



 

 
Fig S17. Interactions arranged by monoculture yields for standard and 10% concentration. 
At standard concentration (0.5% w/v) (left) and 10% concentration (0.05% w/v) (right) of carbon 
sources, monoculture yields and interactions were both different. All interactions at 72 hr.  
  



 

 
Fig S18. Interactions with carbon sources at lower concentration. A. All interactions occurring 
on 5 carbon sources (glucose, glycerol, pyruvate, proline, and sucrose) at standard concentration 
(0.5% w/v) and 10% concentration (0.05% w/v). B. Interaction classifications per carbon sources 
for standard and 10% concentrations. Colors indicate interaction classification (with color legend 
in Fig 2) C. Interaction classifications that are the same between the standard and 10% conditions 
(unmuted colors) and different (muted colors). The tables indicate the percentage agreement in 
interaction classification between the standard and 10% concentrations (first row) and the average 
percentage agreement with the 4 other carbon sources at standard concentration (second row). D-
E. The interaction type and strength for all strain pairs at standard vs. 10% concentration, colored 
by carbon source. 
 
 



 

 
Fig S19. Interactions on a mix of carbon sources. A. All interactions on an even mix of 33 
carbon sources (each at 0.015% w/v, total concentration 0.5% w/v). Colors indicate interaction 
classification (with color legend in Fig 2). B. Comparison of interaction type for each coculture on 
the mix of carbon sources and mean interaction type on all 33 single carbon sources. Error bars 
indicate standard deviation. C. Comparison of interaction strength for each coculture on the mix 
of carbon sources and mean interaction strength on all 33 single carbon sources. Error bars indicate 
standard deviation. D.  Interactions arranged by monoculture yield. All interactions at 72 hr. 
 



 

 
Fig S20. Interactions containing obligate facilitation. A. Interactions between growers and non-
growers separated by monoculture yield of the facilitator. B. Each bar represents all interactions 
for each subplot in panel A (normalized to 1).  C. Effect sizes for parasitisms where one strain was 
obligately facilitated. D. Interactions between growers and non-growers separated by carbon 
source. 



 

 
Fig S21. Maximum yields across all dataset. Yield values (median GFP measurement across 
replicates) were background-subtracted (background = median yield of labeled strain with no 
carbon) and normalized to the maximum yield value observed for the given strain in monoculture. 
Carbon sources and strains were hierarchically clustered at the 72 hr time point based on their 
monoculture yields only. Green dots indicate that the maximum yield of the strain/carbon source 
combination occurred in a coculture was at least 0.1 normalized units greater than the monoculture 
yield. Orange squares indicate obligate facilitation where the strain did not grow detectably on the 
carbon source. All interactions at 72 hr. 
  



 

 
Fig S22. Coculture vs. monoculture comparison. (Top) Coculture productivity vs. sum of 
monoculture productivities. Each point represents a coculture/carbon source combination. The 33 
0.5% w/v carbon sources are included. Yields calculated as background-subtracted GFP. (Middle) 
The fraction of cocultures more productive than the sum of monocultures for total dataset (star) 
and broken down by each carbon source. The solid black circles represent fractions calculated 
based on background-subtracted GFP values. The open gray circles represent values calculated 
based on background-subtracted GFP values that were then normalized to the maximum 
monoculture value for each strain (as in Fig S2). (Bottom) The yield in coculture vs. monoculture. 
Each point represents a coculture/carbon source combination. Yield calculated as background-
subtracted GFP. 
  



 

 
No. Source Order 

Closest Seqmatch (16S Gene) 
Strain 

shorthand 

1 Middlesex Fells Enterobacterales Ewingella americana EA 

2 Middlesex Fells Enterobacterales Raoultella planticola RP1 

3 Middlesex Fells Enterobacterales Buttiauxella izardii BI 

4 Middlesex Fells Enterobacterales Citrobacter freundii CF 

5 Killian Court Enterobacterales Pantoea agglomerans PAg1 

6 Killian Court Enterobacterales Klebsiella aerogenes KA 

7 Killian Court Enterobacterales Raoultella planticola RP2 

8 Killian Court Enterobacterales Pantoea agglomerans PAg2 

9 Killian Court Enterobacterales Serratia fonticola SF1 

10 Killian Court Enterobacterales Lelliottia amnigena LA 

11 Killian Court Enterobacterales Pantoea allii PAl 

12 Killian Court Enterobacterales Pantoea agglomerans PAg3 

13 Harvard Yard Pseudomonadales Pseudomonas helmanticensis PH 

14 Lalicata Compost Pseudomonadales Pseudomonas rhodesiae PR1 

15 Tech Square Yard Pseudomonadales Pseudomonas plecoglossicida PP 

16 Office Plant Enterobacterales Enterobacter ludwigii EL 

17 Charles River Soil Pseudomonadales Pseudomonas rhodesiae PR2 

18 Charles River Soil Pseudomonadales Pseudomonas koreensis PK 

19 Harvard Yard Pseudomonadales Pseudomonas arsenicoxydans PAr 

20 Lab strain Enterobacterales Escherichia coli EC 

 
Table S1. Strains used in coculture experiment  



 

 

No. 
Biochemical 

class Full compound Name used Abbrev. 
% w/v of 

Compound 

No. 
carbon 
atoms 

Total 
molar 

mass (g) 

Carbon 
component 

molar 
mass (g) 

Molarity of 
carbon 

component 
(mol/L) 

1 Monosaccharide D-Arabinose D-Arabinose DAra 0.5 5 150.13 150.13 0.333 

2 Monosaccharide L-Arabinose L-Arabinose LAra 0.5 5 150.13 150.13 0.333 

3 Monosaccharide D-Xylose Xylose Xyl 0.5 5 150.13 150.13 0.333 

4 Monosaccharide D-Ribose Ribose Rib 0.5 5 150.13 150.13 0.333 

5 Monosaccharide 
L-Rhamnose 
monohydrate Rhamnose Rha 0.5 6 182.17 164.16 0.305 

6 Monosaccharide D-Fructose Fructose Fru 0.5 6 180.16 180.16 0.278 

7 Monosaccharide D-Galactose Galactose Gal 0.5 6 180.16 180.16 0.278 

8 Monosaccharide D-Glucose Glucose Glu 0.5 6 180.16 180.16 0.278 

9 Low conc. 0.1X D-Glucose Glucose01 Glu01 0.05 6 180.16 180.16 0.278 

10 Monosaccharide D-Mannose Mannose Man 0.5 6 180.16 180.16 0.278 

11 Monosaccharide 
N-Acetyl-D-
glucosamine GlcNAc Glc 0.5 8 221.21 221.21 0.226 

12 TCA Sodium acetate Acetate Ace 0.5 2 82.03 59.04 0.847 

13 TCA Sodium pyruvate Pyruvate Pyr 0.5 3 110.04 87.05 0.574 

14 Low conc. 
0.1X Sodium 

pyruvate Pyruvate01 Pyr01 0.5 3 110.04 87.05 0.574 

15 TCA 
Sodium fumarate 

dibasic Fumarate Fum 0.5 4 160.04 114.06 0.438 

16 TCA 
Disodium 
succinate Succinate Succ 0.5 4 162.05 116.07 0.431 

17 TCA 
Sodium citrate 

dihydrate Citrate Cit 0.5 6 294.1 189.1 0.264 

18 Sugar alcohol Glycerol Glycerol Glyl 0.5 3 92.09 92.09 0.543 

19 Low conc. 0.1X Glycerol Glycerol01 Glyl01 0.05 3 92.09 92.09 0.543 

20 Sugar alcohol D-Mannitol Mannitol Manl 0.5 6 182.17 182.17 0.274 

21 Sugar alcohol D-Sorbitol Sorbitol Sorl 0.5 6 182.17 182.17 0.274 

22 Amino acid L-Alanine Alanine Ala 0.5 3 89.09 89.09 0.561 

23 Amino acid L-Serine Serine Ser 0.5 3 105.09 105.09 0.476 

24 Amino acid L-Proline Proline Pro 0.5 5 115.13 115.13 0.434 

25 Low conc. 0.1X L-Proline Proline01 Pro01 0.05 5 115.13 115.13 0.434 



 

26 Amino acid L-Glutamine Glutamine Gln 0.5 5 146.14 146.14 0.342 

27 Amino acid L-Isoleucine Isoleucine Ile 0.5 6 131.17 131.17 0.381 

28 Amino acid L-Arginine Arginine Arg 0.5 6 174.2 174.2 0.287 

29 Disaccharide 
D-Trehalose 

dihydrate Trehalose Tre 0.5 12 378.33 342.3 0.146 

30 Disaccharide D-Cellobiose Cellobiose Cel 0.5 12 342.3 342.3 0.146 

31 Disaccharide 
D-Maltose 

monohydrate Maltose Mal 0.5 12 342.3 342.3 0.146 

32 Disaccharide D-Sucrose Sucrose Suc 0.5 12 342.3 342.3 0.146 

33 Low conc. 0.1X D-Sucrose Sucrose01 Suc01 0.05 12 342.3 342.3 0.146 

34 Disaccharide 
D-Lactose 

monohydrate Lactose Lac 0.5 12 360.31 342.3 0.146 

35 Trisaccharide 
D-Raffinose 
pentahydrate Raffinose Raf 0.5 18 594.5 504.42 0.099 

36 Trisaccharide 
D-Melezitose 
monohydrate Melezitose Mel 0.5 18 522.45 504.44 0.099 

37 Arabinogalactan Arabinogalactan Arabinogalactan Aran 0.5 – – – – 

38 Uridine Uridine Uridine Uri 0.5 9 244.2 244.2 0.205 

39 Mix Mix Mix Mix 0.5 – – – – 

40 Water Water Water Wat – – – – – 
 
Table S2. Carbon sources used in coculture experiment. 
  



 

Data S1. kChip dataset. Each row represents a pairwise coculture. Interaction effect scores, 
classifications, type scores, and strength scores are calculated as described in the “Bootstrap 
resampling and interaction classification” section of the Materials and Methods. 
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