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1 Pancreas Data Methods

1.1 Drop-seq reads processing

We performed raw reads processing following the instructions described in the original Drop-
Seq publication (Macosko et al.; 2015). The sequenced Drop-Seq libraries yield 50-base
paired-end reads (PE50). However, since only the first 20bp of read 1 is informative (base
1-12 cell barcode, base 13-20 UMI), we trimmed base 21-50 of read 1 before further analysis.
We first removed all data with the quality score of read 1 (base 1-20) lower than 10. Read
2 was trimmed at 3’ end to remove ployA tails of at least 6 bases, and trimmed at 5’ if
template switching oligo (TSO) adapter sequence appears. Clean reads were then aligned to
hgl9 or mm9 using STAR with default settings. We only keep uniquely mapped reads on
gene exons. We next filtered out PCR duplicates with the same coordinates, cell barcode,
and UMI. We then grouped the reads by cell barcode, and generated the digital UMI-count
matrix after counting transcripts for every genes with every cell barcode.

1.2 Distinguish cell barcodes with single cell transcriptomes

We defined STAMPs (single cell transcriptome attached to microparticles) as cell barcodes
with significantly more reads than background. Under the Drop-Seq experimental settings,
only about 2-5% of beads are co-encapsulated with cells. Therefore, most cell barcodes only
have a small number of transcripts from mRNA contamination during the bead breakage
step. In order to distinguish STAMPs from empty beads, we examined the density plots
of transcript counts for all cell barcodes (see Supplementary Figure 1B of (Fang et al.|
2019)). In all experiments, we observed a major peak from empty beads and a fat right tail
representing STAMPs with single cell transcriptomes. We therefore took a simple approach
by calculating mean (u) and standard deviation (o) of the major peak assuming a Gaussian
distribution. Any cell barcode with more than p + 2 * o transcripts were called as STAMPs.

1.3 Down-sampling sequencing data

Because the Drop-Seq libraries have different sequencing depth, we observed variable sen-
sitivity in detecting transcripts / genes from each library (see Supplementary Figure ,
which causes bias during the clustering or comparative analyses. We therefore took a down-
sampling approach to normalize the sequencing depth. We firstly run raw data processing as
described above using full data and estimate the total STAMP numbers for each donor. For
down sampling, we only took a portion of reads from every library so that the average per-
STAMP sequencing depth are similar. New UMI-count matrices are generated again for all
donors after down sampling. We found that the normalization of sequencing depth resulted
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Supplementary Figure S1: Shows the influence of the down-sampling procedure by individual
in both the number of transcripts and the number of genes in the STAMPs.

in cleaner clusters in t-SNE plot (see Supplementary Figure 1E of (Fang et al., [2019))). We
only used the down-sampled data matrices when different donors need to be compared.

1.4 Cell type identification using unsupervised clustering

We designed a pipeline to determine the cell types of most STAMPs with high confidence
using unsupervised clustering methods (see Supplementary Figure 1A of (Fang et al., 2019)).
Firstly, we performed initial clustering analysis with the 11,920 top STAMPs with at least
1,000 transcripts after down sampling. It has been previously estimated that in human
islets, < 0.1% endocrine cells are positive with more than one marker hormones (INS, GCG,
PPY, SST, and GHRL). We therefore first filtered out 890 STAMPs (out of 12,810, or
6.9%) expressing two hormones (see Supplementary Figure 1G of (Fang et al.; 2019)) before
clustering analysis. In this step, one STAMP is considered as doublets if it has two hormone
genes with 15 transcripts. As mentioned above, the percentage of doublets is significantly
greater than estimated from species mix experiment because single cells from tissues are
more inclined to adhere with each other than cultured cells.

For clustering, we first ranked top 10,000 genes based on average expression level among
all cells; then grouped them into 10 bins with 1,000 genes each. Coefficient of variation
(CV) is calculated for every gene within each bin. From every bin, we pick top 50 genes
with highest CV as informative genes. All together, we picked 500 informative genes for
clustering analysis. We used Seurat package for clustering analysis with default parameters.
In Seurat, PCA was performed with the 500 informative genes. Using PC1 to PC10, cells
were embedded in a K-nearest neighbor (KNN graph). Smart local moving algorithm (SLM)
was applied to group cells into communities. PC1 to PC10 were used as input to visualize
cell clusters in two-dimensional t-SNE space. In order to define cell type, we used Seurat
FindMarker function to find marker genes of each cell cluster, and defined cell types based
on our knowledge and literatures. We performed the first round clustering to classify non-
endocrine cells (ductal cells, active PSCs and quiescent PSCs, Figure 1B) and the second
round to distinguish the endocrine cell types (a, 3, ¢, PP cells, Figure 1E). Acinar and e
cells are not distinguishable in t-SNE plot due to scarcity, but can be clearly recognized from
PCA plots (See Supplementary Figure 2 of (Fang et al.; 2019)). We also noticed a very small



number of STAMPs (223, or 1.8%) expressing hormone genes inconsistent with their cell type
classification (>15 transcripts) (see Supplementary Figure 1H of (Fang et all 2019)), which
were also filtered as possible doublets after clustering analysis (see Supplementary Figure 1A
of (Fang et al.; 2019)). Finally, we successfully assigned unique cell types to 11,697 STAMPs
with high confidence. We used the same method for other clustering analyses in this work.

1.5 Cell type identification of low-depth STAMPs

Finally, we classified the low-transcript STAMPs using the knowledge obtained from clus-
tering the top STAMPs as the training dataset (see Supplementary Figure 1A of (Fang et
al. [2019))). As mentioned above, we performed PCA clustering of the training dataset using
500 informative genes. From the PCA results, we took 32 significant principle components
(PCs) as knowledge learned from training set. The 32 PCs are linear combinations of the
500 informative genes, and compose a virtual 32-dimensional space. Each cell type should
form a cluster in the space. We next calculated the arithmetic centers of 8 cell types from
training dataset (ductal, acinar, PSC, «, 3, 0, €, PP cells), and built spheres for all cell
types centered at their arithmetic mean in the 32-dimensional space. We also computed the
Euclidean distance between every cell to the center of its cell type, and empirically defined
the radius of each “cell type sphere” as 80 percentile of all the distances in this cell type. For
any low depth STAMP, we also took the same 500 informative genes, computed its projection
onto the 32 PCs from training data, and the distances between the STAMP and the centers
of all cell type spheres. If one STAMP is located exclusively in one cell type’s “sphere”, we
will annotate the STAMP to that cell type. We also performed several filtering steps similar
to training set, and successfully classified 16,329 additional STAMPs (see Supplementary
Figure 1A of (Fang et al. 2019)). Lastly, we used 2-dimensional PCA plots and visually
confirmed the correctness of cell type assignment (see Supplementary Figure 2 of (Fang et
al., 2019))).



2 Additional Details for the ad hoc procedure

As discussed in the main text, we conclude that the ad hoc procedure is not designed to
distinguish between the two components because there is a single Pearson’s residual com-
bining the fitted values of both components of the ZINB regression model without random
effects. Figure S2 demonstrates that these residuals are sensitive to the true presence of
random effect terms in either component and thus can be leveraged as a reasonably effective
approach to screen for genes that need random effects in either component. As a result,
we automatically include random effects in both components of the TWO-SIGMA model
when the ad hoc p-value is small. The need for random effects in the full model can then
be evaluated using formal statistical techniques. For each of the simulation results discussed
in the main text and summarized in the tables below, we also calculated the p-values from
the ad hoc method for determining if random effects are needed. Figures [S3| and [S4] show
histograms of p-values from representative scenarios when variance components are zero and
non-zero, respectively. When variance components are zero, p-values are close to uniformly
distributed, meaning that most genes will not be flagged as in need of random effects. When
variance components are non-zero, the method produces small p-values which can success-
fully flag the need to include random effects using a p-value cutoff threshold of, for example,
0.05 or 0.10.
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Supplementary Figure S2: Shows the Pearson’s residuals by individual from a zero-inflated
negative binomial model without random effects in situations which vary the presence of
random effect terms in the true model. The adhoc p-value shows agreement with the Likeli-
hood Ratio statistic p-value when random effects are not present or present in combinations
of one or both components.
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Supplementary Figure S3: ad hoc procedure with zero variance components: Shows the
distribution of p-values from the ad hoc method described in the main text when variance

components are zero under some representative scenarios.
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Supplementary Figure S4: ad hoc procedure with non-zero variance components: Shows the
distribution of p-values from the ad hoc method described in section 3 of the main text when

variance components are non-zero under some representative scenarios.



3 More Detailed Type-1 Error Simulation Results

Function used to simulate genes, also present within the twosigma package with an example
dataset called “twosigma_example_data.”

simulate_zero_inflated_nb_random_effect_data<-function(ncellsper,X,Z,alpha
,beta,phi,sigma.a
,Sigma.b,id.levels=NULL
,sim.seed=NULL)

if(is.null(sim.seed)){sim.seed<-sample.int(1e8,1)}
if (phi<=0){

stop("phi must be >0")
}
if(sigma.a<0 | sigma.b<0){

stop("sigma.a and sigma.b cannot be less than zero")
}
if('is.null(sim.seed)){

set.seed(sim.seed)
}
# Define phiinv for use with rnbinom statement below
phiinv<-1/phi
id.levels<-1:length(ncellsper)
nind<-length(id.levels)
id<-rep(id.levels,times=ncellsper)

# fized effects for zero-inflation component
names<-colnames(Z)

Z<-cbind(1,Z)
colnames(Z)<-c("Intercept",names)

#fized effects for mean component
names<-colnames (X)

X<-cbind(1,X)

colnames (X)<-c("Intercept",names)

#simulate random effects at sample level

# ".rep" vectors ensure the dimensions match
# the number of cells for each individual

<- as.matrix(rnorm(nind,mean=0,sd=sigma.a))
.rep <- rep(a,times=ncellsper)

<- as.matrix(rnorm(nind,mean=0,sd=sigma.b))
.rep <- rep(b,times=ncellsper)

o T P P

# drop-out probability and mean



logit.p<-Z¥*%as.matrix(alpha,ncol=1) +a.rep
log.mu<-X)%*%as.matrix(beta,ncol=1)+b.rep

p <- exp(logit.p)/(1l+exp(logit.p)) # inverse logit function
mu <- exp(log.mu)

#Y gives the simulated counts
Y<-rep(NA,sum(ncellsper))
ind.dropout <- rbinom(length(Y), 1, p)
for (i in 1:length(Y)){

if (ind.dropout[i] == 1){Y[i]=0}

if (ind.dropout[i] == 0)

{

}
}

# return X and Z without the intercept for conventience

return(list(Y=Y,X=X[,-1],Z=Z[,-1] ,a=a,b=b,alpha=alpha,beta=beta
,8igma.a=sigma.a,sigma.b=sigma.b,nind=nind,ncellsper=ncellsper
,id=id))

Y[il<-rnbinom(1,size=(1/phiinv) ,prob=(1/(1+phiinv*muli])))

}

library(twosigma)
# load example scenario parameter wvalues and simulate data
data("twosigma_example_data")
dat<-simulate_zero_inflated_nb_random_effect_data(ncellsper,X,Z,alpha
,beta,phi,sigma.a,sigma.b
,id.levels,sim.seed)
# Fat results without random effects to demonstrate
result_nore<-1lr.twosigma(matrix(dat$Y,nrow=1) ,mean_covar = dat$X
,zl_covar = dat$Z,mean_re = F,zi_re = F
,id = dat$id,covar_to_test = "t2d_sim")
# Fit results with random effects to demonstrate
result_re<-1lr.twosigma(matrix(dat$Y,nrow=1) ,mean_covar = X,zi_covar = Z
,mean_re = T,zi_re = T,id = id,covar_to_test = "t2d_sim")



Tables give more detailed results for the type-I error simulations at the 0.05 level.
Each setting has results from three models: TWO-SIGMA, the zero-inflated negative bino-
mial model (without random effects) “ZINB,” and MAST (Finak et al., 2015). Parameters ay
and (3, correspond to the coefficients on a binary disease status indicator in the zero-inflation
and mean model, respectively. Under the null, both are set to 0, and under some alternative
hypothesis one or both are non-zero. Other coefficients in both components include an inter-
cept (o, fo), coefficients from simulated age values (as, f2) and coefficients from simulated
CDR values (ag, f3). Parameter values were designed to mimic realistic values observed in
the pancreas data analysis. “LRT” refers to the likelihood ratio statistic (on 2 d.f.), and the
combined x? statistic is defined as the sum of the squared z-statistics from each of the two
coefficients related to the binary disease status indicator. Coverage is given for parameters
a1 and (1, ¢, and o, and 0. Note that confidence intervals for the variance components are
computed on the log scale and exponentiated. Therefore, the intervals will not contain zero
and thus coverage when o, and/or o, equal zero is not entirely meaningful. Finally, note
that the average time column includes the average over all genes of the time needed for two
runs of TWO-SIGMA, MAST, and the ZINB model (each with and without the coefficients
corresponding to the binary disease status indicator) and to simulate the data as well as
process the results for the entire replication. The purpose of these times is to highlight how
total computation time varies within a table as variance component sizes change. Within a
given table, differences in the running time are largely if not entirely due to TWO-SIGMA
run time. More discussion of run time is given in the paragraph below.

For example, consider table The first column “N/N Max” gives the number of genes
that converged compared to the total number of genes simulated for each scenario, and as
mentioned above the last column gives total runtime for all computations in a given simu-
lation replication. One highly consistent trend is that the convergence percentage is lower
and running time higher when variance components were zero. This is because the marginal
likelihood for TWO-SIGMA is evaluated more times when the true values of o, and o, are
on the boundary space of zero. Comparing the first and last runtimes in table shows
that there can be nearly a 50% increase in run-time when true variance components are
zero yet random effects are included in the model. This underscores the usefulness of our
ad hoc procedure to avoid fitting random effects where they are unnecessary. In table 1,
Type-I error for TWO-SIGMA is well-preserved for any variance component value but be-
comes increasingly inflated for the ZINB model and MAST when variance components are
non-zero. Furthermore, coverage from TWO-SIGMA for all parameters shown remains near
the nominal level of 95%. These results hold well for all four cases varying the breakdown of
the total of 50,000 cells between number of individuals and number of cells per individual,
with a slight inflation of type-I error seen in table [S4] and discussed in the main text.

Figures and [S6 show the observed type-I error across more stringent significance levels
for representative simulation scenarios. These figures do not show systematically different
patterns than seen at the .05 level in tables but can highlight the substantial type-I
error seen for MAST and the ZINB model in some situations.



Case

1: 1000 individuals, 50 single-cells each, 0.05 level

LRT Combined y? 95 % CI Coverage Simulation Parameters Avg. Time
N / N Max Model Type-1 Error  Type-I Error oy 5 ) O o, a=(agar,a0,03) B=(00,51,0.03) ¢ 0. o (min)
TWO-SIGMA 0.049 0.049 0.951 0.953 0954 — —
9195/10000 ZINB 0.051 0.051 0.950 0.951 0.953 (1,0,-05,-2) (2,0,-01,06) 10 0 0 31.7
MAST 0.089 0.020 0.950 0997 — — —
TWO-SIGMA 0.048 0.047 0.953 0.951 0.952 — —
9612/10000 ZINB 0.051 0.049 0.951 0.949 0.953 — = (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 2 0 0 33.5
MAST 0.080 0.032 0.950 0.978 = =
TWO-SIGMA 0.048 0.050 0.954 0953 0949 — —
9464,/10000 ZINB 0.052 0.053 0.952 0.951 0.949 (1,0,-05,-2) (2,0,-0.1, 0.6) 1 0 0 32.2
MAST 0.081 0.042 0.953 0.966 — — —
TWO-SIGMA 0.051 0.051 0.949 0.952 0.952 0.936 0.948
10000/10000 ZINB 0.132 0.131 0.941 0.853 0.001 — = (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 10 0.1 0.1 30.7
MAST 0.144 0.059 0.942 0950 — = =
TWO-SIGMA 0.051 0.051 0.950 0.949 0.951 0.936 0.963
10000,/10000 ZINB 0.078 0.078 0.945 0.918 0.666 (1,0,-05,-2) (2,0,-0.1, 0.6) 2 01 0.1 30.7
MAST 0.089 0.048 0.944 0960 — — —
TWO-SIGMA 0.049 0.049 0.948 0.948 0.950 0.935 0.954
10000/10000 ZINB 0.066 0.066 0.941 0930 0.869 — — (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 1 01 0.1 30.1
MAST 0.095 0.049 0.941 0960 — = =
TWO-SIGMA 0.051 0.051 0.947 0952 0.946 0.944 0.949
10000/10000 ZINB 0.621 0.621 0.776 0417 0 (1,0,-05, -2) (2,0,-0.1,06) 10 0.5 05 20.9
MAST 0.290 0.494 0.778 0.556  — — —
TWO-SIGMA 0.053 0.053 0.948 0.948 0.947 0.947 0.946
9999,/10000 ZINB 0.505 0.503 0.794 0.539 0 — — (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 2 05 05 18.0
MAST 0.275 0.400 0.792 0.658 — = =
TWO-SIGMA 0.050 0.050 0.950 0.954 0.949 0.950 0.948
10000,/10000 ZINB 0.404 0.398 0.817 0.639 (1,0,-05,-2) (2,0,-0.1, 0.6) 1 05 05 17.0
MAST 0.247 0.301 0.810 0.759  — — —
Supplementary Table S1: Type-I Error using LRT to test Hy : a; = 0, 51 = 0 with a

significance level of 0.05
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Case 2: 500 individuals, 100 single-cells each, 0.05 level
LRT Combined y? 95 % CI Coverage Simulation Parameters Avg. Time
N / N Max Model Type-1 Error  Type-I Error oy B ) O o, a=(ag,a1,02,03) B=(Bo,0h,02,5) ¢ 0oa o0 (min)
TWO-SIGMA 0.044 0.044 0.955 0.952 0.950 — —
8895/10000 ZINB 0.047 0.047 0.953 0.950 0952 — — (1,0,-0.5, -2) (2, 0,-0.1, 0.6) 10 0 0 31.8
MAST 0.086 0.020 0.953 0.996 — — —
TWO-SIGMA 0.042 0.043 0.952 0.957 0.946 — —
9285/10000 ZINB 0.045 0.046 0.949 0.955 0.949 — — (1, 0, -0.5, -2) (2, 0,-0.1, 0.6) 2 0 0 32.7
MAST 0.084 0.030 0.949 0.981 — = =
TWO-SIGMA 0.046 0.045 0.952  0.952 0.952 —
9502/10000 ZINB 0.049 0.049 0.951 0.949 0.951 — — (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 1 0 0 30.6
MAST 0.085 0.039 0.950 0.969 — — —
TWO-SIGMA 0.052 0.052 0.942 0.951 0.950 0.955 0.948
10000/10000 ZINB 0.217 0.218 0926 0.754 0.002 — — (1, 0, -0.5, -2) (2,0,-0.1,0.6) 10 0.1 0.1 23.8
MAST 0.187 0.099 0926 0.899 — = =
TWO-SIGMA 0.050 0.052 0.948 0.953 0.950 0.948 0.958
10000/10000 ZINB 0.106 0.105 0.935 0.885 0.670 — — (1,0,-0.5,-2) (2, 0,-0.1, 0.6) 2 0.1 01 25.3
MAST 0.104 0.065 0.934 0944 — — —
TWO-SIGMA 0.052 0.052 0.950 0.950 0.949 0.946 0.967
10000/10000 ZINB 0.081 0.082 0939 0.914 0.866 — — (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 1 01 01 229
MAST 0.107 0.063 0.938 0.945 — = =
TWO-SIGMA 0.051 0.052 0.950 0.949 0.946 0.948 0.947
10000/10000 ZINB 0.753 0.753 0.667 0.307 0 — — (1,0,-0.5,-2) (2, 0,-0.1, 0.6) 10 0.5 0.5 17.8
MAST 0.419 0.673 0.670 0.414 — — —
TWO-SIGMA 0.054 0.055 0.951 0.942 0.953 0.949 0.950
10000/10000 ZINB 0.663 0.663 0.691 0414 0 — — (1, 0, -0.5, -2) (2, 0,-0.1, 0.6) 2 05 0.5 18.0
MAST 0.382 0.579 0.685 0.516 — = =
TWO-SIGMA 0.054 0.054 0.944 0.948 0.947 0.950 0.942
10000/10000 ZINB 0.583 0.577 0.705 0.509 0 — — (1,0,-0.5, -2) (2, 0,-0.1, 0.6) 1 05 05 15.5
MAST 0.366 0.494 0.696 0.628 — —

Supplementary Table S2: Type-I Error using LRT to test Hy
significance level of 0.05
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a; = 0, B = 0 with a



Case

3: 100 individuals, 500 single-cells each, 0.05 level

LRT Combined y? 95 % CI Coverage Simulation Parameters Avg. Time
N / N Max Model Type-1 Error  Type-I Error oy 5 ) O o, a=(agar,a0,03) B=(00,51,0.03) ¢ 0. o (min)
TWO-SIGMA 0.042 0.044 0.954 0953 0951 — —
8773/10000 ZINB 0.050 0.050 0.950 0.950 0.950 (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 10 0 0 32.1
MAST 0.090 0.021 0.950 0.995 — — —
TWO-SIGMA 0.038 0.038 0.960 0.957 0.953 — =
8901/10000 ZINB 0.044 0.043 0.955 0.954 0.953 — = (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 2 0 0 32.1
MAST 0.079 0.028 0.955 0977 — = =
TWO-SIGMA 0.044 0.045 0.956 0.954 0951 — —
9199,/10000 ZINB 0.051 0.050 0.952 0.949 0.951 (1, 0,-0.5, -2) (2,0,-0.1, 0.6) 1 0 0 31.3
MAST 0.087 0.038 0.950 0.969 — — —
TWO-SIGMA 0.056 0.059 0.938 0.947 0.951 0.979 0.938
9999,/10000 ZINB 0.534 0.533 0.869 0.465 0.007 — = (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 10 0.1 0.1 25.7
MAST 0.313 0.376 0.869 0.634 — = =
TWO-SIGMA 0.057 0.060 0.940 0.942 0.952 0.978 0.943
10000/10000 ZINB 0.323 0.320 0.877 0.685 0.673 (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 2 01 01 25.9
MAST 0.176 0.226 0872 0.791 — — —
TWO-SIGMA 0.053 0.058 0.939 0.947 0.950 0.977 0.955
10000/10000 ZINB 0.224 0.219 0.887 0.789 0.883 — — (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 1 01 0.1 25.6
MAST 0.174 0.169 0.882 0.860 — = =
TWO-SIGMA 0.055 0.058 0.945 0.942 0.951 0.935 0.936
10000/10000 ZINB 0.941 0.941 0.367 0.142 (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 10 05 0.5 21.4
MAST 0.716 0.914 0.367 0.193 — — —
TWO-SIGMA 0.056 0.060 0.940 0.945 0.950 0.936 0.934
10000/10000 ZINB 0.909 0.909 0.386  0.196 0 — — (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 2 05 05 20.4
MAST 0.685 0.884 0.383 0.254 = =
TWO-SIGMA 0.053 0.056 0.943 0947 0.952 0.939 0.934
10000/10000 ZINB 0.873 0.872 0.412  0.256 (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 1 05 05 20.0
MAST 0.649 0.839 0.400 0.324 — — —
Supplementary Table S3: Type-I Error using LRT to test Hy : a; = 0, 51 = 0 with a

significance level of 0.05

L] L] L] L]
Case 4: 25 individuals, 2000 single-cells each, 0.05 level
LRT Combined y? 95 % CI Coverage Simulation Parameters Avg. Time
N / N Max Model Type-1 Error  Type-I Error oy B ) O o, a=(ag,a1,02,03) B=(Bo,0h,02,5) ¢ 0oa o0 (min)
TWO-SIGMA 0.041 0.045 0.953 0951 0.950 — —
8698,/10000 ZINB 0.052 0.052 0.947 0.946 0950 — — (1,0,-0.5, -2) (2, 0,-0.1, 0.6) 10 0 0 28.9
MAST 0.090 0.021 0.947 0.995 — — —
TWO-SIGMA 0.041 0.046 0.955 0.954 0.952 — —
8585,/10000 ZINB 0.052 0.053 0.949 0.949 0.952 — — (1, 0, -0.5, -2) (2, 0,-0.1, 0.6) 2 0 0 28.3
MAST 0.086 0.034 0.948 0.976 — = =
TWO-SIGMA 0.042 0.044 0.954 0954 0946 — —
8763/10000 ZINB 0.051 0.050 0.949 0.949 0946 — — (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 1 0 0 27.8
MAST 0.090 0.041 0.949 0.966 — — —
TWO-SIGMA 0.076 0.088 0.920 0.923 0.949 0.980 0.909
9544,/10000 ZINB 0.817 0.817 0.689 0.235 0.056 — — (1, 0, -0.5, -2) (2,0,-0.1,0.6) 10 0.1 0.1 22.3
MAST 0.497 0.720 0.689 0.354 — = =
TWO-SIGMA 0.072 0.087 0.926  0.923 0.946 0.994 0.896
9999,/10000 ZINB 0.643 0.642 0.708 0424 0719 — — (1,0,-0.5,-2) (2, 0,-0.1, 0.6) 2 0.1 01 26.4
MAST 0.361 0.562 0.704 0527 — — —
TWO-SIGMA 0.075 0.094 0.922 0.923 0.949 0.992 0.906
10000/10000 ZINB 0.548 0.542 0.733 0.541 0.880 — — (1, 0,-0.5, -2) (2, 0,-0.1, 0.6) 1 01 01 26.3
MAST 0.361 0.467 0.718 0.637 — = =
TWO-SIGMA 0.076 0.094 0.920 0.920 0.951 0.888 0.888
10000/10000 ZINB 0.984 0.984 0.194 0.070 0 — — (1,0,-0.5,-2) (2, 0,-0.1, 0.6) 10 0.5 0.5 22.7
MAST 0.875 0.979 0.195 0.098 — — —
TWO-SIGMA 0.076 0.092 0.925 0.922 0.949 0.886 0.882
10000/10000 ZINB 0.974 0.975 0.202 0.101 0 — — (1, 0, -0.5, -2) (2, 0,-0.1, 0.6) 2 05 0.5 22.0
MAST 0.857 0.966 0.197 0.132 — — —
TWO-SIGMA 0.074 0.089 0.923 0922 0.950 0.891 0.880
10000/10000 ZINB 0.964 0.963 0.218 0.135 0 — — (1,0,-0.5, -2) (2, 0,-0.1, 0.6) 1 05 05 22.5
MAST 0.827 0.953 0.213 0.174 — —

Supplementary Table S4: Type-I Error using LRT to test Hy
significance level of 0.05
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Supplementary Figure S5: Type-I error across different significance levels: Shows the ob-
served type-I error across various nominal significance levels. The left column zooms in on
the part of the right column corresponding to smaller thresholds, such as those that may be
associated with a Bonferroni adjustment for multiple comparisons.
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Supplementary Figure S6: Type-I error across different significance levels: Shows the ob-
served type-I error across various nominal significance levels. The left column zooms in on
the part of the right column corresponding to smaller thresholds, such as those that may be
associated with a Bonferroni adjustment for multiple comparisons.

13



4 Power Results

Simulations under the same framework were also performed for non-zero values of a; and ;
(both as defined in the previous section) to evaluate the power of TWO-SIGMA in testing
Hy:a; =0, f1 = 0. As seen in Table 1 of the main text and tables [SIHS4] of this supplement,
MAST and the ZINB model can suffer from vastly inflated type-I error. Thus, the observed
(or “apparent”) power does not always provide a fair comparison to TWO-SIGMA. For each
of the three methods we therefore calculated empirical significance thresholds for all null
simulation settings. These are cutoffs such that the percentage of statistics larger than the
threshold equals the significance level. “True” power is then calculated by rejecting the null
if the test statistic is larger than the empirical significance threshold from the corresponding
simulation setting under the null. In simulation settings this does not add computation,
but in real data setting this procedure involves additional computation and is therefore not
preferred.

Because the type-I error for TWO-SIGMA is approximately preserved in all four sample
size cases, true power is nearly identical to apparent power for TWO-SIGMA. We therefore
found it unnecessary to use true power for TWO-SIGMA in supplementary figures S6-S8
shown here and figure 2 in the main text. In contrast, true power can be very different than
apparent power for both the ZINB model and MAST given their inflated type-I errors. For
example, one simulation setting shows that the apparent power of MAST is 0.375 which the
true power for this scenario is only 0.194 (see the third rows of table [S5| and . Although
not presented, this discrepancy between apparent and true power would be even more pro-
nounced if the simulated data here were based on larger values of the variance components
o, and o, because type-I errors are more inflated for larger variance components (see tables

ST3).

One general observation from tables[S9| to and figure 2 of the main text is that the ZINB
model retains very high true power in both sample size settings and across all four effect
scenarios. For smaller values of o the ZINB model can sometimes have higher true power
than TWO-SIGMA. As the dropout proportion increases (via increasing «g), TWO-SIGMA
tends to eventually have higher power. TWO-SIGMA does not require the use of computa-
tionally expensive resampling procedures for valid inference, giving it a key advantage over
the ZINB model, which is not articulated explicitly as a DE method for scRNA-seq data.
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Supplementary Figure S7: Power evaluations in simulated data: Shows the power to test
Hy : oy = 1 = 0 by varying the intercept oy to control the drop-out proportion in four
setups: TWO-SIGMA and MAST with 50 cells from each of 1000 individuals or 500 cells
from each of 100 individuals. Values of ¢, o,, and o, were all set to 0.1 and an effect size
of 0.03 was used. Larger values of ag correspond to more drop-out in the data. 10,000
genes were simulated. Because of the type-I error inflation from MAST seen in tables [SIHS4]
true power was calculated and plotted using the empirical significance threshold from the
corresponding setting under the null. TWO-SIGMA retains higher power in the first three
scenarios and half of the fourth scenario without the need to use true power. See section
4 of the supplement for more details about computing true power and discussion regarding
power trends across all three methods.
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Supplementary Figure S8: Power evaluations in simulated data: Shows the power to test
Hy : a3 = 51 = 0 by varying the effect size in two sample size setups: 50 cells from each of
1000 individuals or 500 cells from each of 100 individuals. Values of ¢, o,, and o, were all
set to 0.1 and 10,000 genes were simulated. Because of the type-I error inflation from MAST
seen in tables [STHS4], true power was calculated and plotted using the empirical significance
threshold from the corresponding setting under the null for both of these methods. TWO-
SIGMA retains higher power in the first three scenarios and half of the fourth scenario
without the need to use true power. See the discussion at the beginning of section 4 of the
supplement for more details about computing true power and discussion regarding power

trends across all differing methods.
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Supplementary Figure S9: Power evaluations in simulated data: Shows the power to test
Hy : a3 = 1 = 0 by varying the effect size with 50 cells from each of 1000 individuals.
Values of ¢, 0,, and o, were all set to 0.1 and 10,000 genes were simulated. Because of
the type-I error inflation from the ZINB model and MAST seen in tables [STHS4], true power
was calculated and plotted using the empirical significance threshold from the corresponding
setting under the null for these two methods. In the first three scenarios, MAST consistently
has lower true power while TWO-SIGMA and the ZINB model typically have very similar
true power. When the effect is only in the zero-inflation component, power is lower for all
methods at all effect sizes. Using TWO-SIGMA can bypass the need for computationally
expensive resampling procedures needed to generate true power. See the discussion at the
beginning of section 4 of the supplement for more details about computing true power and
discussion regarding power trends across all differing methods.
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4.1 Results using “Apparent” Power for MAST and the ZINB
model

Case 1: 1000 individuals, 50 single-cells each, 0.05 level

Power Scenarios 1 & 2 from Figure 2 of main text
Effects in both components in either the same or different directions

LRT Combined 2 Simulation Parameters Avg. Time

N / N Max Model P(Reject Hy) P(Reject Hy) a = (ap, a1, a0,a3) B = (Bo,P1,02,03) & 0a 0 (min)
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (-3, 0.03,-0.5,-2) (2,0.03,-0.1,0.6) 10 0.1 0.1 279
MAST 0.375 1.000
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (-2, 0.03,-0.5,-2) (2,0.03,-0.1,0.6) 10 0.1 0.1 27.8
MAST 0.738 1.000
TWO-SIGMA 1.000 1.000

10000/10000 ZINB 1.000 1.000 (-1, 0.03,-0.5,-2) (2, 0.03,-0.1,0.6) 10 0.1 0.1 27.0
MAST 0.767 1.000
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (0, 0.03,-0.5,-2) (2,0.03,-0.1,0.6) 10 0.1 0.1 29.4
MAST 0.816 1.000
TWO-SIGMA 1.000 1.000

10000/10000 ZINB 1.000 1.000 (1, 0.08,-0.5,-2) (2,0.03,-0.1,0.6) 10 0.1 0.1 29.4
MAST 0.834 1.000
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (2, 0.03, -0.5, -2) (2,0.03,-0.1,0.6) 10 0.1 0.1 2.5
MAST 0.720 0.999
TWO-SIGMA 0.999 0.999

10000,/10000 ZINB 1.000 1.000 (3,0.03,-0.5,-2) (2,0.03,-0.1,0.6) 10 0.1 0.1 27.2
MAST 0.572 0.986
TWO-SIGMA 1.000 1.000

10000/10000 ZINB 1.000 1.000 (-3, 0.03, -0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 27.4
MAST 0.843 1.000
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (-2, 0.03,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 27.6
MAST 0.913 1.000
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (-1, 0.03, -0.5, -2)  (2,-0.03,-0.1,0.6) 10 0.1 0.1 27.7
MAST 0.884 1.000
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (0, 0.03,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 29.5
MAST 0.879 1.000
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (1, 0.08,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 28.2
MAST 0.863 1.000
TWO-SIGMA 1.000 1.000

10000/10000 ZINB 1.000 1.000 (2, 0.08,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 27.0
MAST 0.734 0.999
TWO-SIGMA 0.999 0.999

10000,/10000 ZINB 0.999 0.999 (3,0.03,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 26.2
MAST 0.579 0.985

Supplementary Table S5: Apparent Power using LRT to test Hy

significance level of 0.05
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Case 1: 1000 individuals, 50 single-cells each, 0.05 level

Power Scenarios 3 & 4 from Figure 2 of main text
Effects in one component at a time

N / N Max

10000,/10000

10000/10000

10000,/10000

10000/10000

10000,/10000

10000/10000

10000/10000

10000,/10000

10000,/10000

9999/10000

10000,/10000

10000,/10000

10000,/10000

10000/10000

Model
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST

LRT
P(Reject Hp)
1.000
1.000
0.262
1.000
1.000
0.461
1.000
1.000
0.246
1.000
1.000
0.280
1.000
1.000
0.420
1.000
1.000
0.211
0.997
0.999
0.134
0.341
0.495
0.546
0.482
0.611
0.703
0.561
0.668
0.768
0.577
0.674
0.786
0.544
0.624
0.768
0.451
0.526
0.670
0.343
0.394
0.539

Combined 2
P(Reject Hy)
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.998
0.997
0.999
0.966
0.343
0.495
0.368
0.484
0.611
0.513
0.563
0.669
0.588
0.577
0.676
0.606
0.546
0.624
0.566
0.452
0.526
0.449
0.343
0.393
0.318

Simulation Parameters

a = (g, ay, s, 03)

(-3,0,-0.5, -2)

(1,0,-05,-2)

(2,0,-0.5, -2)

(3,0,

0.5, -2)

(-3,0.03, -0.5, -2)

(-2, 0.03, -0.5, -2)

(-1, 0.03, -0.5, -2)

(0, 0.03, -0.5, -2)

(1, 0.03, -0.5, -2)

(2, 0.03, -0.5, -2)

(3, 0.03,-0.5, -2)

ﬂ = (60»/317 621 /33)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03,-0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03,-0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0,-0.1, 0.6)

10

10

10

10

10

10

10

10

10

10

10

10

10

10

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Ty

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Avg. Time

(min)

26.6

27.3

26.9

29.8

30.2

29.5

29.7

26.6

26.4

29.3

30.9

31.0

28.6

28.4

Supplementary Table S6: Apparent Power using LRT to test Hy : a3 = 0, 1 = 0 with a
significance level of 0.05
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Case 2: 100 individuals, 500 single-cells each, 0.05 level

Power Scenarios 1 & 2 from Figure 2 of main text
Effects in both components in either the same or different directions

N / N Max

10000,/10000

10000,/10000

10000,/10000

10000/10000

10000,/10000

10000,/10000

10000/10000

9996,/10000

10000,/10000

9999/10000

10000,/10000

9999,/10000

10000,/10000

10000/10000

Model
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST

LRT
P(Reject Hp)
0.849
0.995
0.441
0.868
0.997
0.712
0.884
0.996
0.739
0.888
0.996
0.784
0.869
0.993
0.790
0.844
0.986
0.672
0.792
0.969
0.564
0.853
0.996
0.802
0.873
0.997
0.869
0.885
0.997
0.839
0.880
0.996
0.839
0.874
0.993
0.824
0.840
0.989
0.709
0.799
0.974
0.573

Combined 2
P(Reject Hy)
0.858
0.995
0.988
0.873
0.997
0.992
0.890
0.996
0.991
0.893
0.996
0.990
0.875
0.993
0.985
0.850
0.986
0.964
0.799
0.969
0.914
0.858
0.996
0.991
0.876
0.997
0.992
0.889
0.997
0.992
0.885
0.996
0.990
0.878
0.993
0.985
0.846
0.989
0.965
0.806
0.974
0.919

Simulation Parameters

a = (ap, a1, s, as)

(-3, 0.03, -0.5, -2)

(-2, 0.03, -0.5, -2)

(-1, 0.03, -0.5, -2)

(0, 0.03, -0.5, -2)

(1,0.03,-0.5, -2)

(2, 0.03, 0.5, -2)

(3,0.03, -0.5, -2)

(-3,0.03, -0.5, -2)

(-2, 0.03, -0.5, -2)

(-1, 0.03, -0.5, -2)

(0, 0.03, -0.5, -2)

(1, 0.03, -0.5, -2)

(2, 0.03, -0.5, -2)

(3, 0.03,-0.5, -2)

ﬂ = (/3)0”31-,%327?33)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03, 0.1, 0.6)

(2, 0.03,-0.1, 0.6)

(2,-0.03, 0.1, 0.6)

(2,-0.03,-0.1, 0.6)

(2, -0.03,-0.1, 0.6)

(2,-0.03, 0.1, 0.6)

(2,-0.03, -0.1, 0.6)

(2,-0.03, 0.1, 0.6)

(2,-0.03, -0.1, 0.6)

¢

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Oq Op

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

Avg. Time

(min)

21.6

23.9

22.6

23.7

26.3

25.6

26.1

22.1

23.8

22.7

23.3

25.8

25.6

Supplementary Table S7: Apparent Power using LRT to test Hy : a; = 0, 81 = 0 with a
significance level of 0.05
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Case 2: 100 individuals, 500 single-cells each, 0.05 level

Power Scenarios 3 & 4 from Figure 2 of main text
Effects in one component at a time

N / N Max

9999,/10000

10000/10000

10000,/10000

10000/10000

10000,/10000

10000/10000

10000/10000

9999,/10000

9999/10000

10000,/10000

10000,/10000

9899,/10000

10000,/10000

10000/10000

Model
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST

LRT
P(Reject Hp)
0.748
0.992
0.341
0.744
0.993
0.478
0.734
0.991
0.347
0.738
0.991
0.369
0.725
0.984
0.444
0.699
0.974
0.282
0.664
0.949
0.187
0.279
0.770
0.558
0.355
0.819
0.688
0.388
0.834
0.732
0.398
0.823
0.755
0.380
0.784
0.754
0.339
0.718
0.651
0.270
0.588
0.533

Combined 2
P(Reject Hy)
0.757
0.992
0.982
0.754
0.993
0.981
0.744
0.991
0.978
0.746
0.990
0.975
0.735
0.984
0.962
0.711
0.974
0.923
0.677
0.949
0.851
0.289
0.769
0.654
0.367
0.820
0.729
0.400
0.834
0.756
0.408
0.823
0.744
0.391
0.784
0.706
0.349
0.719
0.601
0.280
0.588
0.446

Simulation Parameters

a = (g, ay, s, 03)

(-3,0,-0.5, -2)

(1,0,-05,-2)

(2,0,-0.5, -2)

(3,0,

0.5, -2)

(-3,0.03, -0.5, -2)

(-2, 0.03, -0.5, -2)

(-1, 0.03, -0.5, -2)

(0, 0.03, -0.5, -2)

(1, 0.03, -0.5, -2)

(2, 0.03, -0.5, -2)

(3, 0.03,-0.5, -2)

ﬂ = (60»/317 621 /33)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03,-0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03,-0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0,-0.1, 0.6)

10

10

10

10

10

10

10

10

10

10

10

10

10

10

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Ty

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Avg. Time
(min)
21.9
22.7

21.8

22.1

24.9

26.6

22.7

21.1

19.7

20.6

25.3

26.4

26.1

Supplementary Table S8: Apparent Power using LRT to test Hy : a3 = 0, 1 = 0 with a
significance level of 0.05
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4.2 Results using “True” Power for MAST and the ZINB model

Case 1: 1000 individuals, 50 single-cells each, 0.05 level

Power Scenarios 1 & 2 from Figure 2 of main text
Effects in both components in either the same or different directions

LRT Combined 2 Simulation Parameters Avg. Time

N / N Max Model P(Reject Hy) P(Reject Hy) a = (ap, i, 0,a3) B = (Bo,b1,52,03) ¢ 0a 0p (min)
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (-3,0.03, 0.5, 2) (2, 0.03,-0.1,0.6) 10 0.1 0.1 927.9
MAST 0.194 0.352
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (-2, 0.03,-0.5,-2) (2,0.03,-0.1,0.6) 10 0.1 0.1 27.8
MAST 0.588 0.721
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (-1, 0.03,-0.5,-2) (2, 0.03,-0.1,0.6) 10 0.1 0.1 27.0
MAST 0.569 0.746
TWO-SIGMA 1.000 1.000

10000/10000 ZINB 1.000 1.000 (0, 0.03, -0.5, -2) (2,0.08,-0.1,0.6) 10 0.1 0.1 29.4
MAST 0.644 0.802
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (1, 0.03,-0.5,-2) (2,0.03,-0.1,0.6) 10 0.1 0.1 29.4
MAST 0.705 0.822
TWO-SIGMA 1.000 1.000

10000/10000 ZINB 1.000 1.000 (2, 0.08,-0.5,-2) (2,0.03,-0.1,0.6) 10 0.1 0.1 27.5
MAST 0.524 0.700
TWO-SIGMA 0.999 0.999

10000,/10000 ZINB 0.998 0.998 (3,0.03, -0.5, -2) (2,0.03,-0.1,0.6) 10 0.1 0.1 27.2
MAST 0.358 0.547
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (-3, 0.03,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 27.4
MAST 0.673 0.829
TWO-SIGMA 1.000 1.000

10000/10000 ZINB 1.000 1.000 (-2, 0.03,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 27.6
MAST 0.803 0.904
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (-1, 0.03, -0.5, -2)  (2,-0.03,-0.1,0.6) 10 0.1 0.1 27.7
MAST 0.736 0.872
TWO-SIGMA 1.000 1.000

10000/10000 ZINB 1.000 1.000 (0, 0.03,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 29.5
MAST 0.741 0.867
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (1, 0.03,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 28.2
MAST 0.738 0.852
TWO-SIGMA 1.000 1.000

10000,/10000 ZINB 1.000 1.000 (2,0.03,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 27.0
MAST 0.541 0.715
TWO-SIGMA 0.998 0.998

10000,/10000 ZINB 0.997 0.997 (3,0.03,-0.5,-2) (2,-0.03,-0.1,0.6) 10 0.1 0.1 26.2
MAST 0.369 0.557

Supplementary Table S9: True Power using LRT to test Hj

significance level of 0.05
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Case 1: 1000 individuals, 50 single-cells each, 0.05 level

Power Scenarios 3 & 4 from Figure 2 of main text
Effects in one component at a time

N / N Max

10000,/10000

10000/10000

10000,/10000

10000/10000

10000,/10000

10000/10000

10000/10000

10000,/10000

10000,/10000

9999/10000

10000,/10000

10000,/10000

10000,/10000

10000/10000

Model
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST

LRT
P(Reject Hp)
1.000
1.000
0.119
1.000
1.000
0.366
1.000
1.000
0.116
1.000
1.000
0.168
1.000
1.000
0.361
1.000
1.000
0.124
0.997
0.996
0.048
0.336
0.295
0.329
0.476
0.401
0.489
0.554
0.459
0.573
0.570
0.465
0.601
0.539
0.409
0.579
0.445
0.306
0.459
0.337
0.205
0.331

Combined 2
P(Reject Hy)
1.000
1.000
0.242
1.000
1.000
0.450
1.000
1.000
0.229
1.000
1.000
0.263
1.000
1.000
0.411
1.000
1.000
0.200
0.997
0.996
0.120
0.335
0.294
0.522
0.474
0.400
0.684
0.553
0.459
0.747
0.568
0.464
0.769
0.537
0.408
0.750
0.444
0.305
0.649
0.335
0.204
0.518

Simulation Parameters

a = (g, ay, s, 03)

(-3,0,-0.5, -2)

(1,0,-05,-2)

(2,0,-0.5, -2)

(3,0,

0.5, -2)

(-3,0.03, -0.5, -2)

(-2, 0.03, -0.5, -2)

(-1, 0.03, -0.5, -2)

(0, 0.03, -0.5, -2)

(1, 0.03, -0.5, -2)

(2, 0.03, -0.5, -2)

(3, 0.03,-0.5, -2)

ﬂ = (60»/317 621 /33)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03,-0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03,-0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0,-0.1, 0.6)

10

10

10

10

10

10

10

10

10

10

10

10

10

10

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Ty

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Avg. Time

(min)

26.6

27.3

26.9

29.8

30.2

29.5

29.7

26.6

26.4

29.3

30.9

31.0

28.6

28.4

Supplementary Table S10: True Power using LRT to test Hy

significance level of 0.05
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Case 2: 100 individuals, 500 single-cells each, 0.05 level

Power Scenarios 1 & 2 from Figure 2 of main text
Effects in both components in either the same or different directions

N / N Max

10000,/10000

10000,/10000

10000,/10000

10000/10000

10000,/10000

10000,/10000

10000/10000

9996,/10000

10000,/10000

9999/10000

10000,/10000

9999,/10000

10000,/10000

10000/10000

Model
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST

LRT
P(Reject Hp)
0.837
0.937
0.052
0.858
0.935
0.215
0.872
0.926
0.207
0.876
0.899
0.298
0.859
0.840
0.394
0.831
0.729
0.191
0.778
0.502
0.081
0.842
0.943
0.257
0.862
0.937
0.388
0.875
0.927
0.323
0.870
0.901
0.371
0.862
0.847
0.434
0.827
0.717
0.206
0.785
0.503
0.079

Combined 2
P(Reject Hy)
0.830
0.937
0.085
0.852
0.934
0.298
0.866
0.926
0.290
0.870
0.899
0.373
0.852
0.840
0.456
0.822
0.728
0.252
0.768
0.500
0.130
0.835
0.943
0.350
0.855
0.937
0.483
0.868
0.926
0.417
0.864
0.900
0.452
0.855
0.846
0.503
0.819
0.716
0.278
0.775
0.500
0.132

Simulation Parameters

a = (ap, a1, s, as)

(-3, 0.03, -0.5, -2)

(-2, 0.03, -0.5, -2)

(-1, 0.03, -0.5, -2)

(0, 0.03, -0.5, -2)

(1,0.03,-0.5, -2)

(2, 0.03, 0.5, -2)

(3,0.03, -0.5, -2)

(-3,0.03, -0.5, -2)

(-2, 0.03, -0.5, -2)

(-1, 0.03, -0.5, -2)

(0, 0.03, -0.5, -2)

(1, 0.03, -0.5, -2)

(2, 0.03, -0.5, -2)

(3, 0.03,-0.5, -2)

ﬂ = (/3)0”31-,%327?33)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03, 0.1, 0.6)

(2, 0.03,-0.1, 0.6)

(2,-0.03, 0.1, 0.6)

(2,-0.03,-0.1, 0.6)

(2, -0.03,-0.1, 0.6)

(2,-0.03, 0.1, 0.6)

(2,-0.03, -0.1, 0.6)

(2,-0.03, 0.1, 0.6)

(2,-0.03, -0.1, 0.6)

¢

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Oq Op

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

Avg. Time

(min)

21.6

23.9

22.6

23.7

26.3

25.6

26.1

22.1

23.8

22.7

23.3

25.8

25.6

Supplementary Table S11: True Power using LRT to test Hy

significance level of 0.05
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Case 2: 100 individuals, 500 single-cells each, 0.05 level

Power Scenarios 3 & 4 from Figure 2 of main text
Effects in one component at a time

N / N Max

9999,/10000

10000/10000

10000,/10000

10000/10000

10000,/10000

10000/10000

10000/10000

9999,/10000

9999/10000

10000,/10000

10000,/10000

9899,/10000

10000,/10000

10000/10000

Model
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST
TWO-SIGMA
ZINB
MAST

LRT
P(Reject Hp)
0.730
0.932
0.037
0.725
0.925
0.109
0.715
0.907
0.038
0.723
0.870
0.128
0.710
0.810
0.265
0.680
0.675
0.070
0.645
0.452
0.012
0.263
0.184
0.081
0.337
0.184
0.161
0.368
0.162
0.206
0.375
0.128
0.250
0.358
0.086
0.251
0.321
0.042
0.136
0.253
0.011
0.068

Combined 2
P(Reject Hy)
0.719
0.932
0.058
0.716
0.924
0.152
0.704
0.906
0.059
0.713
0.870
0.142
0.699
0.809
0.278
0.669
0.673
0.083
0.632
0.451
0.020
0.252
0.184
0.129
0.324
0.184
0.238
0.356
0.160
0.290
0.364
0.126
0.335
0.346
0.085
0.336
0.310
0.042
0.206
0.242
0.011
0.115

Simulation Parameters

a = (g, ay, s, 03)

(-3,0,-0.5, -2)

(1,0,-05,-2)

(2,0,-0.5, -2)

(3,0,

0.5, -2)

(-3,0.03, -0.5, -2)

(-2, 0.03, -0.5, -2)

(-1, 0.03, -0.5, -2)

(0, 0.03, -0.5, -2)

(1, 0.03, -0.5, -2)

(2, 0.03, -0.5, -2)

(3, 0.03,-0.5, -2)

ﬂ = (60»/317 621 /33)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03, 0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03,-0.1, 0.6)

(2, 0.03, -0.1, 0.6)

(2, 0.03,-0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0, -0.1, 0.6)

(2,0,-0.1, 0.6)

(2,0,-0.1, 0.6)

10

10

10

10

10

10

10

10

10

10

10

10

10

10

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Ty

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Avg. Time
(min)
21.9
22.7

21.8

22.1

24.9

26.6

22.7

21.1

19.7

20.6

25.3

26.4

26.1

Supplementary Table S12: True Power using LRT to test Hy

significance level of 0.05
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5 Additional Computational Details

Suppose we have n samples, each with n; single cells, ¢ = 1,...,n, the marginal likelihood
L(e, B, 0,02, 02) equation for the TWO-SIGMA model is given by

n 0 . n;
| | f J | | <[P(Yw = O)]I(?h’j:ﬂ) [P(Yij — yij>:|l(yij>0)
; -0 J—o0 7
=1 j=1

X g(a’i7 bz | 0-2, Ug)dazd]%)

where g(a;, b; | 02,07) is the product of two normal densities (assuming a; L b;), and P(Y};)
is as specified in equation (1) of the main text.

Because no analytic solutions to this integral are available, the marginal likelihood must be
approximated to obtain parameter estimates. Models that include many random effects can
be fit efficiently using the implementation in the twosigma R package because the Laplace
approximation is used to integrate out random effects and automatic differentiation is used
to compute gradients (Skaug & Fournier, 2006). It can be shown that the Laplace approxi-
mation is equivalent to using Gaussian quadrature with one quadrature point (Fitzmaurice
et al., 2003). Although estimates can be biased, the Laplace approximation often performs
well for count response variables (Diggle et al., 2002)). For further comments on situations in
which the Laplace approximation performs suitably well in practical applications, including
the analysis of count data, see (Breslow & Clayton, |1993)). Finally, others have demonstrated
that the Laplace approximation works quite well in non-linear mixed-effects models (Pin-
heiro & Bates, |1995). This framework also does not require balanced data, as is sometimes

assumed for mixed-effects models; for instance, balanced data are implicitly included in the
setup of (Chen & Li, 2016).
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6 More Discussion of the Zero-Inflation Component
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Supplementary Figure S10: Failing to account for zero-inflation: shows the impact of failing
to account for zero-inflation on mean inference. Data was simulated according to a zero-
inflated negative binomial (ZINB) distribution with mean 4 and drop-out probability 0.4 as
specified in equation (1) in the main text. Black dots represent an approximate negative
binomial fit to the data and blue represents the truth as simulated from a ZINB distribution.

Figure provides a simple illustration of how ignoring this zero-inflation can lead to
substantial underestimation of mean parameters. Our experience suggests that scRNA-seq
data often benefit from, if not require, such explicit modelling of excess zeros. Some genes
may not require the full TWO-SIGMA specification. For example, consider the marker genes
of each cell type in the pancreas dataset—GCG for alpha cells and INS for beta cells (Lawlor
et al., 2017)). These marker genes are not indicative of a need for zero inflation—only 1 alpha
cell has a read count of zero for GC'G and all beta cells have non-zero read counts for INS. In
both cases one can remove the entire zero-inflation component and refit, continuing to allow
for overdispersion and within-sample correlation. As an aside, TWO-SIGMA can estimate
the zero-inflated coefficients a for these genes because information about a is contained in
the second line of equation (1) of the main text. Doing so would seem inappropriate, however,
given the inconsistency between the observed data and the idea that excess zeros are present.
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