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Sectioned and 3D view of fluorescence expression 

Skin was exercised at 24 hours post injection of pEGFP-N1 plasmids (25 µg in 50 µL 1x PBS 

solution) without or with subsequent suction treatment at 65 kPa for 30 s. For each condition 

(injection only or injection followed by application of suction) 6 samples of rat skin were excised. 

Each explanted skin sample was approximately 7.2 mm in diameter. Each skin sample was 

sectioned vertically to 60-µm-thick slices, creating a total of 120 x 12= 1440 slices, with every 5th 

slice stained and examined, totaling 24x12 = 288 slices such that GFP expression was determined 

at 300 µm intervals. Deeper penetration of the fluorescence was consistently observed for suction-

treated cases, and representative images are shown in Fig. S1a and b. Furthermore, a 3D view of 

the expression intensity, generated using confocal microscopy per description in the Methods 

section, is demonstrated in Fig. S1c. Fig. S1d is a 3D x-z (side-view) demonstration of the same 

confocal data which also confirms the depth of the expression, namely, ~ 400 µm. The results are 

discussed in the proper text.  

 

Raw intensity in the DNA concentration study 

Figure S2 complement Fig. 2e and f in the main text, where the normalized intensity and 

expression area are shown. Here, the raw intensity shows a monotonic increase with respect to 

DNA concentration (or total DNA amount, as the injection volume remains the same), with or 

without suction treatment following injection. Note that raw intensities here are comparable as 

these experiments were performed on the same day with the same optical setting.  

  

COMSOL simulation 

A schematic of the model is shown in Fig. S3. The tissue is modeled as a multilayered soft 

composite including skin (stratum corneum, epidermis, and dermis, treated as a single 1.2-mm-

thick layer), a 0.5-mm-thick fat layer, a 0.8-mm-thick muscle (panniculus carnosus, p.c.), and a 1 

mm-thick fascia. Layer thickness was measured from histology images of adult male rat (SD) skin 

tissue to best mimic that of our animal subjects. Note that the anatomy is different to that of humans 

as the p.c. muscle is not present (33, 34). Tangential sliding (tearing) between the layers is not 

permitted. A cup is included, and a large Young’s modulus of 3×109 Pa is prescribed which renders 

it effectively rigid. A negative pressure is applied to the top surface of the skin through a boundary 

load over the area covered by cup. The simulation geometry is axisymmetric about the cup axis. 

The skin and cup contact are modeled using a frictionless “contact pair” allowing to provide pure 

slip, which captures the realistic situation that skin slides into the cup under suction, with all skin 

that enters the cup receiving the boundary load. Fixed constraints are applied to the bottom surface 

mailto:hlin@soe.rutgers.edu


of the entire tissue model and the top surface of the cup, while all other surfaces are set to free 

boundary condition (Fig. S3). The simulation is static without considering the transient and 

viscoelastic effects. Because the model is incompressible, we have ignored any compressible 

effects including those induced by possible fluid transport within a tissue matrix that behaves like 

a porous medium. 

For the different layers of our model, we use available constitutive model parameters from 

the literature. Among many hyperelastic models, we use the Neo-Hookean model which is the 

simplest one requiring only the Young’s modulus and Poisson's ratio of the material. For skin, we 

use the Young’s modulus of 130 kPa from Diridollou et al. where they also used a suction chamber 

to measure the vertical displacement of the skin’s surface and incorporated a mathematical model 

of the mechanical behavior of a taught elastic membrane to obtain Young’s modulus of the skin 

(22). For the other layers of our model, we use material properties obtained by other methods in 

the absence of suction. A shear modulus of 7.5 kPa of porcine fat measured by a rotational 

rheometer is used for the fat layer from Geerligs et al. (23),  and the instantaneous tensile modulus 

of 4.77 kPa of ex-vivo rat subcutaneous tissue under uniaxial tension is used for fascia from Iatridis 

et al. (24). For the p.c. muscle, we use the available parameters for rat skeletal muscle under in-

vivo compression from Bosboom et al. where they used comparatively high nonlinear Ogden 

model and their material parameters converged to stable values within 10 iterations independent 

of the chosen initial values (26). In our simplified model, the numerical simulation converged with 

the combination of these constitutive model parameters and the obtained simulation results match 

with our experimental results well. Some further details are below (22, 25).  
The Neo-Hookean strain energy function for a nearly incompressible material is (21): 
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where 𝐼1 is the first invariant of elastic right Cauchy-Green tensor, 𝐽𝑒𝑙 is the elastic volume ratio. 
The Young’s modulus 𝐸 is set to be 130 kPa (22), 22.2 kPa (23), and 4.77 kPa (24) for the skin, 
fat, and fascia layers, respectively. The Poisson’s ratio is chosen to be 0.48 for all three layers 
(25). 

The Ogden strain energy function to model muscle is: 
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where 𝜆𝑖’s are the principal stretches. The bulk and shear moduli, 𝑘 and 𝜇, are 384.8 kPa and 15.6 
kPa, respectively. 𝛼 is a material parameter and set to be 21.4 (26). 

Figure S4 demonstrates the cross-sectional and top views of the von Mises stress under 

applied negative pressure of 65 kPa within the cup. While the top view corroborates with the 

expression pattern, the cross-sectional view reveals further details that the stress concentration of 

the ring pattern penetrates through the entire skin layer. Figure S5 and S6 demonstrate the strain 

and strain energy distributions which exhibit similar focal patterns; a 3D view of strain in the skin 

layer only has been presented in Fig. 4a in the proper text. Here the strain is computed as the 

Frobenius norm of the strain tensor, E, 

 

|𝑬| = √𝑬: 𝑬𝑇, 

 



and the strain energy is 

 

𝑒 =  
1

2
𝜎 ∶ 𝑬, 

 

where “:” denotes the inner product of tensors. Although both the fat and muscle layers 

experience significant stretching as well, they are not targeted for delivery in our studies. 

Since skin is not a monolith and contains excess volume in wrinkles and dermal voids, it 

may be expected that the model would overestimate the local strain. Indeed, the predicted 

treatment size in the model due to slip is less than what is observed, indicative that the forces in the 

simulation are focused into a tighter region of material and thus magnified. 

We also test deformation caused by the same condition on a human skin model, which has a 

slightly different anatomy where the p.c. muscle is absent. We use a 3-layer geometry with skin (2 

mm), fat (8 mm), fascia (2 mm) to represent typical human anatomy (34, 35); the model otherwise 

remains the same. We only show the strain in Figs. S7 and Fig. 3h in the proper text. Although 

the maximum strain in the human skin model appears to be several-folds higher, Fig. 3h indicates 

that this difference is primarily confined in a small region, whereas within the focal ring the overall 

strain magnitudes experienced are similar (0.25-1) in the skin layers despite the anatomic 

differences.  

It would be of great interest to compare the area dilatational effect caused by strains produced 

with suction in vivo with the linear elongation strain used by Thottacherry et al. for single cells 

(27). Without losing generality, we assume that a cell is either spherical or ellipsoidal in its un-

deformed, original shape with the semi-long and short axes denoted by 𝑎0 and b0, respectively. 

The spheroid/ellipsoid is then deformed to a new one denoted by a and b under a global strain, 

|E|, while conserving volume, 𝑎𝑏2 = 𝑎0𝑏0
2. We have the relationship 

 

|𝑬| = [(𝑎/𝑎0 − 1)2 + 2(𝑏/𝑏0 − 1)2]
1

2. 

 

Meanwhile, we can compute the ellipsoidal surface area A and compare with the original area, 
denoted by A0. The results are shown in Fig. S8a. A sphere is the global minimum in surface area, 
to reach just 10% area dilation requires a strain of |𝑬| of approximately 0.8. On the other hand, 
relative area dilation increases as the original ellipsoid becomes more slender, indicated by 
increased aspect ratio of a0/b0. Fig. S8b demonstrates this effect. For an ellipsoid with initial 
aspect ratio of a0/b0 = 3, a 6% of linear strain (𝑎/𝑎0 − 1) would generate a commensurate area 
dilation of ~ 2.3%. This small dilatational effect will likely activate the CG pathway as indicated 
by Thottacherry et al. where typical cells are in elongated shape before stretching (27). 

 

Histology results 

The same skin sample as in Fig. 5 in the proper text is shown in Fig. S9 in a wider view. 

 

 

 

 

 

 



Fig. S1. Photomicrograph of GFP expression in a sectioned view at 24 hours post DNA 

delivery. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Fluorescence and confocal imaging of GFP expression of dorsal rat skin at 24 

hrs post injection. a. DNA injection only. b. DNA injection followed by suction at 65 kPa for 

30 s. c. 3D confocal image of GFP expression 24 hrs post injection and the application of 65 

kPa for 30 s. d. An x-z view from the data of panel c, showing clearly a depth of expression 

around 400 m from a side view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S2. Raw fluorescence intensity with respect to DNA amount. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: Raw fluorescence intensity with respect to DNA amount. The bars and error bars 

are mean and standard deviation, respectively. n=3 for each case. *, **, and *** represent p ≤ 

0.05, p ≤ 0.01, and p ≤ 0.001, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S3. A model schematic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: A model schematic (not to scale). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S4. Simulation results of Von Mises stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4: Simulation results of Von Mises stress. a. Cross-sectional and b. top view; the color 

map indicates magnitude of the von Mises stress. Pressure is 65 kPa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S5. Simulation results of strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5: Simulation results of stain. a. Cross-sectional and b. top view; the color map indicates 

magnitude of the strain. Pressure is 65 kPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S6. Simulation results of strain energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6: Simulation results of strain energy. a. Cross-sectional and b. top view; the color 

map indicates magnitude of the strain energy. Pressure is 65 kPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S7. Simulation results of human skin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7: Simulation results of human skin. a. Cross-sectional and b. top view of a model 

modified to represent human skin with 2 mm, 8 mm, and 2 mm of skin, fat, and fascia, 

respectively; the color map indicates magnitude of the strain. Pressure is 65 kPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S8. Estimate of area dilation as a function of strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8: Area dilation as a function of stain. a. Estimate of area dilation as a function of 
strain (the Frobenius norm of the strain tensor) for a deformed spherical cell. b. Area dilation as 
a function of linear strain, a/a0 − 1, for different starting aspect ratios of a0/b0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S9. Histology via H&E staining. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9: Histology via H&E staining. a. A section across the injection bleb from skin that 

received DNA injection only. b. A section of a skin area that received injection followed by 

suction. 
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