siRNA screening identifies METTL9 as a histidine N^{π} methyltransferase that targets the pro-inflammatory protein S100A9

Hiroaki Daitoku*, Momoka Someya, Koichiro Kako, Takahiro Hayashi, Tatsuya Tajima, Hikari Haruki, Naoki Sekiguchi, Toru Uetake, Yuto Akimoto, Akiyoshi Fukamizu*

*Hiroaki Daitoku and Akiyoshi Fukamizu Email: hiroakid@tara.tsukuba.ac.jp and akif@tara.tsukuba.ac.jp

This PDF file includes:

Figures S1 to S6 Table S1

Figure S1. siRNA knockdown of *METTL9* markedly reduces its mRNA. HEK293T cells were transfected with either control or *Mettl9*-specific siRNAs. The mRNA levels of *Mettl9* were measured by qPCR analysis and normalized against the mRNA levels of β -actin. Mean ± s.d. (*n*=3 independent experiments). ****P*<0.001; two-tailed Student's *t* test.

Figure S2. METTL9 specifically methylates S100A9 at His-107 *in vitro.* GST-S100A9 wildtype or H107F mutant was incubated with GST-METTL9 in the presence of ³H-SAM. The incorporation of [³H]-methyl into proteins was visualized by autoradiography (*Top*). Coomassie blue staining of proteins used in the reaction is shown as a loading control (*Bottom*).

Figure S3. METTL9 localizes to the ER in HeLa cells. Representative immunofluorescence images of METTL9 wild-type (*Top*) or Δ SP mutant (*Bottom*) localization in HeLa cells. Green, METTL9-HA; red, ER-marker (Alexa594-conjugated Concanavalin A); blue, nucleus (Hoechst33258); scale bar, 10 μ m. Images of ER-marker were merged with Hoechst and METTL9-HA staining. Colocalization indicates overlay of the ER-marker and METTL9-HA, shown as white pixels.

Figure 4. A schematic model of mouse S100A9.

Top, domain structure of S100A9 containing the two EF-hand (yellow) and a C-terminal Zn²⁺binding site (purple). *Bottom*, the C-terminal sequence of mouse S100A9. Histidine residues involved in zinc coordination are marked with blue spheres, and methylated histidine at 107 is indicated with a red asterisk.

Figure S5. siRNA knockdown of *METTL9* reduces $N\pi$ -methylhistidine levels of Flag-S100A9. HEK293T cells transfected with control or METTL9 siRNAs were further transfected with Flag-S100A9 expression plasmid, followed by immunopurification and acid hydrolysis. Their methylhistidine contents were determined by LC-MS/MS and shown as a relative ratio compared to control siRNA knockdown. Mean ± s.d. (*n*=3 independent experiments). ****P*<0.001; two-tailed Student's *t* test.

Figure S6. METTL9-mediated methylation of S100A9 has no effect on its heterodimer formation with S100A8.

Recombinant S100A9 wild-type and H107F proteins were methylated by GST-METTL9 in the absence or presence of SAM and then subjected to GST pull-down assay with GST alone or GST-fused S100A8, followed by Western blotting using an anti-S100A9 antibody (*Top*). The input indicates 5% of whole-cell lysates used for the GST pull-down assay. Ponceau-S staining of GST proteins used in the reaction is shown as a loading control (*Bottom*).

Supplementary Table S1:	The sequences of siRNA	pools used in the screening.
-------------------------	------------------------	------------------------------

Gene Symbol	Gene Accession	Sequence
Non-		UGGUUUACAUGUCGACUAA
toracting		UGGUUUACAUGUUGUGUGA
largeting		UGGUUUACAUGUUUUCUGA
Control		UGGUUUACAUGUUUUCCUA
	NM_033418	GAUUAUAACAGUAUGGUGA
METTL18		GCAUGUUAAGUUAUCAGUA
		GAUCACUUGUGGGAACAUA
		GUUUAUGAGGGAGGCUUAA
	NM_001135864	CGCUGAAGGAAUAUGAUUA
METTL20		CUAUAGAACUCGAGUACUG
		GAGGACAACUGUGAUGUAA
		CCUUGUUGUUCUUGGCGAU
	NM_145280	AGUGUGAGAUUUCGAUUUA
		UGACUAUCACGGAUCGAAA
WETTLZTA		AUGAGGAGACCACGGAAUU
		CCUGAAAUCUGGCCGGAUG
	NNA 015122	GUGCAAUUAUUUCGAGAGU
METTI 21B		GAGCCUUGAUCACGGAACA
WIETTLZTD	NM_013433	GGCAAGAAGGUGAUCGAAC
		CUUCAGUCCAUUCCGCAAA
		GGGCAAACAAAUUCAGGUU
	NM_001010977	GCUAUGGCUUUGUGUCAAU
WILTTLZTO		ACUUGAAAUUGGUGCCGGA
		GGAUUGAGAAGGUAGUGCA
	NM_001040662	GCUCUAACAACCUGGGUAA
METTI 21D		UGGUACAGUGCUACGACUA
WETTLZID		CUAAAAGAUAUCAGCGGAU
		CAGCUUAGGUUACUUAGUU
	NM_024109	CAUGUGAAGCCUACGAUCA
METTI 22		CAAGGCAGCCCGCACGAUA
		UAGCACAGGAAGAAGACGA
		CCGAAGUGUUUUACGACGA
	NM_001080510	AAGGACAGUCUCUGAAUUA
METTI 23		GGACUAACAUGGGGUCAUA
WILTTL25		UUGAGAAUGCAGUGGGUCU
		UCACCUAGACAACACUUAA
	NM_032230	GGGAGGAGCUGGUCGACUU
METTL25		UGACUUGGGUUCCGGUAAA
		AUAAUGAACUACUACGAGA
		GUUGUUUGAUCCCGUGAAA
САМКМТ	NM_024766	GCAUAAUAGUGGAUCCUUG
		CCGGACAUAUAUGAAGAAA
		CGCCGAGGGAAUACUUUAA
		GGUGCAUGGGUCCAAUAUA

Gene Symbol	Gene Accession	Sequence
		GAAAUCAAGGCCAACCAAA
FFFORMT		GCCUCUACGUGCUGCCCAU
EEFZKMI	NM_201596	GCACGGCCAUCAUCUCCUA
		GUGCUGCUCGAAAGGGUUU
	NM_001083537	AAUCAAAACUGCCCUCUAA
FAM86B1		GAGCAGAGCUUAACUCAUU
		UGGAAUGUUUGGAGAUUAU
		CAUGAAGAACAGAAGACAG
	XM_928336	GGGCAUACAUCUUCAGCGA
FAMOCDO		CAUUAGAGGCAGACAUCAC
FAINIOODZ		CCGGCAGCCUUCAUUAACA
		GCCAUCAUCUCCCACGGUA
		GAGACCAAAUGCAGGGUAA
EAMORCO		CUAAUAAGACAUCGGCUAU
FAIMOOGT	192303	GAGCAGAGCUUACUUCAUU
		ACUGGAAUGUUUGGAGAAU
	NM 452420	UCUUGUUUGUGGUCCGUAA
		CUAAGAAAACUAUGCGUAA
CARINIVITI	NW_152420	AGGAGAGGCUUGAGCGUGA
		UAGCAUCACAGGCCGGUAA
		CGGGAAAUAUGUUGAAUCU
	NM_001024074	CCACGGAACACCAGUGCAU
FINIVE		CAUCUUCCAUGAGGAGCUU
		AGGAAUUCAUGGACAAGAA
		UAGAAGAAGAUCCGAAUAU
METTLE	NM 152396	AGAAGUGGUAAACGAGUAU
WILTTED	NM_152590	UCCAAGAGCCAUUGAAUAU
		GGAUGUUGUUAUGUUGAUA
	NM_016025	AUAAACACGUGGAGGUCGA
		UGGGUAUAAAGGCGAAUUA
METTL9		GUGAAGGCGACAUGUAUAA
		AGAGUUGGGUUAUGUGAUU
	NM_199123	GGUAAGAAGAGUCGAGUAA
SETD2		GCUAAUGACUGUUGAAUCU
02100		GCACUGGCCUUUCAUUUGC
		ACACUCCUCUCUACUUUGA
	NM_001007259	GUUACGGCCCUCACGAUAA
SETD4		GAAACUCAUUCUUACGAAA
		CCAGGUAAAAGCAGCGUUU
		GAGCCCACGUGCAGGAGUU
SMYD1	NM_198274	GUGAUUAACUGCAACGGUU
		AAGAAUGAAUGUUCGGCCA
		GUAUCAUGAGGUUGUGAAA
		GCCCAACUGUACUGUCAUA