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Supplement 1: instructions for ACLF-JM upload data preparation. 
 
The online ACLF-JM tool requires the user to upload patient data in an Excel file, .csv format. To make the predictions work, data needs to have 
the same properties as the example below. Please use the example below as template (i.e. column names and data variables). 
Specifically: time_of_measurement and meldna are allowed to vary, with new values in every row. All the other variables should be kept 
constant, i.e. fill in the first row and then copy the contents until the last row of data. Ideally, these variables should be extracted from the UNOS 
or SRTR database, or from your own hospital with the help of data managers.  
 

id 
time_of_ 
measurement meldna 

time_of_last_ 
measurement death age femalesex cirrhosis_present aclf_grade sbp_present life_support_dependent 

1 0 27 51 0 50 0 0 ACLF-1 0 0 
1 5 24 51 0 50 0 0 ACLF-1 0 0 
1 6 24 51 0 50 0 0 ACLF-1 0 0 
1 11 26 51 0 50 0 0 ACLF-1 0 0 
1 13 26 51 0 50 0 0 ACLF-1 0 0 
1 14 27 51 0 50 0 0 ACLF-1 0 0 
1 21 25 51 0 50 0 0 ACLF-1 0 0 
1 24 25 51 0 50 0 0 ACLF-1 0 0 
1 31 25 51 0 50 0 0 ACLF-1 0 0 

 
Instructions: 

• In the ID column: enter a random ID number (e.g. 1). 
• In the time_of_measurement column: set the day of measurement, e.g. if you followed a patient from day 0 (start measurements) to day 

50 (current date). If your measurements are taken on a specific date, please visit the following link to calculate the date difference in 
days: https://support.microsoft.com/en-us/office/calculate-the-difference-between-two-dates-8235e7c9-b430-44ca-9425-
46100a162f38 

• In the meldna column: enter the repeated measured MELD-Na scores of your patient. 
• In the time_of_last_measurement column: enter the last time (in days) your patient was measured. Typically, it is the date difference 

between the current date and start of follow-up, e.g. 51 days. 

https://support.microsoft.com/en-us/office/calculate-the-difference-between-two-dates-8235e7c9-b430-44ca-9425-46100a162f38
https://support.microsoft.com/en-us/office/calculate-the-difference-between-two-dates-8235e7c9-b430-44ca-9425-46100a162f38


3 
 

• In the death column: enter 1 if your patient died at the time_of_last_measurement, if not: enter 0. 
• In the age column: enter the age of your patient in years. 
• In the femalesex column: enter 1 if your patient is female, if not: enter 0. 
• In the aclf_grade column: enter the CLIF-C OF score, which can be calculated at: https://www.efclif.com/scientific-activity/score-

calculators/clif-c-aclf The possible levels are: "No ACLF", "ACLF-1","ACLF-2" or "ACLF-3". 
• In the sbp_present column: enter 1 if your patient has bacterial peritonitis, if not: enter 0. 
• In the life_support_dependent colum: enter 1 if your patient is on life support, if not: enter 0. 

 
Save the file (as .csv). 
 
Then upload in the online application and predict survival for you patient. 
  

https://www.efclif.com/scientific-activity/score-calculators/clif-c-aclf
https://www.efclif.com/scientific-activity/score-calculators/clif-c-aclf
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Supplement 2: Step-by-step instruction manual 
 
Upon opening the link, the following interface will show. Please press the “Browse” button to upload patient data (.csv file). 
 

 
 
 
 
 
Open the local .csv file from your computer. Below, the supplied example data file is loaded. 
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The loaded data is previewed in the “Data” tab. Now you can either select a specific prediction interval (e.g. 90 days) or 
leave it empty. The latter will give survival probabilities over multiple intervals. 
 
Please click the “Survival Probabilities” tab and wait a few seconds for your predictions to load. 
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Below, the prediction interval is left empty. Also the slider titled “Moment of measurement during follow-up” is set to the 
left-most value. The slider summarizes the follow-up period of your patient. The left represents the start of follow-up (day 
0) and the right represents the end of follow-up (e.g. day 51). As the slider is set on the left-most value, it shows the 
expected survival probabilities from day 0. 
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Sliding the slider to the right will calculate predictions from the last moment of follow-up. In the example below, the patient 
is still alive at day 50 (100% survival). However, roughly 90 days later, the patient is expected to have been deceased.  
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In the “Plot” tab, the survival probabilities and their 95% confidence interval (grey area) are plotted. Please change the 
slider or press the little “play” button to show the longitudinal disease development (*) and expected survival probabilities. 
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Specifying a prediction interval (e.g. 90 days), will give the calculated survival probabilities for that interval. Once again, you 
can change the slider to change the moment of follow-up. Below, the slider is set to the right (i.e. the last available 
measurement) and the predicted 90-day survival probability is 4% for this patient.  
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The “Help” tab provides more details and instructions.  
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Supplement 3: in-depth study methodology 
 
Statistical analysis – Joint Model construction 

Data were randomly split in a training (67%) and a testing (33%) set, for model construction 

and validation respectively. A non-linear mixed-effect model was constructed, based on 

repeated measurements of MELD-Na. Mixed-effect models have several advantages: first, 

they can handle imbalanced data, i.e. a varying number of follow-up measurements per 

patient (missingness) and time differences between each measurement. Second, they 

consider in-patient correlation: measurements from one patient are more strongly correlated 

than measurements from different patients. Third, both the average and individual patient 

trajectories are modeled simultaneously. Fourth: non-linear developments can be modeled 

through flexible spline-based estimations of disease. The longitudinal MELD-Na data were 

corrected for candidate age, sex, life support dependency, presence of bacterial peritonitis, 

presence of cirrhosis (alcohol-induced, hepatitis-C virus, non-alcoholic steatohepatitis (NASH) 

or other cirrhosis) and CLIF-C OF score. The used variables were selected a priori, based on 

clinical relevance and statistical significance in univariate analysis. The mixed-effect JM 

output was added to the supplement (Table S1), as the natural spline coefficients do not 

offer an intuitive interpretation. We did however add a plot of the spline-based mixed effect 

of average MELD-Na development over time (Fig. S5). For the survival prediction part, a Cox 

proportional hazards model was used. We did not use competing risks analysis, but rather a 

censorship framework. The reason for this was that a competing risks model should not be 

used to develop prediction models for allocation priority. To illustrate, consider an 

environment in which livers are readily available for patients with MELD=40, but only rarely 

available for patients with MELD=20. A physician might predict, correctly, that a MELD=40 
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patient has lower risk of dying in the next week because they are almost certain to get a 

transplant, while the MELD=20 patient is still quite ill and will not receive a liver. However, it 

would be perverse to use this prediction to determine allocation priority. Changing allocation 

priority changes the association between MELD and risk of transplant, which changes the 

association between MELD and risk of mortality in a competing risks framework but not in a 

censorship framework. Instead, priority should be based on mortality risk _if a transplant is 

not obtained_, which is properly modeled using censorship. Then, the Cox model (survival 

component) was jointly-modeled to the mixed-effect model (longitudinal component) with 

the R JM package.23 At every moment in time, the JM used both the MELD-Na score and the 

rate of change in MELD-Na (decrease/increase) for prediction.  

Statistical analysis – Joint Model performance 

Next, the prediction performance of the JM was compared to the MELD-Na score at various 

points in time in the separate testing data. To compare results to the CLIF-C OFs performance 

known from literature, predictions were assessed at baseline and after a follow-up of 48 

hours, 7 days and 14 days.6 Outcomes were 28-day and 90-day survival. A landmark Cox 

model of MELD-Na scores was fit at the abovementioned times, which used the last available 

measurement for survival prediction. For the JM, weighted averages of time-dependent AUCs 

and prediction errors were calculated through Monte Carlo Markov Chain (MCMC) 

simulations with the JM software.23 An excellent explanation of time-dependent performance 

measures for joint models is at http://www.drizopoulos.com/vignettes/dynamic_predictions 

and shttps://cran.r-project.org/web/packages/JM/JM.pdf. Here from we quote: “Two general 

approaches have been proposed in the literature to assess predictive performance of survival 

models, namely, calibration, i.e., how well the model predicts the observed data, and 

http://www.drizopoulos.com/vignettes/dynamic_predictions
https://cran.r-project.org/web/packages/JM/JM.pdf
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discrimination, i.e., how well can the model discriminate between patients that had the event 

from patients that did not. 

Discrimination: To take into account the dynamic nature of the longitudinal marker in 

discriminating between subjects, we focus on a time interval of medical relevance within 

which the occurrence of events is of interest. In this setting, a useful property of the model 

would be to successfully discriminate between patients who are going to experience the 

event within this time frame from patients who will not. To put this formally, as before, we 

assume that we have collected longitudinal measurements 𝑌𝑌𝑌𝑌(𝑡𝑡) up to time point 𝑡𝑡 for 

subject 𝑌𝑌. We are interested in events occurring in the medically-relevant time frame (𝑡𝑡, 𝑡𝑡 +

𝛥𝛥𝑡𝑡] within which the physician can take an action to improve the survival chance of the 

patient. Under the assumed model and the methodology presented in the previous section, 

we can define a prediction rule using 𝜋𝜋𝑌𝑌(𝑡𝑡 + 𝛥𝛥𝑡𝑡 ∣ 𝑡𝑡) that takes into account the available 

longitudinal measurements 𝑌𝑌𝑌𝑌(𝑡𝑡). In particular, for any value 𝑐𝑐 in [0,1] we can term 

subject j as a case if 𝜋𝜋𝑌𝑌(𝑡𝑡 + 𝛥𝛥𝑡𝑡 ∣ 𝑡𝑡) ≤ 𝑐𝑐 (i.e., occurrence of the event) and analogously as a 

control if 𝜋𝜋𝑌𝑌(𝑡𝑡 + 𝛥𝛥𝑡𝑡 ∣ 𝑡𝑡) > 𝑐𝑐. For a randomly chosen pair of subjects {𝑌𝑌, 𝑌𝑌′}, in which both 

subjects have provided measurements up to time 𝑡𝑡, the discriminating capability of the 

assumed model can be assessed by the area under the receiver operating characteristic curve 

(AUC), which is obtained for varying 𝑐𝑐 and equals: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡,𝛥𝛥𝑡𝑡) = Pr [𝜋𝜋𝑌𝑌(𝑡𝑡 + 𝛥𝛥𝑡𝑡 ∣ 𝑡𝑡) < 𝜋𝜋𝑌𝑌′(𝑡𝑡 + 𝛥𝛥𝑡𝑡 ∣ 𝑡𝑡) ∣ {𝑇𝑇 ∗ 𝑌𝑌 ∈ (𝑡𝑡, 𝑡𝑡 + 𝛥𝛥𝑡𝑡]} ∩ 

{𝑇𝑇 ∗ 𝑌𝑌′ > 𝑡𝑡 + 𝛥𝛥𝑡𝑡}] 

that is, if subject 𝑌𝑌 experiences the event within the relevant time frame whereas 

subject 𝑌𝑌′ does not, then we would expect the assumed model to assign higher probability of 

surviving longer than 𝑡𝑡 + 𝛥𝛥𝑡𝑡 for the subject who did not experience the event. 
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The dynamic discrimination index is computed through:  

𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑∆𝑡𝑡   = ∫ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡,∆𝑡𝑡) 𝑃𝑃𝑃𝑃{𝐸𝐸(𝑡𝑡,∆𝑡𝑡)} 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
0  / ∫ 𝑃𝑃𝑃𝑃{𝐸𝐸(𝑡𝑡,∆𝑡𝑡)} 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

0  , 

where 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡,∆𝑡𝑡) is defined above, and  

𝐸𝐸(𝑡𝑡,∆𝑡𝑡)  =  {𝑇𝑇 ∗  𝑖𝑖 ∈  (𝑡𝑡, 𝑡𝑡 +  ∆𝑡𝑡]}  ∩  {𝑇𝑇 ∗  𝑌𝑌 >  𝑡𝑡 +  ∆𝑡𝑡} , 

with 𝑖𝑖 and 𝑌𝑌 denote a randomly selected pair subjects, and 𝜋𝜋𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡 | 𝑡𝑡) and 𝜋𝜋𝑌𝑌 (𝑡𝑡 + ∆𝑡𝑡 | 𝑡𝑡) 

denote the conditional survival probabilities calculated for these two subjects, for different 

time windows ∆𝑡𝑡. The upper limit of integral is specified. The integrals in the numerator and 

denominator are approximated using a 15-point Gauss-Kronrod quadrature rule. 

Calibration: The assessment of the accuracy of predictions of survival models is typically 

based on the expected error of predicting future events. In our setting, and again taking into 

account the dynamic nature of the longitudinal outcome, it is of interest to predict the 

occurrence of events at 𝑢𝑢 > 𝑡𝑡 given the information we have recorded up to time 𝑡𝑡. This 

gives rise to expected prediction error: 

𝑃𝑃𝐸𝐸(𝑢𝑢 ∣ 𝑡𝑡) = 𝐸𝐸[𝐿𝐿{𝑁𝑁𝑖𝑖(𝑢𝑢) − 𝜋𝜋𝑖𝑖(𝑢𝑢 ∣ 𝑡𝑡)}], 

where 𝑁𝑁𝑖𝑖(𝑡𝑡) = 𝐼𝐼(𝑇𝑇 ∗ 𝑖𝑖 > 𝑡𝑡) is the event status at time 𝑡𝑡, 𝐿𝐿(⋅) denotes a loss function, such as 

the absolute or square loss, and the expectation is taken with respect to the distribution of 

the event times.” 

Ensuring adequate performance during follow-up is important for possible clinical 

application. To provide intuitive interpretation of JM AUC and error reduction compared to 

MELD-Na, the percentage improvement in AUC towards the maximum achievable AUC of 1 

was calculated similar to Jalan et al.: 
(𝐴𝐴𝐴𝐴𝐴𝐴𝐽𝐽𝐽𝐽−𝐴𝐴𝐴𝐴𝐴𝐴𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀−𝑁𝑁𝑁𝑁)

(1−𝐴𝐴𝐴𝐴𝐴𝐴𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀−𝑁𝑁𝑁𝑁)
∗ 100.6 However, they presented 

this AUC improvement as “prediction error improvement”, which technically is not correct. 
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We therefore separately assessed the JM prediction error reduction compared to MELD-Na, 

with the following calculation: 
(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀−𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐽𝐽𝐽𝐽)

(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀−𝑁𝑁𝑁𝑁)
∗ 100.  

Statistical analysis – Joint Model dynamic prediction 

Finally, individual dynamic predictions were generated. Data from a real ACLF patient 

(obtained from the testing data) was MCMC simulated and used as input for the trained JM.23 

Plots were created of these dynamic predictions, to show the updating survival estimate for 

every new available measurement during follow-up. All statistical analyses were performed 

using R v4.0.0 (R Foundation for Statistical Computing, Vienna, Austria). 
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Supplement 4: explanation risk calculation figure 1 
 
Consider three patients A, B and C who have been waiting 20 days for LT. A, B and C are 

identical, except for their MELD-Na scores. Patient A was stable at MELD-Na score 30, i.e. a 

slope of 0. Patient B started with MELD-Na 20 (baseline) and steadily increased to MELD-Na 

25 (day 20), which is a slope of 5
20/365

= 91.3 points per year. Patient C started with MELD-Na 

10 at baseline and showed a rapid increase in MELD-Na scores. This results in MELD-Na score 

20 at day 20 and a slope of 0.5 MELD-Na per day, which is 182 points per year. The current 

liver allocation system would give priority to patient A with MELD-Na score 30. However, the 

JM accounts for past measurements and further discriminates based on slope, i.e. considers 

that B and C have increasing disease severity and A is stable. Thus, the HR of death for each 

patient at day 20 can be calculated by multiplying the MELD-Na HR for value and slope (table 

2). For patient A: 1.1530 ∗ 1.020 = 66.2, patient B: 1.1525 ∗ 1.0291.3 = 200.7 and patient 

C: 1.1520 ∗ 1.02182 = 601.4. So at day 20, the JM would give patient B a 200.7
66.2

= 3 times 

higher HR compared to patient A and patient C a  601.4
66.2

= 9 times higher risk, indicating that 

patient C should be prioritized for transplantation.  
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Fig. Slegends 
 

1. Cumulative incidence plots of waiting list competing risks outcomes. Death rates are 

lowest in patients without ACLF and most are either removed or transplanted. With 

increasing ACLF grade, death and transplantation rates increase.  

2.  Baseline ROC and calibration plots are shown. The ACLF-JM has a significantly 

(p<0.001) higher 90-day mortality AUC in ACLF patients than MELD-Na, 0.875 (95%CI 

0.840-0.909) and 0.780 (0.737-82.3) respectively. The ACLF-JM is also better 

calibrated than the MELD-Na. This is shown in figure 2-B. The closer the model stays 

to the diagonal, the better the predicted and observed risks match, i.e. more accurate 

predictions. 

a. The ROC plot for 90-day mortality prediction in patients with ACLF. 

b. The calibration plot for 90-day mortality prediction in patients with ACLF.  

3.  

a. The improvement in AUCs of the ACLF-JM compared to MELD-Na. With 

increasing ACLF severity, the ACLF-JM AUC improvement increases. 

b. The prediction error improvement of the ACLF-JM compared to MELD-Na. 

With increasing ACLF disease severity, ACLF-JM prediction error improvement 

increases.  

4. An illustration of the difference between the continuous and flexible ACLF-JM 

approximated course of development over time (yellow dotted line), versus that of a 

time-dependent Cox model (red solid lines). The ACLF-JM assumes a continuous, 

flexible disease development over time. This means that even if values are missing or 

old, adequate estimates of current disease severity are given. In contrast, for time-
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dependent Cox models, the last measurement is linearly carried on forward. With 

infrequent measurement or missing values, this last observation does not represent 

the current state of disease. Also, with fast-changing disease severity, Cox models 

underestimate disease severity because they do not estimate the ‘true’ underlying 

developments. The blue arrows point at the moments where the Cox model would 

underestimate disease severity. Clinically, this could result in underestimation of 

mortality when evaluation the need for LT in a fast-declining ACLF patient. 

5. Spline-based intuitive output, rationale for non-linear model. 

6. ROC plot of 90-day survival prediction in patients delisted in the first 28 days of 

follow-up.  

 



20 
 

Fig. S1: cumulative incidence plots per ACLF grade 
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Fig. S2A: ROC plot of the ACLF-JM and MELD-Na 

 



22 
 

Fig. S2B: Calibration plot of the ACLF-JM and MELD-Na  
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Fig. S3A: AUC improvement in percentages 
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Fig. S3B: prediction errors improvements in percentages 
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Fig. S4: illustration of model approximation of disease trajectory over time 
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Fig. S5: Spline-based mixed effect plot of the average MELD-Na development over time  
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Fig. S6: ROC plot of the ACLF-JM and MELD-Na for delisted patients 
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Table S1: mixed effect model output 
 

Spline mixed-effect model output 

 
Value Std.Error DF t-value p-value 

(Intercept) 16.05 0.27 145979 60.46 *** 

ns(years, df=3)1 5.25 0.26 145979 20.24 *** 

ns(years, df=3)2 10.56 0.25 145979 42.95 *** 

ns(years, df=3)3 11.44 0.49 145979 23.47 *** 

age10 -0.55 0.04 20448 -12.57 *** 

femalegender 0.40 0.10 20448 4.20 *** 

aclfACLF-1 10.83 0.13 20448 85.33 *** 

aclfACLF-2 17.18 0.15 20448 111.05 *** 

aclfACLF-3 21.16 0.21 20448 98.93 *** 

Cirrhosis (HCV, NASH, ALD, other) 2.85 0.12 20448 24.50 *** 

life_sup -2.93 0.26 20448 -11.22 *** 

sbp 2.14 0.15 20448 13.96 *** 
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Table S2: List of candidate variables investigated for the joint model 
construction 
 
CAN_ABO Patient/s Blood Type 

CAN_AGE_AT_LISTING Calculated Candidate Age at Listing 

CAN_AGE_IN_MONTHS_AT_LISTING Calculated Candidate Age in Months at Listing 

CAN_ARTIFICIAL_LI Life Support://Artifical Liver 

CAN_ASCITES Ascites 

CAN_BACTERIA_PERIT Spontaneous Bacterial Peritonitis 

CAN_BMI BMI: 

CAN_CTP_SCORE Candidate/s CTP score (used for MAOB Liver Variance 

CAN_DGN Primary Diagnosis 

CAN_DGN2 Secondary Diagnosis 

CAN_DGN_OSTXT Primary Diagnosis/Specify 

CAN_DIAB Diabetes 

CAN_DIAB_TY Diabetes 

CAN_DIAL Dialysis 

CAN_ECMO Life Support: ECMO 

CAN_ENCEPH Encephalopathy 

CAN_ETHNICITY_SRTR SRTR Patient Ethnicity 

CAN_FUNCTN_STAT Patient/s Functional Status 

CAN_GENDER Patient/s Gender 

CAN_HGT_CM Candidate/s Height (stored in cm) 

CAN_IABP Life Support: IABP 

CAN_INIT_SRTR_LAB_MELD First SRTR MELD/PELD given 

CAN_IV_INOTROP Life Support: IV Inotropes 

CAN_LAST_ALBUMIN Candidate Last Albumin (used for MELD) 

CAN_LAST_ASCITES Candidate Last Ascites (used for MELD) 

CAN_LAST_BILI Candidate Last Bilirubin (used for MELD) 

CAN_LAST_DIAL_PRIOR_WEEK Last non-blank val. of dialysis within prior week 

CAN_LAST_ENCEPH Candidate Last Encephalopathy (used for MELD) 

CAN_LAST_INR Candidate Last INR (used for MELD) 

CAN_LAST_SERUM_CREAT Candidate Last Serum Creatinine mg/dl (used for 
MELD) 

CAN_LAST_SERUM_SODIUM Candidate Last Serum Sodium (used for MELD) 



 30 

CAN_LAST_SRTR_LAB_MELD Last SRTR MELD/PELD given 

CAN_LIFE_SUPPORT Patient on Life Support 

CAN_LIFE_SUPPORT_OTHER Life Support: Other Mechanism 

CAN_MALIG Any previous Malignancy 

CAN_MALIG_TY Previous Malignancy Type(s) 

CAN_MOST_RECENT_CREAT Most Recent Absolute Creatinine 

CAN_MOST_RECENT_HGT_CM Candidate/s most recent Waitlist Height in centimeter 

CAN_MOST_RECENT_WGT_KG Candidate/s most recent Waitlist Weight in kilograms 

CAN_MUSCLE_WASTING Marked Muscle Wasting 

CAN_NEOPLASM Neoplasm 

CAN_PREV_ABDOM_SURG Previous Upper Abdominal Surgery 

CAN_PREV_TX Previous Transplants 

CAN_RACE Patient/s Race 

CAN_TIPSS History of TIPSS 

CAN_TOT_ALBUMIN Total Serum Albumin 

CAN_TOT_BILI Total Bilirubin (IN Pediatric Only) 

CAN_VARICEAL_BLEEDING Variceal Bleeding within Last Two Weeks 

CAN_VENTILATOR Life Support: Ventilator 

CAN_WGT_KG Candidate/s Weight in kilograms 
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Table S3: AUCs stratified per ACLF grade 
 

Mortality prediction AUC of the ACLF-JM versus the MELD-Na  in patients with ACLF, at baseline and during follow-up 

  ACLF-1 ACLF-2 ACLF-3 

 28-day mortality JM 95% CI 
MELD-

Na 
95% CI JM 95% CI 

MELD-

Na 
95% CI JM 95% CI 

MELD-

Na 
95% CI 

Baseline 0.817 0.771-0.862 0.732 0.681-0.783 0.809 0.749-0.870 0.728 0.664-0.792 0.764 0.665-0.863 0.605 0.496-0.714 

48 hours 0.816 0.770-0.862 0.731 0.680-0.782 0.813 0.750-0.875 0.729 0.663-0.796 0.779 0.672-0.887 0.564 0.442-0.685 

7 days 0.825 0.778-0.872 0.712 0.656-0.768 0.807 0.739-0.874 0.704 0.629-0.778 0.792 0.663-0.921 0.504 0.363-0.645 

14 days 0.818 0.763-0.872 0.713 0.648-0.779 0.820 0.738-0.903 0.698 0.608-0.788 0.780 0.626-0.935 0.497 0.334-0.659 

 
ACLF-1 ACLF-2 ACLF-3 

90-day mortality JM 95% CI 
MELD-

Na 
95% CI JM 95% CI 

MELD-

Na 
95% CI JM 95% CI 

MELD-

Na 
95% CI 

Baseline 0.829 0.791-0.868 0.726 0.679-0.773 0.859 0.802-0.916 0.730 0.651-0.808 0.841 0.634-0.949 0.693 0.453-0.933 

48 hours 0.824 0.786-0.863 0.721 0.674-0.769 0.862 0.804-0.920 0.736 0.656-0.815 0.843 0.636-0.950 0.664 0.424-0.905 

7 days 0.824 0.784-0.864 0.714 0.666-0.763 0.856 0.796-0.917 0.700 0.614-0.786 0.853 0.643-0.963 0.613 0.408-0.818 

14 days 0.809 0.764-0.854 0.695 0.642-0.748 0.836 0.766-0.907 0.666 0.567-0.766 0.844 0.613-0.976 0.633 0.423-0.844 

ACLF: acute-on-chronic liver failure, AUC: area under receiver operator curve 

JM: joint model, MELD-Na: model for end-stage liver disease sodium score 
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Table S4: Advantages and disadvantages of the MELD-Na and ACLF-JM 
 
Cox MELD-Na 

 
Pros Cons 

Easy to interpret Uses one moment/measurement in time to assess disease severity 

Calculated quickly Ignores previous measurements 

 
Assumes linear disease development 

 
Predicts survival based on population averages 

Joint model 
 

Pros Cons 

Adequately handles complex follow-up data (missing, irregularly measured) Takes longer to compute 

Considers different correlation of measurements within or between patients Statistically complex 

Assesses both development over time and time-to-event data 
 

Uses all available measurements 
 

Updates predictions for every new measurement, i.e. accumulating evidence 
 

Can model both linear and non-linear disease development  

Predicts both on population and individual patient level 
 

Can simulate individual patient data to calculate personalized predictions  
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