Supplement for TWO-SIGMA

Eric Van Buren, Ming Hu, Chen Weng, Fulai Jin, Yan Li, Di Wu, Yun Li

1 Pancreas Data Methods

1.1 Drop-seq reads processing

We performed raw reads processing following the instructions described in the original Drop-Seq publication (Macosko et al., 2015). The sequenced Drop-Seq libraries yield 50-base paired-end reads (PE50). However, since only the first 20bp of read 1 is informative (base 1-12 cell barcode, base 13-20 UMI), we trimmed base 21-50 of read 1 before further analysis. We first removed all data with the quality score of read 1 (base 1-20) lower than 10. Read 2 was trimmed at 3' end to remove ployA tails of at least 6 bases, and trimmed at 5' if template switching oligo (TSO) adapter sequence appears. Clean reads were then aligned to hg19 or mm9 using STAR with default settings. We only keep uniquely mapped reads on gene exons. We next filtered out PCR duplicates with the same coordinates, cell barcode, and UMI. We then grouped the reads by cell barcode, and generated the digital UMI-count matrix after counting transcripts for every genes with every cell barcode.

1.2 Distinguish cell barcodes with single cell transcriptomes

We defined STAMPs (single cell transcriptome attached to microparticles) as cell barcodes with significantly more reads than background. Under the Drop-Seq experimental settings, only about 2-5% of beads are co-encapsulated with cells. Therefore, most cell barcodes only have a small number of transcripts from mRNA contamination during the bead breakage step. In order to distinguish STAMPs from empty beads, we examined the density plots of transcript counts for all cell barcodes (see Supplementary Figure 1B of (Fang et al., 2019)). In all experiments, we observed a major peak from empty beads and a fat right tail representing STAMPs with single cell transcriptomes. We therefore took a simple approach by calculating mean (μ) and standard deviation (σ) of the major peak assuming a Gaussian distribution. Any cell barcode with more than $\mu + 2 * \sigma$ transcripts were called as STAMPs.

1.3 Down-sampling sequencing data

Because the Drop-Seq libraries have different sequencing depth, we observed variable sensitivity in detecting transcripts / genes from each library (see Supplementary Figure S1), which causes bias during the clustering or comparative analyses. We therefore took a down-sampling approach to normalize the sequencing depth. We firstly run raw data processing as described above using full data and estimate the total STAMP numbers for each donor. For down sampling, we only took a portion of reads from every library so that the average per-STAMP sequencing depth are similar. New UMI-count matrices are generated again for all donors after down sampling. We found that the normalization of sequencing depth resulted

Supplementary Figure S1: Shows the influence of the down-sampling procedure by individual in both the number of transcripts and the number of genes in the STAMPs.

in cleaner clusters in t-SNE plot (see Supplementary Figure 1E of (Fang et al., 2019)). We only used the down-sampled data matrices when different donors need to be compared.

1.4 Cell type identification using unsupervised clustering

We designed a pipeline to determine the cell types of most STAMPs with high confidence using unsupervised clustering methods (see Supplementary Figure 1A of (Fang et al., 2019)). Firstly, we performed initial clustering analysis with the 11,920 top STAMPs with at least 1,000 transcripts after down sampling. It has been previously estimated that in human islets, < 0.1% endocrine cells are positive with more than one marker hormones (INS, GCG, PPY, SST, and GHRL). We therefore first filtered out 890 STAMPs (out of 12,810, or 6.9%) expressing two hormones (see Supplementary Figure 1G of (Fang et al., 2019)) before clustering analysis. In this step, one STAMP is considered as doublets if it has two hormone genes with 15 transcripts. As mentioned above, the percentage of doublets is significantly greater than estimated from species mix experiment because single cells from tissues are more inclined to adhere with each other than cultured cells.

For clustering, we first ranked top 10,000 genes based on average expression level among all cells; then grouped them into 10 bins with 1,000 genes each. Coefficient of variation (CV) is calculated for every gene within each bin. From every bin, we pick top 50 genes with highest CV as informative genes. All together, we picked 500 informative genes for clustering analysis. We used Seurat package for clustering analysis with default parameters. In Seurat, PCA was performed with the 500 informative genes. Using PC1 to PC10, cells were embedded in a K-nearest neighbor (KNN graph). Smart local moving algorithm (SLM) was applied to group cells into communities. PC1 to PC10 were used as input to visualize cell clusters in two-dimensional t-SNE space. In order to define cell type, we used Seurat FindMarker function to find marker genes of each cell cluster, and defined cell types based on our knowledge and literatures. We performed the first round clustering to classify nonendocrine cells (ductal cells, active PSCs and quiescent PSCs, Figure 1B) and the second round to distinguish the endocrine cell types (α , β , δ , PP cells, Figure 1E). Acinar and ϵ cells are not distinguishable in t-SNE plot due to scarcity, but can be clearly recognized from PCA plots (See Supplementary Figure 2 of (Fang et al., 2019)). We also noticed a very small

number of STAMPs (223, or 1.8%) expressing hormone genes inconsistent with their cell type classification (>15 transcripts) (see Supplementary Figure 1H of (Fang et al., 2019)), which were also filtered as possible doublets after clustering analysis (see Supplementary Figure 1A of (Fang et al., 2019)). Finally, we successfully assigned unique cell types to 11,697 STAMPs with high confidence. We used the same method for other clustering analyses in this work.

1.5 Cell type identification of low-depth STAMPs

Finally, we classified the low-transcript STAMPs using the knowledge obtained from clustering the top STAMPs as the training dataset (see Supplementary Figure 1A of (Fang et al., 2019)). As mentioned above, we performed PCA clustering of the training dataset using 500 informative genes. From the PCA results, we took 32 significant principle components (PCs) as knowledge learned from training set. The 32 PCs are linear combinations of the 500 informative genes, and compose a virtual 32-dimensional space. Each cell type should form a cluster in the space. We next calculated the arithmetic centers of 8 cell types from training dataset (ductal, acinar, PSC, α , β , δ , ϵ , PP cells), and built spheres for all cell types centered at their arithmetic mean in the 32-dimensional space. We also computed the Euclidean distance between every cell to the center of its cell type, and empirically defined the radius of each "cell type sphere" as 80 percentile of all the distances in this cell type. For any low depth STAMP, we also took the same 500 informative genes, computed its projection onto the 32 PCs from training data, and the distances between the STAMP and the centers of all cell type spheres. If one STAMP is located exclusively in one cell type's "sphere", we will annotate the STAMP to that cell type. We also performed several filtering steps similar to training set, and successfully classified 16,329 additional STAMPs (see Supplementary Figure 1A of (Fang et al., 2019)). Lastly, we used 2-dimensional PCA plots and visually confirmed the correctness of cell type assignment (see Supplementary Figure 2 of (Fang et al., 2019)).

2 Additional Details for the ad hoc procedure

As discussed in the main text, we conclude that the ad hoc procedure is not designed to distinguish between the two components because there is a single Pearson's residual combining the fitted values of both components of the ZINB regression model without random effects. Figure S2 demonstrates that these residuals are sensitive to the true presence of random effect terms in either component and thus can be leveraged as a reasonably effective approach to screen for genes that need random effects in either component. As a result, we automatically include random effects in both components of the TWO-SIGMA model when the ad hoc p-value is small. The need for random effects in the full model can then be evaluated using formal statistical techniques. For each of the simulation results discussed in the main text and summarized in the tables below, we also calculated the p-values from the ad hoc method for determining if random effects are needed. Figures S3 and S4 show histograms of p-values from representative scenarios when variance components are zero and non-zero, respectively. When variance components are zero, p-values are close to uniformly distributed, meaning that most genes will not be flagged as in need of random effects. When variance components are non-zero, the method produces small p-values which can successfully flag the need to include random effects using a p-value cutoff threshold of, for example, 0.05 or 0.10.

Supplementary Figure S2: Shows the Pearson's residuals by individual from a zero-inflated negative binomial model without random effects in situations which vary the presence of random effect terms in the true model. The adhoc p-value shows agreement with the Likelihood Ratio statistic p-value when random effects are not present or present in combinations of one or both components.

Supplementary Figure S3: $ad\ hoc$ procedure with zero variance components: Shows the distribution of p-values from the $ad\ hoc$ method described in the main text when variance components are zero under some representative scenarios.

Supplementary Figure S4: $ad\ hoc$ procedure with non-zero variance components: Shows the distribution of p-values from the $ad\ hoc$ method described in section 3 of the main text when variance components are non-zero under some representative scenarios.

3 More Detailed Type-I Error Simulation Results

Function used to simulate genes, also present within the twosigma package with an example dataset called "twosigma_example_data."

```
simulate_zero_inflated_nb_random_effect_data<-function(ncellsper, X, Z, alpha
                                                            ,beta,phi,sigma.a
                                                            ,sigma.b,id.levels=NULL
                                                            ,sim.seed=NULL)
  if(is.null(sim.seed)){sim.seed<-sample.int(1e8,1)}</pre>
  if(phi<=0){
    stop("phi must be >0")
  if(sigma.a<0 | sigma.b<0){</pre>
    stop("sigma.a and sigma.b cannot be less than zero")
  if(!is.null(sim.seed)){
    set.seed(sim.seed)
  # Define phiinv for use with rnbinom statement below
  phiinv<-1/phi
  id.levels<-1:length(ncellsper)</pre>
  nind<-length(id.levels)</pre>
  id<-rep(id.levels,times=ncellsper)</pre>
  # fixed effects for zero-inflation component
  names <- colnames (Z)
  Z < -cbind(1,Z)
  colnames(Z)<-c("Intercept",names)</pre>
  #fixed effects for mean component
  names<-colnames(X)
  X < -cbind(1, X)
  colnames(X)<-c("Intercept",names)</pre>
  #simulate random effects at sample level
  # ".rep" vectors ensure the dimensions match
  # the number of cells for each individual
  a <- as.matrix(rnorm(nind, mean=0, sd=sigma.a))</pre>
  a.rep <- rep(a,times=ncellsper)</pre>
  b <- as.matrix(rnorm(nind,mean=0,sd=sigma.b))</pre>
  b.rep <- rep(b,times=ncellsper)</pre>
  # drop-out probability and mean
```

```
logit.p<-Z%*%as.matrix(alpha,ncol=1) +a.rep</pre>
  log.mu<-X%*%as.matrix(beta,ncol=1)+b.rep
  p <- exp(logit.p)/(1+exp(logit.p)) # inverse logit function
  mu <- exp(log.mu)</pre>
  #Y gives the simulated counts
  Y<-rep(NA, sum(ncellsper))
  ind.dropout <- rbinom(length(Y), 1, p)</pre>
  for (i in 1:length(Y)){
    if(ind.dropout[i] == 1){Y[i]=0}
    if(ind.dropout[i] == 0)
      Y[i] <-rnbinom(1, size=(1/phiinv), prob=(1/(1+phiinv*mu[i])))
  }
  # return X and Z without the intercept for convenience
  return(list(Y=Y,X=X[,-1],Z=Z[,-1],a=a,b=b,alpha=alpha,beta=beta
              , sigma.a=sigma.a, sigma.b=sigma.b, nind=nind, ncellsper=ncellsper
              ,id=id))
library(twosigma)
# load example scenario parameter values and simulate data
data("twosigma_example_data")
dat<-simulate_zero_inflated_nb_random_effect_data(ncellsper,X,Z,alpha
                                                   ,beta,phi,sigma.a,sigma.b
                                                   ,id.levels,sim.seed)
# Fit results without random effects to demonstrate
result_nore<-lr.twosigma(matrix(dat$Y,nrow=1),mean_covar = dat$X
                          ,zi_covar = dat$Z,mean_re = F,zi_re = F
                          ,id = dat$id,covar_to_test = "t2d_sim")
# Fit results with random effects to demonstrate
result_re<-lr.twosigma(matrix(dat$Y,nrow=1),mean_covar = X,zi_covar = Z
                    ,mean_re = T,zi_re = T,id = id,covar_to_test = "t2d_sim")
```

Tables S1–S4 give more detailed results for the type-I error simulations at the 0.05 level. Each setting has results from three models: TWO-SIGMA, the zero-inflated negative binomial model (without random effects) "ZINB," and MAST (Finak et al., 2015). Parameters α_1 and β_1 correspond to the coefficients on a binary disease status indicator in the zero-inflation and mean model, respectively. Under the null, both are set to 0, and under some alternative hypothesis one or both are non-zero. Other coefficients in both components include an intercept (α_0, β_0) , coefficients from simulated age values (α_2, β_2) and coefficients from simulated CDR values (α_3, β_3) . Parameter values were designed to mimic realistic values observed in the pancreas data analysis. "LRT" refers to the likelihood ratio statistic (on 2 d.f.), and the combined χ^2 statistic is defined as the sum of the squared z-statistics from each of the two coefficients related to the binary disease status indicator. Coverage is given for parameters α_1 and β_1 , ϕ , and σ_a and σ_b . Note that confidence intervals for the variance components are computed on the log scale and exponentiated. Therefore, the intervals will not contain zero and thus coverage when σ_a and/or σ_b equal zero is not entirely meaningful. Finally, note that the average time column includes the average over all genes of the time needed for two runs of TWO-SIGMA, MAST, and the ZINB model (each with and without the coefficients corresponding to the binary disease status indicator) and to simulate the data as well as process the results for the entire replication. The purpose of these times is to highlight how total computation time varies within a table as variance component sizes change. Within a given table, differences in the running time are largely if not entirely due to TWO-SIGMA run time. More discussion of run time is given in the paragraph below.

For example, consider table S1. The first column "N/N Max" gives the number of genes that converged compared to the total number of genes simulated for each scenario, and as mentioned above the last column gives total runtime for all computations in a given simulation replication. One highly consistent trend is that the convergence percentage is lower and running time higher when variance components were zero. This is because the marginal likelihood for TWO-SIGMA is evaluated more times when the true values of σ_a and σ_b are on the boundary space of zero. Comparing the first and last runtimes in table S1 shows that there can be nearly a 50% increase in run-time when true variance components are zero yet random effects are included in the model. This underscores the usefulness of our ad hoc procedure to avoid fitting random effects where they are unnecessary. In table 1, Type-I error for TWO-SIGMA is well-preserved for any variance component value but becomes increasingly inflated for the ZINB model and MAST when variance components are non-zero. Furthermore, coverage from TWO-SIGMA for all parameters shown remains near the nominal level of 95%. These results hold well for all four cases varying the breakdown of the total of 50,000 cells between number of individuals and number of cells per individual, with a slight inflation of type-I error seen in table S4 and discussed in the main text.

Figures S5 and S6 show the observed type-I error across more stringent significance levels for representative simulation scenarios. These figures do not show systematically different patterns than seen at the .05 level in tables S1–S4 but can highlight the substantial type-I error seen for MAST and the ZINB model in some situations.

Case 1: 1000 individuals, 50 single-cells each, 0.05 level

		LRT	Combined χ^2		95 %	CI Cov	erage		Sim	ulation Parameters				Avg. Time
N / N Max	Model	Type-I Error	Type-I Error	α_1	β_1	φ	σ_a	σ_b	$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)$	φ	σ_a	σ_b	(min)
	TWO-SIGMA	0.049	0.049	0.951	0.953	0.954	_	_						
9195/10000	ZINB	0.051	0.051	0.950	0.951	0.953	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	10	0	0	31.7
	MAST	0.089	0.020	0.950	0.997	_	_	_						
	TWO-SIGMA	0.048	0.047	0.953	0.951	0.952	_	_						
9612/10000	ZINB	0.051	0.049	0.951	0.949	0.953	_	_	(1, 0 , -0.5, -2)	(2, 0, -0.1, 0.6)	2	0	0	33.5
	MAST	0.080	0.032	0.950	0.978	_	_	_						
	TWO-SIGMA	0.048	0.050	0.954	0.953	0.949	_	_						
9464/10000	ZINB	0.052	0.053	0.952	0.951	0.949	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	1	0	0	32.2
	MAST	0.081	0.042	0.953	0.966	_	_	_						
	TWO-SIGMA	0.051	0.051	0.949	0.952	0.952	0.936	0.948						
10000/10000	ZINB	0.132	0.131	0.941	0.853	0.001	_	_	(1, 0 , -0.5, -2)	(2, 0, -0.1, 0.6)	10	0.1	0.1	30.7
	MAST	0.144	0.059	0.942	0.950	_	_	_						
	TWO-SIGMA	0.051	0.051	0.950	0.949	0.951	0.936	0.963						
10000/10000	ZINB	0.078	0.078	0.945	0.918	0.666	_	_	(1, 0, -0.5, -2)	(2, 0 , -0.1, 0.6)	2	0.1	0.1	30.7
	MAST	0.089	0.048	0.944	0.960	_	_	_						
	TWO-SIGMA	0.049	0.049	0.948	0.948	0.950	0.935	0.954						
10000/10000	ZINB	0.066	0.066	0.941	0.930	0.869	_	_	(1, 0, -0.5, -2)	(2, 0 , -0.1, 0.6)	1	0.1	0.1	30.1
	MAST	0.095	0.049	0.941	0.960	_	_	_						
	TWO-SIGMA	0.051	0.051	0.947	0.952	0.946	0.944	0.949						
10000/10000	ZINB	0.621	0.621	0.776	0.417	0	_	_	(1, 0, -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.5	0.5	20.9
	MAST	0.290	0.494	0.778	0.556	_	_	_						
	TWO-SIGMA	0.053	0.053	0.948	0.948	0.947	0.947	0.946						
9999/10000	ZINB	0.505	0.503	0.794	0.539	0	-	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	2	0.5	0.5	18.0
	MAST	0.275	0.400	0.792	0.658	_	_	_						
	TWO-SIGMA	0.050	0.050	0.950	0.954	0.949	0.950	0.948						
10000/10000	ZINB	0.404	0.398	0.817	0.639	0	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	1	0.5	0.5	17.0
	MAST	0.247	0.301	0.810	0.759	_	_	_						

Supplementary Table S1: Type-I Error using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05

Case 2: 500 individuals, 100 single-cells each, 0.05 level

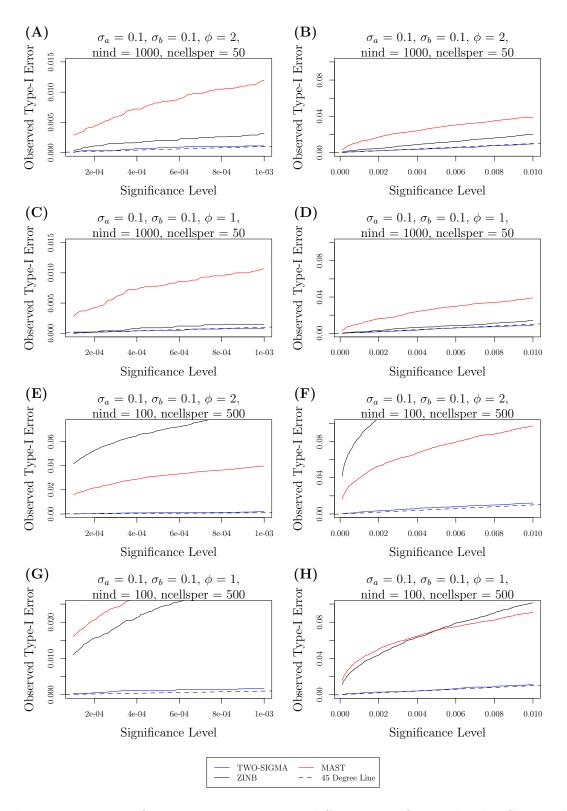
		LRT	Combined χ^2		95 %	CI Cov	erage		Sim	ulation Parameters				Avg. Time
N / N Max	Model	Type-I Error	Type-I Error	α_1	β_1	φ	σ_a	σ_b	$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\beta = (\beta_0, \beta_1, \beta_2, \beta_3)$	φ	σ_a	σ_b	(min)
-	TWO-SIGMA	0.044	0.044	0.955	0.952	0.950	_	_						_
8895/10000	ZINB	0.047	0.047	0.953	0.950	0.952	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	10	0	0	31.8
	MAST	0.086	0.020	0.953	0.996	_	_	_						
	TWO-SIGMA	0.042	0.043	0.952	0.957	0.946	_	_						
9285/10000	ZINB	0.045	0.046	0.949	0.955	0.949	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	2	0	0	32.7
	MAST	0.084	0.030	0.949	0.981	_	_	_						
	TWO-SIGMA	0.046	0.045	0.952	0.952	0.952	_	_						
9502/10000	ZINB	0.049	0.049	0.951	0.949	0.951	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	1	0	0	30.6
	MAST	0.085	0.039	0.950	0.969	_	_	_						
	TWO-SIGMA	0.052	0.052	0.942	0.951	0.950	0.955	0.948						
10000/10000	ZINB	0.217	0.218	0.926	0.754	0.002	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	10	0.1	0.1	23.8
	MAST	0.187	0.099	0.926	0.899	_	_	_						
	TWO-SIGMA	0.050	0.052	0.948	0.953	0.950	0.948	0.958						
10000/10000	ZINB	0.106	0.105	0.935	0.885	0.670	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	2	0.1	0.1	25.3
	MAST	0.104	0.065	0.934	0.944	_	_	_						
	TWO-SIGMA	0.052	0.052	0.950	0.950	0.949	0.946	0.967						
10000/10000	ZINB	0.081	0.082	0.939	0.914	0.866	_	_	(1, 0 , -0.5, -2)	(2, 0, -0.1, 0.6)	1	0.1	0.1	22.9
	MAST	0.107	0.063	0.938	0.945	_	_	_						
	TWO-SIGMA	0.051	0.052	0.950	0.949	0.946	0.948	0.947						
10000/10000	ZINB	0.753	0.753	0.667	0.307	0	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	10	0.5	0.5	17.8
	MAST	0.419	0.673	0.670	0.414	_	_	_						
	TWO-SIGMA	0.054	0.055	0.951	0.942	0.953	0.949	0.950						
10000/10000	ZINB	0.663	0.663	0.691	0.414	0	_	_	(1, 0 , -0.5, -2)	(2, 0, -0.1, 0.6)	2	0.5	0.5	18.0
	MAST	0.382	0.579	0.685	0.516	_	_	_						
	TWO-SIGMA	0.054	0.054	0.944	0.948	0.947	0.950	0.942						
10000/10000	ZINB	0.583	0.577	0.705	0.509	0	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	1	0.5	0.5	15.5
*	MAST	0.366	0.494	0.696	0.628	_	_	_						

Supplementary Table S2: Type-I Error using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05

Case 3: 100 individuals, 500 single-cells each, 0.05 level

		LRT	Combined χ^2		95 %	CI Cov	erage		Sim	ulation Parameters				Avg. Time
N / N Max	Model	Type-I Error	Type-I Error	α_1	β_1	φ	σ_a	σ_b	$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)$	φ	σ_a	σ_b	(min)
	TWO-SIGMA	0.042	0.044	0.954	0.953	0.951	_	_						
8773/10000	ZINB	0.050	0.050	0.950	0.950	0.950	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	10	0	0	32.1
	MAST	0.090	0.021	0.950	0.995	_	_	_						
	TWO-SIGMA	0.038	0.038	0.960	0.957	0.953	_	_						
8901/10000	ZINB	0.044	0.043	0.955	0.954	0.953	_	_	(1, 0 , -0.5, -2)	(2, 0, -0.1, 0.6)	2	0	0	32.1
	MAST	0.079	0.028	0.955	0.977	_	_	_						
	TWO-SIGMA	0.044	0.045	0.956	0.954	0.951	_	_						
9199/10000	ZINB	0.051	0.050	0.952	0.949	0.951	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	1	0	0	31.3
	MAST	0.087	0.038	0.950	0.969	_	_	_						
	TWO-SIGMA	0.056	0.059	0.938	0.947	0.951	0.979	0.938						
9999/10000	ZINB	0.534	0.533	0.869	0.465	0.007	_	_	(1, 0 , -0.5, -2)	(2, 0, -0.1, 0.6)	10	0.1	0.1	25.7
	MAST	0.313	0.376	0.869	0.634	_	_	_						
	TWO-SIGMA	0.057	0.060	0.940	0.942	0.952	0.978	0.943						
10000/10000	ZINB	0.323	0.320	0.877	0.685	0.673	_	_	(1, 0, -0.5, -2)	(2, 0 , -0.1, 0.6)	2	0.1	0.1	25.9
	MAST	0.176	0.226	0.872	0.791	_	_	_						
	TWO-SIGMA	0.053	0.058	0.939	0.947	0.950	0.977	0.955						
10000/10000	ZINB	0.224	0.219	0.887	0.789	0.883	_	_	(1, 0, -0.5, -2)	(2, 0 , -0.1, 0.6)	1	0.1	0.1	25.6
	MAST	0.174	0.169	0.882	0.860	_	_	_						
	TWO-SIGMA	0.055	0.058	0.945	0.942	0.951	0.935	0.936						
10000/10000	ZINB	0.941	0.941	0.367	0.142	0	_	_	(1, 0, -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.5	0.5	21.4
	MAST	0.716	0.914	0.367	0.193	_	_	_						
	TWO-SIGMA	0.056	0.060	0.940	0.945	0.950	0.936	0.934						
10000/10000	ZINB	0.909	0.909	0.386	0.196	0	-	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	2	0.5	0.5	20.4
	MAST	0.685	0.884	0.383	0.254	_	_	_						
	TWO-SIGMA	0.053	0.056	0.943	0.947	0.952	0.939	0.934						
10000/10000	ZINB	0.873	0.872	0.412	0.256	0	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	1	0.5	0.5	20.0
	MAST	0.649	0.839	0.400	0.324	_	_	_						

Supplementary Table S3: Type-I Error using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05


Case 4: 25 individuals, 2000 single-cells each, 0.05 level

		LRT	Combined χ^2		95 %	CI Cov	erage		Sim	ulation Parameters				Avg. Time
N / N Max	Model	Type-I Error	Type-I Error	α_1	β_1	φ	σ_a	σ_b	$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\beta = (\beta_0, \beta_1, \beta_2, \beta_3)$	φ	σ_a	σ_b	(min)
	TWO-SIGMA	0.041	0.045	0.953	0.951	0.950	_	_						
8698/10000	ZINB	0.052	0.052	0.947	0.946	0.950	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	10	0	0	28.9
	MAST	0.090	0.021	0.947	0.995	_	_	_						
	TWO-SIGMA	0.041	0.046	0.955	0.954	0.952	_	_						
8585/10000	ZINB	0.052	0.053	0.949	0.949	0.952	_	_	(1, 0 , -0.5, -2)	(2, 0, -0.1, 0.6)	2	0	0	28.3
	MAST	0.086	0.034	0.948	0.976	_	_	_						
	TWO-SIGMA	0.042	0.044	0.954	0.954	0.946	_	_						
8763/10000	ZINB	0.051	0.050	0.949	0.949	0.946	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	1	0	0	27.8
	MAST	0.090	0.041	0.949	0.966	_	_	_						
	TWO-SIGMA	0.076	0.088	0.920	0.923	0.949	0.980	0.909						
9544/10000	ZINB	0.817	0.817	0.689	0.235	0.056	_	_	(1, 0 , -0.5, -2)	(2, 0, -0.1, 0.6)	10	0.1	0.1	22.3
	MAST	0.497	0.720	0.689	0.354	_	_	_						
	TWO-SIGMA	0.072	0.087	0.926	0.923	0.946	0.994	0.896						
9999/10000	ZINB	0.643	0.642	0.708	0.424	0.719	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	2	0.1	0.1	26.4
	MAST	0.361	0.562	0.704	0.527	_	_	_						
	TWO-SIGMA	0.075	0.094	0.922	0.923	0.949	0.992	0.906						
10000/10000	ZINB	0.548	0.542	0.733	0.541	0.880	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	1	0.1	0.1	26.3
	MAST	0.361	0.467	0.718	0.637	_	_	_						
	TWO-SIGMA	0.076	0.094	0.920	0.920	0.951	0.888	0.888						
10000/10000	ZINB	0.984	0.984	0.194	0.070	0	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	10	0.5	0.5	22.7
	MAST	0.875	0.979	0.195	0.098	_	_	_						
	TWO-SIGMA	0.076	0.092	0.925	0.922	0.949	0.886	0.882						
10000/10000	ZINB	0.974	0.975	0.202	0.101	0	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	2	0.5	0.5	22.0
	MAST	0.857	0.966	0.197	0.132	_	_	_						
	TWO-SIGMA	0.074	0.089	0.923	0.922	0.950	0.891	0.880						
10000/10000	ZINB	0.964	0.963	0.218	0.135	0	_	_	(1, 0, -0.5, -2)	(2, 0, -0.1, 0.6)	1	0.5	0.5	22.5
	MAST	0.827	0.953	0.213	0.174	_	_	_						

Supplementary Table S4: Type-I Error using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05

Supplementary Figure S5: Type-I error across different significance levels: Shows the observed type-I error across various nominal significance levels. The left column zooms in on the part of the right column corresponding to smaller thresholds, such as those that may be associated with a Bonferroni adjustment for multiple comparisons.

Supplementary Figure S6: Type-I error across different significance levels: Shows the observed type-I error across various nominal significance levels. The left column zooms in on the part of the right column corresponding to smaller thresholds, such as those that may be associated with a Bonferroni adjustment for multiple comparisons.

4 Power Results

Simulations under the same framework were also performed for non-zero values of α_1 and β_1 (both as defined in the previous section) to evaluate the power of TWO-SIGMA in testing $H_0: \alpha_1 = 0$, $\beta_1 = 0$. As seen in Table 1 of the main text and tables S1–S4 of this supplement, MAST and the ZINB model can suffer from vastly inflated type-I error. Thus, the observed (or "apparent") power does not always provide a fair comparison to TWO-SIGMA. For each of the three methods we therefore calculated empirical significance thresholds for all null simulation settings. These are cutoffs such that the percentage of statistics larger than the threshold equals the significance level. "True" power is then calculated by rejecting the null if the test statistic is larger than the empirical significance threshold from the corresponding simulation setting under the null. In simulation settings this does not add computation, but in real data setting this procedure involves additional computation and is therefore not preferred.

Because the type-I error for TWO-SIGMA is approximately preserved in all four sample size cases, true power is nearly identical to apparent power for TWO-SIGMA. We therefore found it unnecessary to use true power for TWO-SIGMA in supplementary figures S6-S8 shown here and figure 2 in the main text. In contrast, true power can be very different than apparent power for both the ZINB model and MAST given their inflated type-I errors. For example, one simulation setting shows that the apparent power of MAST is 0.375 which the true power for this scenario is only 0.194 (see the third rows of table S5 and S9). Although not presented, this discrepancy between apparent and true power would be even more pronounced if the simulated data here were based on larger values of the variance components σ_a and σ_b because type-I errors are more inflated for larger variance components (see tables S1-S4).

One general observation from tables S9 to S12 and figure 2 of the main text is that the ZINB model retains very high true power in both sample size settings and across all four effect scenarios. For smaller values of α_0 the ZINB model can sometimes have higher true power than TWO-SIGMA. As the dropout proportion increases (via increasing α_0), TWO-SIGMA tends to eventually have higher power. TWO-SIGMA does not require the use of computationally expensive resampling procedures for valid inference, giving it a key advantage over the ZINB model, which is not articulated explicitly as a DE method for scRNA-seq data.

Supplementary Figure S7: Power evaluations in simulated data: Shows the power to test $H_0: \alpha_1 = \beta_1 = 0$ by varying the intercept α_0 to control the drop-out proportion in four setups: TWO-SIGMA and MAST with 50 cells from each of 1000 individuals or 500 cells from each of 100 individuals. Values of ϕ , σ_a , and σ_b were all set to 0.1 and an effect size of 0.03 was used. Larger values of α_0 correspond to more drop-out in the data. 10,000 genes were simulated. Because of the type-I error inflation from MAST seen in tables S1–S4, true power was calculated and plotted using the empirical significance threshold from the corresponding setting under the null. TWO-SIGMA retains higher power in the first three scenarios and half of the fourth scenario without the need to use true power. See section 4 of the supplement for more details about computing true power and discussion regarding power trends across all three methods.

Supplementary Figure S8: Power evaluations in simulated data: Shows the power to test $H_0: \alpha_1 = \beta_1 = 0$ by varying the effect size in two sample size setups: 50 cells from each of 1000 individuals or 500 cells from each of 100 individuals. Values of ϕ , σ_a , and σ_b were all set to 0.1 and 10,000 genes were simulated. Because of the type-I error inflation from MAST seen in tables S1–S4, true power was calculated and plotted using the empirical significance threshold from the corresponding setting under the null for both of these methods. TWO-SIGMA retains higher power in the first three scenarios and half of the fourth scenario without the need to use true power. See the discussion at the beginning of section 4 of the supplement for more details about computing true power and discussion regarding power trends across all differing methods.

Supplementary Figure S9: Power evaluations in simulated data: Shows the power to test $H_0: \alpha_1 = \beta_1 = 0$ by varying the effect size with 50 cells from each of 1000 individuals. Values of ϕ , σ_a , and σ_b were all set to 0.1 and 10,000 genes were simulated. Because of the type-I error inflation from the ZINB model and MAST seen in tables S1–S4, true power was calculated and plotted using the empirical significance threshold from the corresponding setting under the null for these two methods. In the first three scenarios, MAST consistently has lower true power while TWO-SIGMA and the ZINB model typically have very similar true power. When the effect is only in the zero-inflation component, power is lower for all methods at all effect sizes. Using TWO-SIGMA can bypass the need for computationally expensive resampling procedures needed to generate true power. See the discussion at the beginning of section 4 of the supplement for more details about computing true power and discussion regarding power trends across all differing methods.

4.1 Results using "Apparent" Power for MAST and the ZINB model

Case 1: 1000 individuals, 50 single-cells each, 0.05 level Power Scenarios 1 & 2 from Figure 2 of main text Effects in both components in either the same or different directions

		LRT	Combined χ^2	Sim	ulation Parameters				Avg. Time
N / N Max	Model	$P(Reject H_0)$	P(Reject H ₀)	$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)$	φ	σ_a	σ_b	(min)
-	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-3, 0.03 , -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	27.9
	MAST	0.375	1.000						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-2, 0.03 , -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	27.8
	MAST	0.738	1.000						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-1, 0.03 , -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	27.0
	MAST	0.767	1.000						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(0, 0.03, -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	29.4
	MAST	0.816	1.000						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(1, 0.03, -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	29.4
	MAST	0.834	1.000						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(2, 0.03, -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	27.5
	MAST	0.720	0.999						
	TWO-SIGMA	0.999	0.999						
10000/10000	ZINB	1.000	1.000	(3, 0.03, -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	27.2
	MAST	0.572	0.986						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-3, 0.03 , -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	27.4
	MAST	0.843	1.000						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-2, 0.03, -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	27.6
	MAST	0.913	1.000						
	TWO-SIGMA	1.000	1.000		/				
10000/10000	ZINB	1.000	1.000	(-1, 0.03, -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	27.7
	MAST	0.884	1.000						
	TWO-SIGMA	1.000	1.000	/	/				
10000/10000	ZINB	1.000	1.000	(0, 0.03 , -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	29.5
	MAST	0.879	1.000						
10000 (1000	TWO-SIGMA	1.000	1.000	(4 0 00 0 7 0)	(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				20.0
10000/10000	ZINB	1.000	1.000	(1, 0.03, -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	28.2
	MAST	0.863	1.000						
10000 /10000	TWO-SIGMA	1.000	1.000	(0.000 0° °°)	(0.000.01.00)	10	0.1	0.1	07.0
10000/10000	ZINB	1.000	1.000	(2, 0.03 , -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	27.0
	MAST	0.734	0.999						
10000 /1000	TWO-SIGMA	0.999	0.999	(2.0.02.05.0)	(0.000.01.00)	10	0.1	0.1	00.0
10000/10000	ZINB MAST	0.999	0.999	(3, 0.03 , -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	26.2
	IVIASI	0.579	0.985						

Supplementary Table S5: Apparent Power using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05

Case 1: 1000 individuals, 50 single-cells each, 0.05 level Power Scenarios 3 & 4 from Figure 2 of main text Effects in one component at a time

		LRT	Combined χ^2	Sim	ulation Parameters				Avg. Time
N / N Max	Model	P(Reject H ₀)	P(Reject H ₀)	$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)$	φ	σ_a	σ_b	(min)
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-3, 0, -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	26.6
	MAST	0.262	1.000						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-2, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	27.3
,	MAST	0.461	1.000	, , , , ,	, , , , , ,				
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-1, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	26.9
,	MAST	0.246	1.000						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(0, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	29.8
,	MAST	0.280	1.000	(-, -,, ,	()))				
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(1, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	30.2
10000, 10000	MAST	0.420	1.000	(1, 0, 0.0, 2)	(2, 0.00, 0.1, 0.0)	10	0.1	0.1	30.2
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(2, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	29.5
10000/10000	MAST	0.211	0.998	(2, 0, 0.0, 2)	(2, 0.00, 0.1, 0.0)		0.1	0.1	20.0
	TWO-SIGMA	0.997	0.997						
10000/10000	ZINB	0.999	0.999	(3, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	29.7
10000/10000	MAST	0.134	0.966	(0, 0, 0.0, 2)	(2, 0.00, 0.1, 0.0)	10	0.1	0.1	20.1
	TWO-SIGMA	0.341	0.343						
10000/10000	ZINB	0.495	0.495	(-3, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	26.6
10000/10000	MAST	0.546	0.368	(-3, 0.03, -0.5, -2)	(2, 0, -0.1, 0.0)	10	0.1	0.1	20.0
	TWO-SIGMA	0.482	0.484						
10000/10000	ZINB	0.611	0.611	(-2, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	26.4
10000/10000	MAST	0.703	0.513	(-2, 0.03, -0.5, -2)	(2, 0, -0.1, 0.0)	10	0.1	0.1	20.4
	TWO-SIGMA	0.561	0.563						
9999/10000	ZINB	0.668	0.669	(-1, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	29.3
3333/10000	MAST	0.768	0.588	(-1, 0.03, -0.0, -2)	(2, 0, -0.1, 0.0)	10	0.1	0.1	29.5
	TWO-SIGMA	0.708	0.577						
10000/10000	ZINB	0.674	0.676	(0, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	30.9
10000/10000	MAST	0.786	0.606	(0, 0.03 , -0.3, -2)	(2, 0 , -0.1, 0.0)	10	0.1	0.1	30.9
	TWO-SIGMA	0.780	0.546						
10000 /10000		0.624		(1 0 02 0 5 0)	(2.0.01.06)	10	0.1	0.1	21.0
10000/10000	ZINB		0.624	(1, 0.03, -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	31.0
	MAST TWO-SIGMA	0.768	0.566						
10000 /10000		0.451	0.452	(0.000 05 0)	(0.0.01.00)	10	0.1	0.1	20 6
10000/10000	ZINB	0.526	0.526	(2, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	28.6
	MAST	0.670	0.449						
10000 /1000	TWO-SIGMA	0.343	0.343	(2.0.00.07.0)	(0.0.01.00)	10	0.1	0.1	00.4
10000/10000	ZINB	0.394	0.393	(3, 0.03, -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	28.4
	MAST	0.539	0.318						

Supplementary Table S6: Apparent Power using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05

Case 2: 100 individuals, 500 single-cells each, 0.05 level Power Scenarios 1 & 2 from Figure 2 of main text Effects in both components in either the same or different directions

		LRT	Combined χ^2	Sim	ulation Parameters				Avg. Time
N / N Max	Model	$P(Reject H_0)$	P(Reject H ₀)	$\boldsymbol{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)$	ϕ	σ_a	σ_b	(min)
	TWO-SIGMA	0.849	0.858						
10000/10000	ZINB	0.995	0.995	(-3, 0.03 , -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	21.6
	MAST	0.441	0.988						
	TWO-SIGMA	0.868	0.873						
10000/10000	ZINB	0.997	0.997	(-2, 0.03 , -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	23.9
	MAST	0.712	0.992						
	TWO-SIGMA	0.884	0.890						
10000/10000	ZINB	0.996	0.996	(-1, 0.03 , -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	22.6
	MAST	0.739	0.991						
	TWO-SIGMA	0.888	0.893						
10000/10000	ZINB	0.996	0.996	(0, 0.03, -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	23.7
	MAST	0.784	0.990						
	TWO-SIGMA	0.869	0.875						
10000/10000	ZINB	0.993	0.993	(1, 0.03, -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	26.3
•	MAST	0.790	0.985						
	TWO-SIGMA	0.844	0.850						
10000/10000	ZINB	0.986	0.986	(2, 0.03, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	25.6
	MAST	0.672	0.964	,	,				
	TWO-SIGMA	0.792	0.799						
10000/10000	ZINB	0.969	0.969	(3, 0.03, -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	26.1
	MAST	0.564	0.914						
	TWO-SIGMA	0.853	0.858						
9996/10000	ZINB	0.996	0.996	(-3, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	22.1
	MAST	0.802	0.991						
	TWO-SIGMA	0.873	0.876						
10000/10000	ZINB	0.997	0.997	(-2, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	23.8
	MAST	0.869	0.992						
	TWO-SIGMA	0.885	0.889						
9999/10000	ZINB	0.997	0.997	(-1, 0.03 , -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	22.7
	MAST	0.839	0.992		,				
	TWO-SIGMA	0.880	0.885						
10000/10000	ZINB	0.996	0.996	(0, 0.03, -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	23.3
	MAST	0.839	0.990	ŕ	ŕ				
	TWO-SIGMA	0.874	0.878						
9999/10000	ZINB	0.993	0.993	(1, 0.03, -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	25.8
	MAST	0.824	0.985	, i	,				
	TWO-SIGMA	0.840	0.846						
10000/10000	ZINB	0.989	0.989	(2, 0.03, -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	25.9
•	MAST	0.709	0.965		· · · · · · · · · · · · · · · · · · ·				
	TWO-SIGMA	0.799	0.806						
10000/10000	ZINB	0.974	0.974	(3, 0.03 , -0.5, -2)	(2, -0.03, -0.1, 0.6)	10	0.1	0.1	25.6
,	MAST	0.573	0.919	, , , , , , , , , , , , , , , , , , , ,	,				

Supplementary Table S7: Apparent Power using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05

Case 2: 100 individuals, 500 single-cells each, 0.05 level Power Scenarios 3 & 4 from Figure 2 of main text Effects in one component at a time

		LRT	Combined χ^2	Sim	ulation Parameters				Avg. Time
N / N Max	Model	P(Reject H ₀)	P(Reject H ₀)	$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)$	φ	σ_a	σ_b	(min)
	TWO-SIGMA	0.748	0.757		, (, , , , , , , , , , , , , , , , , ,				
9999/10000	ZINB	0.992	0.992	(-3, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	21.9
,	MAST	0.341	0.982	, , , , ,					
	TWO-SIGMA	0.744	0.754						
10000/10000	ZINB	0.993	0.993	(-2, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	22.7
,	MAST	0.478	0.981	, , , , ,					
	TWO-SIGMA	0.734	0.744						
10000/10000	ZINB	0.991	0.991	(-1, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	21.8
,	MAST	0.347	0.978	(, , , , , ,	(, , , , , , , , , , , , , , , , , , ,				
	TWO-SIGMA	0.738	0.746						
10000/10000	ZINB	0.991	0.990	(0, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	22.1
,	MAST	0.369	0.975	(-, -,, ,	()) - ,)				
	TWO-SIGMA	0.725	0.735						
10000/10000	ZINB	0.984	0.984	(1, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	25.4
	MAST	0.444	0.962	(-, -, -, -)	(=, =:==, =:=, =:=)				
	TWO-SIGMA	0.699	0.711						
10000/10000	ZINB	0.974	0.974	(2, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	24.9
	MAST	0.282	0.923	(=, =, =, =)	(=, =:==, =:=, =:=)				
	TWO-SIGMA	0.664	0.677						
10000/10000	ZINB	0.949	0.949	(3, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	26.6
10000/10000	MAST	0.187	0.851	(0, 0, 0.0, 2)	(2, 0.00, 0.1, 0.0)	10	0.1	0.1	20.0
	TWO-SIGMA	0.279	0.289						
9999/10000	ZINB	0.770	0.769	(-3, 0.03 , -0.5, -2)	(2, 0, -0.1, 0.6)	10	0.1	0.1	22.7
0000/10000	MAST	0.558	0.654	(0, 0.00, 0.0, 2)	(2, 0, 0.1, 0.0)		0.1	0.1	
	TWO-SIGMA	0.355	0.367						
9999/10000	ZINB	0.819	0.820	(-2, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	21.1
3333/ 23333	MAST	0.688	0.729	(-, -, -, -, -,	(=, =, =:=, =:=)				
	TWO-SIGMA	0.388	0.400						
10000/10000	ZINB	0.834	0.834	(-1, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	19.7
	MAST	0.732	0.756	(-, -, -, -, -,	(=, =, =,=, =,=)				
	TWO-SIGMA	0.398	0.408						
10000/10000	ZINB	0.823	0.823	(0, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	20.6
	MAST	0.755	0.744	(0, 0.00, 0.0, -)	(=, =, =:=, =:=)				
	TWO-SIGMA	0.380	0.391						
9899/10000	ZINB	0.784	0.784	(1, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	25.3
20072000	MAST	0.754	0.706	(, 5.55, 5.5, 2)	(, = , = , = , = , =)		0.2		
	TWO-SIGMA	0.339	0.349						
10000/10000	ZINB	0.718	0.719	(2, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	26.4
/	MAST	0.651	0.601	(-,, 0.0, 2)	(=, =, =,=,=,=)	-0		~	
	TWO-SIGMA	0.270	0.280						
10000/10000	ZINB	0.588	0.588	(3, 0.03 , -0.5, -2)	(2, 0, -0.1, 0.6)	10	0.1	0.1	26.1
23000, 20000	MAST	0.533	0.446	(5, 5155, 515, 2)	(=, 0, 0.1, 0.0)	-0	0.2	0.1	
	1,1110 1	0.000	0.110						

Supplementary Table S8: Apparent Power using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05

4.2 Results using "True" Power for MAST and the ZINB model

Case 1: 1000 individuals, 50 single-cells each, 0.05 level Power Scenarios 1 & 2 from Figure 2 of main text Effects in both components in either the same or different directions

		LRT	Combined χ^2	Sim	ulation Parameters				Avg. Time
N / N Max	Model	P(Reject H ₀)	P(Reject H ₀)	$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)$	φ	σ_a	σ_b	(min)
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-3, 0.03 , -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	27.9
	MAST	0.194	0.352						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-2, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	27.8
,	MAST	0.588	0.721	, , , , ,					
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-1, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	27.0
,	MAST	0.569	0.746						
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(0, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	29.4
,	MAST	0.644	0.802	(, , , , , , , , , , , , , , , , , , ,	(, , , , , , , ,				
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(1, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	29.4
,	MAST	0.705	0.822	(, , ,)	(, , - , ,				
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(2, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	27.5
	MAST	0.524	0.700	(=, =:==, =:=, =)	(=, =:==, =:=, =:=)				
	TWO-SIGMA	0.999	0.999						
10000/10000	ZINB	0.998	0.998	(3, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	27.2
10000/10000	MAST	0.358	0.547	(3, 3,33, 3,3, 2)	(2, 0.00, 0.1, 0.0)		0.1	0.1	
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-3, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	27.4
10000/10000	MAST	0.673	0.829	(0, 0.00, 0.0, 2)	(2, 0.00, 0.1, 0.0)	10	0.1	0.1	21.1
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-2, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	27.6
10000/10000	MAST	0.803	0.904	(2, 0.00, 0.0, 2)	(2, 0.00, 0.1, 0.0)	10	0.1	0.1	21.0
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(-1, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	27.7
10000/10000	MAST	0.736	0.872	(1, 0.00, 0.0, 2)	(2, 0.00, 0.1, 0.0)	10	0.1	0.1	21.1
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(0, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	29.5
10000/10000	MAST	0.741	0.867	(0, 0.00, 0.0, 2)	(2, 0.00, 0.1, 0.0)	10	0.1	0.1	20.0
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(1, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	28.2
10000/10000	MAST	0.738	0.852	(1, 0.00, 0.0, -2)	(2, 0.00, 0.1, 0.0)	10	0.1	0.1	20.2
	TWO-SIGMA	1.000	1.000						
10000/10000	ZINB	1.000	1.000	(2, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	27.0
10000/10000	MAST	0.541	0.715	(2, 0.00, -0.0, -2)	(2, -0.00, -0.1, 0.0)	10	0.1	0.1	21.0
	TWO-SIGMA	0.998	0.713						
10000/10000	ZINB	0.997	0.997	(3, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	26.2
10000/10000	MAST	0.369	0.557	(3, 0.03, -0.3, -2)	(2, -0.03, -0.1, 0.0)	10	0.1	0.1	20.2
	MADI	0.303	0.001						

Supplementary Table S9: True Power using LRT to test H_0 : $\alpha_1=0$, $\beta_1=0$ with a significance level of 0.05

Case 1: 1000 individuals, 50 single-cells each, 0.05 level Power Scenarios 3 & 4 from Figure 2 of main text Effects in one component at a time

Model TWO-SIGMA	$P(Reject H_0)$	>						
TWO-SIGMA	1 (100,000 110)	$P(Reject H_0)$	$\boldsymbol{\alpha} = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)$	ϕ	σ_a	σ_b	(min)
T M O-DIGMIY	1.000	1.000	,	, , , , , , , , , , , , , , , , , , , ,				
ZINB	1.000	1.000	(-3, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	26.6
MAST	0.119	0.242						
TWO-SIGMA	1.000	1.000						
ZINB	1.000	1.000	(-2, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	27.3
MAST	0.366	0.450						
TWO-SIGMA	1.000	1.000						
ZINB	1.000	1.000	(-1, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	26.9
MAST	0.116	0.229	(, , , , , ,	() , , , , ,				
			(0, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	29.8
			(-, -,, ,	()) - ,)				
			(1, 0, -0.5, -2)	(2. 0.03 0.1. 0.6)	10	0.1	0.1	30.2
			(-, -, -, -)	(=, =:==, =:=, =:=)				
			(2. 0 0.52)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	29.5
			(-, -, -, -)	(=, =:==, =:=, =:=)				
			(3. 0 0.52)	(2. 0.03 0.1. 0.6)	10	0.1	0.1	29.7
			(-, -,, ,	()) -))	-		-	
			(-3, 0.03 , -0.5, -2)	(2. 00.1. 0.6)	10	0.1	0.1	26.6
			(0, 2122, 010, 2)	(=, =, =,=, =,=)				
			(-2. 0.03 0.52)	(2. 00.1. 0.6)	10	0.1	0.1	26.4
			(2, 0.00, 0.0, 2)	(2, 0, 0.1, 0.0)	10	0.1	0.1	20.1
			(-1. 0.03 0.52)	(2. 00.1. 0.6)	10	0.1	0.1	29.3
			(-, -, -, -,	(=, =, =,=, =,=)				
			(0, 0.03 , -0.5, -2)	(2. 0 0.1. 0.6)	10	0.1	0.1	30.9
			(0, 0.00, 0.0, -)	(=, =, =,=, =,=)				00.0
			(1, 0.03 , -0.5, -2)	(2. 0 0.1. 0.6)	10	0.1	0.1	31.0
			(=, 0.00, 0.0, 2)	(=, 0, 0.1, 0.0)	-0	0.2	0.1	01.0
			(2, 0.03 , -0.5, -2)	(2. 0 0.1, 0.6)	10	0.1	0.1	28.6
			(=, 0.00, 0.0, 2)	(=, 0, 0.1, 0.0)		0.1	V	20.0
			(3 0.03 -0.5 -2)	(2 0 -0 1 0 6)	10	0.1	0.1	28.4
			(0, 0.00, 0.0, -2)	(2, 0, 0.1, 0.0)	10	0.1	0.1	20.1
	TWO-SIGMA ZINB MAST TWO-SIGMA	TWO-SIGMA	TWO-SIGMA	TWO-SIGMA 1.000 1.000 ZINB 1.000 1.000 MAST 0.366 0.450 TWO-SIGMA 1.000 1.000 ZINB 1.000 1.000 MAST 0.116 0.229 TWO-SIGMA 1.000 1.000 ZINB 1.000 1.000 MAST 0.168 0.263 TWO-SIGMA 1.000 1.000 ZINB 1.000 1.000 MAST 0.361 0.411 TWO-SIGMA 1.000 1.000 MAST 0.361 0.411 TWO-SIGMA 1.000 1.000 MAST 0.124 0.200 TWO-SIGMA 0.997 0.997 ZINB 0.996 0.996 (3, 0, -0.5, -2) MAST 0.048 0.120 TWO-SIGMA 0.336 0.335 ZINB 0.499 0.522 TWO-SIGMA 0.476 0.474 ZINB 0.401 <td>TWO-SIGMA 1.000 1.000 (-2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) ZINB 1.000 1.000 (-2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) TWO-SIGMA 1.000 1.000 (-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) MAST 0.116 0.229 (-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) TWO-SIGMA 1.000 1.000 (0, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) MAST 0.168 0.263 1.000 (-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) MAST 0.168 0.263 1.000 (-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) MAST 0.168 0.263 1.000 (-1, 0.00 (-1, 0.05, -2) (2, 0.03, -0.1, 0.6) MAST 0.361 0.411 0.000 (-1, 0.00 (-1, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) MAST 0.124 0.200 1.000 (-1, 0.00, -0.5, -2) (-2, 0.03, -0.1, 0.6) MAST 0.048 0.120 (-3, 0.03, -0.5, -2) (-2, 0.03, -0.1, 0.6) MAST 0.048 0.120 (-3,</td> <td>TWO-SIGMA 1.000</td> <td>TWO-SIGMA 1.000 1.000 (-2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.366 0.450 (-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.116 0.229 (-1, 0.03, -0.1, 0.6) 10 0.1 MAST 0.116 0.229 (-1, 0.03, -0.1, 0.6) 10 0.1 MAST 0.116 0.229 (-1, 0.03, -0.1, 0.6) 10 0.1 MAST 0.168 0.263 (-1, 0.00, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.168 0.263 (-1, 0.00, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.168 0.263 (-1, 0.00, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.361 0.411 (-1, 0.00, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.361 0.411 (-1, 0.00, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.124 0.200 (-2, 0.05, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.124 0.200 (-2, 0.05, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.124 0.200 (-2, 0.05, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.488 0.120 (-3, 0.03, -0.5, -2) (-2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.329 0.522 (-3, 0.03, -0.5, -2) (-3, 0.03, -0.1, 0.6) 10 0.1 MAST 0.329 0.522 (-3, 0.03, -0.5, -2) (-3, 0.01, 0.6) 10 0.1 MAST 0.489 0.684 (-3, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.489 0.684 (-3, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.489 0.684 (-3, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.459 0.459 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.601 0.769 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.601 0.769 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.601 0.769 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.601 0.769 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.579 0.750 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.459 0.459 0.459 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.459 0.459 0.459 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.459 0.459 0.459 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.459</td> <td>TWO-SIGMA 1.000 1.000</td>	TWO-SIGMA 1.000 1.000 (-2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) ZINB 1.000 1.000 (-2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) TWO-SIGMA 1.000 1.000 (-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) MAST 0.116 0.229 (-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) TWO-SIGMA 1.000 1.000 (0, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) MAST 0.168 0.263 1.000 (-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) MAST 0.168 0.263 1.000 (-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) MAST 0.168 0.263 1.000 (-1, 0.00 (-1, 0.05, -2) (2, 0.03, -0.1, 0.6) MAST 0.361 0.411 0.000 (-1, 0.00 (-1, 0.03, -0.5, -2) (2, 0.03, -0.1, 0.6) MAST 0.124 0.200 1.000 (-1, 0.00, -0.5, -2) (-2, 0.03, -0.1, 0.6) MAST 0.048 0.120 (-3, 0.03, -0.5, -2) (-2, 0.03, -0.1, 0.6) MAST 0.048 0.120 (-3,	TWO-SIGMA 1.000	TWO-SIGMA 1.000 1.000 (-2, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.366 0.450 (-1, 0, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.116 0.229 (-1, 0.03, -0.1, 0.6) 10 0.1 MAST 0.116 0.229 (-1, 0.03, -0.1, 0.6) 10 0.1 MAST 0.116 0.229 (-1, 0.03, -0.1, 0.6) 10 0.1 MAST 0.168 0.263 (-1, 0.00, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.168 0.263 (-1, 0.00, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.168 0.263 (-1, 0.00, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.361 0.411 (-1, 0.00, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.361 0.411 (-1, 0.00, -0.5, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.124 0.200 (-2, 0.05, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.124 0.200 (-2, 0.05, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.124 0.200 (-2, 0.05, -2) (2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.488 0.120 (-3, 0.03, -0.5, -2) (-2, 0.03, -0.1, 0.6) 10 0.1 MAST 0.329 0.522 (-3, 0.03, -0.5, -2) (-3, 0.03, -0.1, 0.6) 10 0.1 MAST 0.329 0.522 (-3, 0.03, -0.5, -2) (-3, 0.01, 0.6) 10 0.1 MAST 0.489 0.684 (-3, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.489 0.684 (-3, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.489 0.684 (-3, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.459 0.459 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.601 0.769 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.601 0.769 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.601 0.769 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.601 0.769 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.579 0.750 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.459 0.459 0.459 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.459 0.459 0.459 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.459 0.459 0.459 (-1, 0.03, -0.5, -2) (-2, 0, -0.1, 0.6) 10 0.1 MAST 0.459	TWO-SIGMA 1.000 1.000

Supplementary Table S10: True Power using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05

Case 2: 100 individuals, 500 single-cells each, 0.05 level Power Scenarios 1 & 2 from Figure 2 of main text Effects in both components in either the same or different directions

		LRT	Combined χ^2	Sim	ulation Parameters				Avg. Time
N / N Max	Model	P(Reject H ₀)	P(Reject H ₀)	$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)$	φ	σ_a	σ_b	(min)
	TWO-SIGMA	0.837	0.830						-
10000/10000	ZINB	0.937	0.937	(-3, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	21.6
	MAST	0.052	0.085						
	TWO-SIGMA	0.858	0.852						
10000/10000	ZINB	0.935	0.934	(-2, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	23.9
	MAST	0.215	0.298						
	TWO-SIGMA	0.872	0.866						
10000/10000	ZINB	0.926	0.926	(-1, 0.03 , -0.5, -2)	(2, 0.03, -0.1, 0.6)	10	0.1	0.1	22.6
	MAST	0.207	0.290						
	TWO-SIGMA	0.876	0.870						
10000/10000	ZINB	0.899	0.899	(0, 0.03, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	23.7
,	MAST	0.298	0.373						
	TWO-SIGMA	0.859	0.852						
10000/10000	ZINB	0.840	0.840	(1, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	26.3
,	MAST	0.394	0.456						
	TWO-SIGMA	0.831	0.822						
10000/10000	ZINB	0.729	0.728	(2, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	25.6
,	MAST	0.191	0.252	, , ,					
	TWO-SIGMA	0.778	0.768						
10000/10000	ZINB	0.502	0.500	(3, 0.03 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	26.1
,	MAST	0.081	0.130	, , , ,	, , , ,				
	TWO-SIGMA	0.842	0.835						
9996/10000	ZINB	0.943	0.943	(-3, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	22.1
,	MAST	0.257	0.350	(, , , , , , ,	(, , , , , , , , , , , , , , , , , , ,				
	TWO-SIGMA	0.862	0.855						
10000/10000	ZINB	0.937	0.937	(-2, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	23.8
,	MAST	0.388	0.483	(, , , , , , ,	(, , , , , , , , , , , , , , , , , , ,				
	TWO-SIGMA	0.875	0.868						
9999/10000	ZINB	0.927	0.926	(-1, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	22.7
,	MAST	0.323	0.417						
	TWO-SIGMA	0.870	0.864						
10000/10000	ZINB	0.901	0.900	(0, 0.03, -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	23.3
,	MAST	0.371	0.452	, , , , ,	(, , , , , , , , , , , , , , , , , , ,				
	TWO-SIGMA	0.862	0.855						
9999/10000	ZINB	0.847	0.846	(1, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	25.8
/	MAST	0.434	0.503	(, , ,)	(, , ,)				
	TWO-SIGMA	0.827	0.819						
10000/10000	ZINB	0.717	0.716	(2, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	25.9
	MAST	0.206	0.278	(, ====, ==, =)	(, 2:22, 3:2, 0:0)		0.1	U.=	
	TWO-SIGMA	0.785	0.775						
10000/10000	ZINB	0.503	0.500	(3, 0.03 , -0.5, -2)	(2, -0.03 , -0.1, 0.6)	10	0.1	0.1	25.6
-0000/ -0000	MAST	0.079	0.132	(3, 3.33, 3.3, 2)	(=, 0.00, 0.1, 0.0)		0.2	V	

Supplementary Table S11: True Power using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05

Case 2: 100 individuals, 500 single-cells each, 0.05 level Power Scenarios 3 & 4 from Figure 2 of main text Effects in one component at a time

		LRT	Combined χ^2	Sim	ulation Parameters				Avg. Time
N / N Max	Model	P(Reject H ₀)	P(Reject H ₀)	$\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$	$\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3)$	φ	σ_a	σ_b	(min)
	TWO-SIGMA	0.730	0.719	(0 / 1 / 2 / 0 /	(() () () () () () ()		<u> </u>		
9999/10000	ZINB	0.932	0.932	(-3, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	21.9
,	MAST	0.037	0.058	(
	TWO-SIGMA	0.725	0.716						
10000/10000	ZINB	0.925	0.924	(-2, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	22.7
,	MAST	0.109	0.152	() -))	()) - ,)				
	TWO-SIGMA	0.715	0.704						
10000/10000	ZINB	0.907	0.906	(-1, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	21.8
,	MAST	0.038	0.059	() -))	()) -))	-	-	-	
	TWO-SIGMA	0.723	0.713						
10000/10000	ZINB	0.870	0.870	(0, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	22.1
	MAST	0.128	0.142	(0, 0, 0.0, -)	(=, =:==, =:=, =:=)				
	TWO-SIGMA	0.710	0.699						
10000/10000	ZINB	0.810	0.809	(1, 0, -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	25.4
10000/10000	MAST	0.265	0.278	(1, 0, 0.0, 2)	(2, 0.00, 0.1, 0.0)	10	0.1	0.1	20.1
	TWO-SIGMA	0.680	0.669						
10000/10000	ZINB	0.675	0.673	(2, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	24.9
10000/10000	MAST	0.070	0.083	(2, 0, 0.0, 2)	(2, 0.00, 0.1, 0.0)		0.1	0.1	21.0
	TWO-SIGMA	0.645	0.632						
10000/10000	ZINB	0.452	0.451	(3, 0 , -0.5, -2)	(2, 0.03 , -0.1, 0.6)	10	0.1	0.1	26.6
10000, 10000	MAST	0.012	0.020	(0, 0, 0.0, 2)	(2, 0.00, 0.1, 0.0)	10	0.1	0.1	20.0
	TWO-SIGMA	0.263	0.252						
9999/10000	ZINB	0.184	0.184	(-3, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	22.7
0000/10000	MAST	0.081	0.129	(0, 0.00, 0.0, 2)	(2, 0, 0.1, 0.0)	10	0.1	0.1	22.1
	TWO-SIGMA	0.337	0.324						
9999/10000	ZINB	0.184	0.184	(-2, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	21.1
0000/10000	MAST	0.161	0.238	(2, 0.00, 0.0, 2)	(2, 0, 0.1, 0.0)	10	0.1	0.1	21.1
	TWO-SIGMA	0.368	0.356						
10000/10000	ZINB	0.162	0.160	(-1, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	19.7
10000/10000	MAST	0.206	0.290	(1, 0.00, 0.0, 2)	(2, 0, 0.1, 0.0)	10	0.1	0.1	10.1
	TWO-SIGMA	0.375	0.364						
10000/10000	ZINB	0.128	0.126	(0, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	20.6
10000/10000	MAST	0.250	0.335	(0, 0.00, 0.0, 2)	(2, 0, 0.1, 0.0)	10	0.1	0.1	20.0
	TWO-SIGMA	0.358	0.346						
9899/10000	ZINB	0.086	0.085	(1, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	25.3
3000/10000	MAST	0.251	0.336	(1, 0.00, 0.0, 2)	(2, 0, 0.1, 0.0)	10	0.1	0.1	20.0
	TWO-SIGMA	0.321	0.310						
10000/10000	ZINB	0.042	0.042	(2, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	26.4
10000/10000	MAST	0.136	0.206	(2, 0.00, 0.0, -2)	(2, 0, 0.1, 0.0)	10	0.1	0.1	20.4
	TWO-SIGMA	0.150	0.242						
10000/10000	ZINB	0.233	0.011	(3, 0.03 , -0.5, -2)	(2, 0 , -0.1, 0.6)	10	0.1	0.1	26.1
10000/10000	MAST	0.068	0.115	(3, 0.03, -0.3, -2)	(2, 0, -0.1, 0.0)	10	0.1	0.1	20.1
	MADI	0.000	0.110						

Supplementary Table S12: True Power using LRT to test H_0 : $\alpha_1=0,\ \beta_1=0$ with a significance level of 0.05

5 Additional Computational Details

Suppose we have n samples, each with n_i single cells, i = 1, ..., n, the marginal likelihood $L(\boldsymbol{\alpha}, \boldsymbol{\beta}, \phi, \sigma_a^2, \sigma_b^2)$ equation for the TWO-SIGMA model is given by

$$\prod_{i=1}^{n} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \prod_{j=1}^{n_i} \left(\left[P(Y_{ij} = 0) \right]^{I(y_{ij} = 0)} \left[P(Y_{ij} = y_{ij}) \right]^{I(y_{ij} > 0)} \times g(a_i, b_i \mid \sigma_a^2, \sigma_b^2) da_i db_i \right)$$

where $g(a_i, b_i \mid \sigma_a^2, \sigma_b^2)$ is the product of two normal densities (assuming $a_i \perp b_i$), and $P(Y_{ij})$ is as specified in equation (1) of the main text.

Because no analytic solutions to this integral are available, the marginal likelihood must be approximated to obtain parameter estimates. Models that include many random effects can be fit efficiently using the implementation in the **twosigma** R package because the Laplace approximation is used to integrate out random effects and automatic differentiation is used to compute gradients (Skaug & Fournier, 2006). It can be shown that the Laplace approximation is equivalent to using Gaussian quadrature with one quadrature point (Fitzmaurice et al., 2003). Although estimates can be biased, the Laplace approximation often performs well for count response variables (Diggle et al., 2002). For further comments on situations in which the Laplace approximation performs suitably well in practical applications, including the analysis of count data, see (Breslow & Clayton, 1993). Finally, others have demonstrated that the Laplace approximation works quite well in non-linear mixed-effects models (Pinheiro & Bates, 1995). This framework also does not require balanced data, as is sometimes assumed for mixed-effects models; for instance, balanced data are implicitly included in the setup of (Chen & Li, 2016).

6 More Discussion of the Zero-Inflation Component

Supplementary Figure S10: Failing to account for zero-inflation: shows the impact of failing to account for zero-inflation on mean inference. Data was simulated according to a zero-inflated negative binomial (ZINB) distribution with mean 4 and drop-out probability 0.4 as specified in equation (1) in the main text. Black dots represent an approximate negative binomial fit to the data and blue represents the truth as simulated from a ZINB distribution.

Figure S10 provides a simple illustration of how ignoring this zero-inflation can lead to substantial underestimation of mean parameters. Our experience suggests that scRNA-seq data often benefit from, if not require, such explicit modelling of excess zeros. Some genes may not require the full TWO-SIGMA specification. For example, consider the marker genes of each cell type in the pancreas dataset—GCG for alpha cells and INS for beta cells (Lawlor et al., 2017). These marker genes are not indicative of a need for zero inflation—only 1 alpha cell has a read count of zero for GCG and all beta cells have non-zero read counts for INS. In both cases one can remove the entire zero-inflation component and refit, continuing to allow for overdispersion and within-sample correlation. As an aside, TWO-SIGMA can estimate the zero-inflated coefficients α for these genes because information about α is contained in the second line of equation (1) of the main text. Doing so would seem inappropriate, however, given the inconsistency between the observed data and the idea that excess zeros are present.

References

- Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. *Journal of the American Statistical Association*, 88(421), 9-25. Retrieved from http://www.jstor.org/stable/2290687
- Chen, E. Z., & Li, H. (2016, 05). A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Bioinformatics, 32(17), 2611-2617. Retrieved from https://doi.org/10.1093/bioinformatics/btw308 doi: 10.1093/bioinformatics/btw308
- Diggle, P. J., et al. (2002). Analysis of longitudinal data. Oxford, UK: Oxford University Press.
- Fang, Z., Weng, C., Li, H., Tao, R., Mai, W., Liu, X., . . . Li, Y. (2019). Single-cell heterogeneity analysis and crispr screen identify key beta cell-specific disease genes. Cell Reports, 26(11), 3132 3144.e7. Retrieved from http://www.sciencedirect.com/science/article/pii/S2211124719302141 doi: https://doi.org/10.1016/j.celrep.2019.02.043
- Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., . . . Gottardo, R. (2015, Dec 10). Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell rna sequencing data. Genome Biology, 16(1), 278. Retrieved from https://doi.org/10.1186/s13059-015-0844-5 doi: 10.1186/s13059-015-0844-5
- Fitzmaurice, G. M., et al. (2003). Applied longitudinal analysis, second edition. Hoboken, NJ: John Wiley & Sons, Inc.
- Lawlor, N., George, J., Bolisetty, M., Kursawe, R., Sun, L., Sivakamasundari, V., ... Stitzel, M. L. (2017). Single-cell transcriptomes identify human islet cell signatures and reveal cell-typespecific expression changes in type 2 diabetes. Genome Research, 27(2), 208-222. Retrieved from http://genome.cshlp.org/content/27/2/208.abstract doi: 10.1101/gr.212720.116
- Macosko, E., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., ... McCarroll, S. (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161(5), 1202 1214. Retrieved from http://www.sciencedirect.com/science/article/pii/S0092867415005498 doi: https://doi.org/10.1016/j.cell.2015.05.002
- Pinheiro, J. C., & Bates, D. M. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. *Journal of Computational and Graphical Statistics*, 4(1), 12-35. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/10618600.1995.10474663 doi: 10.1080/10618600.1995.10474663
- Skaug, H. J., & Fournier, D. A. (2006). Automatic approximation of the marginal likelihood in non-gaussian hierarchical models. Computational Statistics & Data Analysis, 51(2), 699 - 709. Retrieved from http://www.sciencedirect.com/science/article/pii/S0167947306000764 doi: https://doi.org/10.1016/j.csda.2006.03.005