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This supplementary material derives standard Nystrom
approximation form for softmax matrix in detail, presents
our proofs of theorems, describes our implementation de-
tails, and provides further experimental results.

Nystrom Approximation for Softmax Matrix
Denote the softmax matrix used in self-attention S =

softmax ?/Izj € R™ ™. S can be written as
q
S = softmax QKT _ |4s Bs (1)
- Vd, ) |Fs Cs]’

where Ag € R™*™ Bg € R™("=m) g ¢ Rm=m)xm

and Cg € R x(n=m) Ag is designated to be our sam-

ple matrix by sampling m columns and rows from S. The

singular value decomposition (SVD) of the sample matrix

can be written as, Ag = UAVT, where U,V € R™*"™ are

orthogonal matrices, A € R™*™ is a diagonal matrix.
Given a query ¢; and key k;, let

Kk (g;) = softmax <> ; Kol(ky) = softmax( J
Vg ! Vg

where Kx(g;) € R™™ and Kg(k;) € R"*'. We can then
construct

6rc(gi) = A2V KR (g)]mr
_1
(bQ(kJ) =A"2 UT[ICQ(kj)]mXI
where [-],,x1 refers to calculating the full n x 1 vector and
then taking the first m x 1 entries. With ¢ (¢;) and ¢ (k;)

available in hand, the entry of S for standard Nystrom ap-
proximation is calculated as,

Sij = o (q:) do(k;),Vi=1,...,n,j=1,....n (2)

To derive the explicit Nystrom form, S, of the softmax
matrix, we assume that Ag is non-singular first to guarantee
that the above expression to define ¢ and ¢¢ is meaning-
ful. We will shortly relax this assumption to achieve a gen-
eral form.
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When Ag is non-singular,

Sij = dx(ai) b (kj)
= [’CK((]i)]lmemxmA;&mUnj;xm[’CQ(kj)}mxb

Let Wy, = Vinsem AL, UL Recall that a SVD of Ag is
UmxmAmxmV,E, ., and so, W, As = I, xm. Therefore,
Sij = Kk ()] 1xmAg K (k) mx1 3)

Without requiring that Ag is non-singular, we can rewrite
3) as

Sij = Kk (@) lixmAS K (k) lmx1, 4)

where Ajg is a Moore-Penrose pseudoinverse of Ag. So,

KT kT
softmax (qu ) softmax <Q J )1 )
v dq v dq mx1

for i,7 = {1,...,n}. The Nystrom form of the softmax

8ij = Ag

1xm

T
matrix, S = softmax (?/IfT is thus approximated as,
q

T T
softmax (QKk > ] AL | softmax <QK* )]

where [-] ., refers to taking m columns from n x n matrix
and [] refers to taking m rows from n x n matrix.

g:

mXxXn

Proofs of Theorems

This section details all our proofs of Lemma 1-2 and add
Proposition 1. To keep the derivations succinct, we use . (+)
to denote softmax(-).

Lemma 1. For As € R™", the sequence {Z;}’—5° gen-
erated by (Razavi et al. 2014),

1
Zig1= ZZj (131 — AsZ;(151 — AsZ; (7] — AsZj)))
)
converges to a Moore-Penrose inverse Ag in the third-

order with the initial approximation Zy satisfying || As A& —
ASZOH <1



Proof. Let E; = I — AgZ;, then
Ej=I—AsZj

=1 — As (izj(nﬂ — AsZ;(151 — AsZ;(TI — Aszj)))>

.

41— 452,131 — AsZ,(151 — AsZ,(TT — AsZ,))))

iAszj (131 — As 2, (151 — AsZ,(T] — AsZ;)))

4
:1 (AT — AsZ;(131 — 15AsZ; + T(As Z;)? — (AsZ;)))
3(41 AsZy)(I — AsZ;)?
:Z(3E? +E
Therefore we get,
Byn = {BE + B)) (©)

LetE; = Z; — A;C, we have,
AsEj1 =AsZ;1 — AsAL
=AsZjs1 — I+ 1— AsAS
=—Ej+1 - AsAS

1 . _
=— Z(3Ej + Ej)+1— AsAf

1 _ 1 _
21(—3]3? +3(I — AsAf)) + i T+ (I - AsAY))

From the definition of Moore-Penrose pseudoinverse AZ;,
we have .
(I —AgALY =1— AgAf
and
(I —AgAL)AsE; =0, j=1,2,...n.

Therefore, —E% + (I — AgAY) is
=—(I—AsZ;)® + (I - AsA})

—(I — AgAL + Ag Al — AsZ;)® + (I — AgAL)
—((I — AsAL)® +3(1 — AsAL)*(AsAf — AsZ;)
+3(I — AsAG)(AsAS — AsZ;)* + (AsA§ — AsZj)?)

+ (I — AsAf)
—((I — AsAg) — 3(1 — AsA§)AsE;
+3(I — AsAG)(AsE;)? — (AsEj)° + (I — AsAY)
= —(AgE;)>.
We can similarly show that
—E} + (I - AsAf) = (AsEj)" )

Then we have,
1
AsEj = 1(—

3(AsE;)® + (AsE;)Y) ®)

Thus we obtain,

|AsEjll < 7 (3||AsE 1+ [[As E; 1)

With the assumption on the initial approximation, [|Ag A& —
AsZy|| < 1, we have ||AgEp|| < 1. Therefore, based on
(8), we obtain ||A5EH < 1. Thus we have,

1AsEjall < (3HASE 1>+ 11 4s B;l1%) < [|AsE;]®

For Ej11 = Zj1
1Bl = [[A§ As Zja
<1451l [14sZj41 =
= |41 1| As Ejall
<145 |AsE;]®

- AS , we have
— AL AsAL||
AgAfl

As we have ||[AsE;|| < 1, we get ||Z; — AL|| — 0in third
order as j — 4-oc0. It thus concludes the proof. O

Lemma 2. Given the input data set Q = {q;}}_, and
K = {k;}?_,, and the corresponding landmark point set
Q= {g;}72, and K; = {15};”:1 Using (10), the Nystrom
approximate self-attention converges to true self-attention if
there exist landmarks points G, and ky such that Gp = q; and

ke =k, Yi=1,....,n,5=1,....n

Proof. Foralli =1,...,n,57 = 1,...,n, there exist land-
marks points g, and kt such that g, = ¢; and ky = kj.
means that we can obtain a landmark matrix Q = Q and
K = K. Using the Nystrém approximation,

- QKT QKT
S_y<\/d>q>zly<\/£> ©

where Z; is generated by (5). Then, the error between ap-
proximate self-attention and the true self-attention with the
{5 norm is,

ISV — SV ||
QKT QK™ QKT
= || V- V721 ( W]|oo
I (\/d»q) \/> ] \f |
QK™ QKT . QKT
=[.7( )7 ( )T
N R
T T
EPLLSEP LS

A,

T T T
= |7 (%) A 207 (%) Vi

QKT "
<17 (L) - ZulVie

The last inequality holds since ||.7 (Q—\Z»T)HOO =

1. Note

that Lemma 2 shows that the sequence Z; generated by

Eq. 5 converges to the Moore-Penrose inverse (Z; —
T

5 (%)Jr). Therefore, the approximate self-attention will

q
converge to the true self-attention. This concludes the

proof. O



Proposition 1. The error of our Nystrom approximation,
i.e., the difference between the approximate self-attention,

Sv_y<QKT> Z*y<QKT>m (10)

ven Vg
and the true self-attention,
SV:y<%> V, (11)
is bounded by
E <1+ |4l + 145 = Z*1lo)V]le  (12)

where E denotes the error of the approximation in { . norm,

1 (Qj}) Vo (Qj}) 7 (Qj}) Vi

Q denotes the input query, K is the input key, and V is the
input value. Q) and K are corresponding landmark point ma-
trices of QQ and K, respectively. And Z* is the approximate
of the Moore-Penrose inverse of Ag.

Proof. With the definition of F, we have

£< |7 (%ﬁ) _ (%ﬁ) 7 (%)nwnvnm
-1 (%) (%) (%) # (%

%) (%) (%)
_ (C?j;) 75 (C’Qﬁlf) ol Vs

< (I (%f)m

QRT N QKT
+ (|7 (\/@> ool A ool (\/@> [l oo

KT DK™
+ (%) loe A% = 2*oc]l (%) Joc) IV s
q q

=1+ 148l + 145 = Z* () IVl

which concludes the proof. O

Implementation Details

Implementation details. We describe pre-training de-
tails for our experiments on BookCorpus plus English
Wikipedia. Our model is pretrained with the masked-
language-modeling (MLM) and sentence-order-prediction
(SOP) objectives (Lan et al. 2020) on BookCorpus plus En-
glish Wikipedia. We use a batch size of 256, optimizer Adam
with learning rate le-4, 5, = 0.9, 82 = 0.999, L2 weight

decay of 0.01, learning rate warmup over the first 10,000
steps, and linear learning rate decay to update our model.
For BERT-small comparison, We train all models in 0.1M
steps. For BERT-base comparison, our baseline was trained
with 0.5M steps and our model was trained with ~ 0.25M
steps, initialized from pretrained BERT-base.

Model [ SST2 | MRPC | QNLI | QQP | MNLIn/mm | IMDB
BERT-base [ 900 | 884 | 903 | 873 | 824/824 | 933

Nystromformer (512) 91.4 88.1 88.7 86.3 80.9/82.2 93.2
Nystromformer (1024) | 91.4 87.5 88.7 | 86.3 80.9/81.4 93.0

Table 1: Dev set results on benchmark natural language under-
standing tasks. We report F1 score for QQP and accuracy for others.
Our Nystromformer performs competitively with BERT-base and
the Nystromformer pretrained with longer sequence length 1024
has fairly similar results to the one pretrained with shorter length
512 on benchmark natural language understanding task.

Further Experimental Results

To complement our main results, we present additional ex-
periments on landmark selection, iterative approximation of
the pseudoinverse, inference using longer sequences.

(A) Landmark selection. We now provide an ablation study
of the landmark selection step in our model. The goal is
to evaluate if the selected landmarks are sufficient to re-
construct the self-attention. (a) Setup. We experiment with
various methods for computing landmark points. We com-
pare our segmented means with uniform random sampling
and K-means. To achieve comparisons on real data, we ex-
tract query @, key K, value V of 6 different heads from a
trained BERT-base model. (b) Findings. Fig 1 visualizes the
approximate self-attention with different landmark selection
schemes. The results show that our Segment-means with 64
landmark points outperforms uniform random sampling and
compares favorably to K-means. Importantly, our method
only has a linear runtime footprint, and thus is more efficient
than the iterative procedure used by K-means. Further, we
study the choice of numbers of landmark points. Similarly,
we extract query, key, value of 6 different heads from trained
BERT-base model. Fig. 2 shows the experimental results
when using 16, 64, 256 landmark points and compares them
to ground-truth self-attention. Not surprisingly, the more
landmarks the better the approximation. With 256 landmark
points, the approximation to softmax matrix is more accu-
rate, yet requires more time to compute the approximate
Moore-Penrose inverse. Using 16 landmark points is more
efficient yet with increased approximation error. To balance
the efficiency and approximation accuracy, we use 64 land-
marks for our model.

(B) Iterative approximation of pseudoinverse. We con-
duction further experiments to verify the quality of
our approximate pseudoinverse. (a) Setup. We com-
pare our approximation to pseudoinverse computed using
numpy .linalg.pinv. Similarly, we extract query, key,
and value from trained BERT-base for comparison. (b)
Findings. We find that the iterative method achieves a good
approximation of the ground truth only with 6 iterations in
Fig. 3. Fig. 4 further visualizes the ground truth and our ap-
proximate pseudoinverse from 6 different heads.



(C) Longer sequences. We also experiment with inference
using longer sequences. (a) Setup. We test our model with
longer input length (n = 1024) after pretraining. To fit the
longer sequence input, we increase the position embedding
dimension from 512 to 1024. Following (Wang et al. 2020),
we train our model from trained model with input sequence
length 512. We use a batch size of 128, optimizer Adam
with learning rate le-5, 51 = 0.9, B2 = 0.999, L2 weight
decay of 0.01, and linear learning rate decay to update our
longer model. The longer model is trained with 40K steps.
(b) Findings. Fig. 5 plots the validation accuracy of input
sequence length 1024 for our model. We observe that when
we increase the input sequence length, the final validation
MLM accuracy will remain the same yet SOP accuracy will
improve. For MLM accuracy, longer model is performing
similarly as standard model. This is because MLM task is a
local prediction task and thus is unlikely to benefit from a
longer sequence. For SOP, longer input sequence contains
more information for the task, and thus can improve the
performance by 2%. These results further justify the neces-
sity of our model, which can enable the training and infer-
ence on longer sequences. Furthermore, We finetune our pre-
trained model with longer sequence 1024 on GLUE bench-
mark datasets and IMDB reviews respectively and report its
final performance. While downstreaming tasks do not ex-
ceed the maximum input sequence length 512, the results
remain almost identical as n = 512 in Table 1. These results
further indicates that our model is able to scale linearly with
input length.
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Figure 1: Landmarks selection comparison results. The most left column is ground truth softmax matrix of 6 different self-attention
heads. Right columns are approximate softmax by using uniform random sampling, Segment-means and K-means to select landmark points.
Segment-means performs favorably with k-means.
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True softmax matrix 16 landmarks 64 landmarks 256 landmarks

True softmax matrix 16 landmarks 64 landmarks 256 landmarks
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True softmax matrix 16 landmarks 64 landmarks 256 landmarks

Figure 2: Different number of landmarks selected to approximate softmax matrix. The most left column is ground truth softmax matrix of 6
different self-attention heads. Right columns are approximate softmax with 16, 64, 256 landmark points, selected by Segment-means. Using
more landmark points leads to more accurate approximation.
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Figure 3: Iterative method for approximating true Moore-Penrose pseuduinverse. Left is the true pseudoinverse by numpy.linalg.pinv. Right
is its approximation by Eq. 5 with 2, 4, 6 iterations. Running 6 iterations achieves a good approximation of the pseudoinverse.
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Figure 4: Approximating true Moore-Penrose pseudoinverse results. Odd columns are the true pseudoinverse from 6 different self-attention
heads, computed by numpy.linalg.pinv . Even columns are their corresponding approximation by Eq. 5 with 6 iterations.

_’_’____\___,.—_ﬁ.—/\-
- /___,-A_—-
[
© 0.65 -
=}
(O]
[S]
©
e
.9 0.60 -
=
o]
=
©
>
s 0.55 -
- —— Nystrom Self-Attention (512)
= —— Nystrom Self-Attention (1024)
0.50 -, : " !
200K 250K 300K 350K
steps

o

3

3 _/\!\,—M/M\

@ 0.94 -

e

§e

® 0.92-

=

©

>

a 0.90 -

8 —— Nystrom Self-Attention (512)
088 - — Nystrom Self-Attention (1024)

200K 250K 300K 350K

steps

Figure 5: Results on MLM and SOP with longer sequence input length 1024. We report MLM and SOP validation accuracy. Our
Nystromformer (1024) is trained with additional ~40K steps on input sequence with length 1024 after training ~ 0.25 M steps on input
sequence with length 512. Training on longer input sequence remains the same MLM performance as MLM is a local prediction task, while
our model increases the SOP performance by 2% accuracy as SOP task relies on longer context.



