



Supplementary figure 3



Supplementary Figure 1- Profiling of circular RNA in human EC and adjacent normal tissues.

- (A) The proportion of the candidate circRNAs in the filter circRNAs. The filter circRNAs is the identified total circRNAs; the candidate circRNAs is the selected circRNAs according our screening rules (T: tumor tissues; N: normal tissues).
- (B) The proportion of the known circRNAs in sequencing results compared with circBase.
- (C) The distribution of the number of identified circRNAs derived from different genomic regions.
- (D) Length distribution of the identified circRNAs in human EC (left) and adjacent normal tissues (right). y-axis: the length of circRNAs detected in this study.

## Supplementary Figure 2- Expression of *circ-0000437* and CORO1C-47aa in cell lines and clinical samples.

- (A) RIP analysis of *circ-0000437* and CDR1as using antibodies against AGO2. The RIP enrichment of the AGO2-associated circular RNAs was measured by RT-qPCR, and each value was normalized to the level of input RNA used in RIP analysis.
- (B) The background expression of *circ-0000437* in EC cell lines and 293T cell. The expression level of circRNAs was analyzed by qRT-PCR and normalized to GAPDH. Data are represented as mean±SD from three independent experiments.
- (C) Relative expression levels of *circ-0000437* as determined by qPCR in Ishikawa cells transfected with *circ-0000437* or *circ-0000437*-targeting siRNAs. Results are shown as means ± SD relative to vector control.

- (D) The protein level of CORO1C-47aa were detected by western blot in Ishikawa cells transfected with *circ-0000437* or *circ-0000437*-targeting siRNAs.
- (E) The protein level of CORO1C-47aa were detected by western blot in EC tumor tissues and matched normal tissues (T: tumor, N: normal).
- (F) Relative expression levels of *CORO1C* as determined by qPCR in EC cells transfected with *circ-0000437* or *circ-0000437*-targeting siRNAs. Results are shown as means  $\pm$  SD relative to vector control.
- (G) The protein level of CORO1C were detected by western blot in EC cells transfected with *circ-0000437* or *circ-0000437*-targeting siRNAs.
- (H)Relative expression levels of *CORO1C* as determined by qPCR in EC cells transfected with *CORO1C* or *CORO1C*-targeting siRNAs. Results are shown as means  $\pm$  SD relative to vector control.
- (I) The protein level of CORO1C were detected by western blot in EC cells transfected with CORO1C or CORO1C-targeting siRNAs.

## Supplementary Figure 3- Sequence of CORO1C-47aa and IRES structure of CORO1C-47aa

(A) The genomic sequence of cir-0000437 and conservation analysis of circ-0000437 exons in different species.

(B) Schematic diagram of CORO1C-47aa (upper) and the CORO1C-47aa peptides sequence corresponding to the *circ-0000437* nucleotide sequence.

(C) Putative IRES sequences in circ-0000437 and Mutated IRES sequences in circ-0000437 IRES mutation plasmids.

## Supplementary Figure 4- Effect of CORO1C-47aa in angiogenesis

- (A) Matrigel plugs were harvested. Angiogenesis was quantified by measuring haemoglobin concentration in the recovered Matrigel plugs (mean±SD, \*p<0.05).</li>
- (B) Representative photographs of HE-staining in the indicated experimental conditions (Scale bars: 100µm).
- (C) HUVEC spheroids embedded in fibrin gel were incubated with indicated medium. Then, radially growing cell sprouts were counted (mean±SD, \*p<0.05).</li>

| Characteristics         | Beijing<br>population |        | Suzhou<br>population |        | Overall                   |        |
|-------------------------|-----------------------|--------|----------------------|--------|---------------------------|--------|
|                         | N <sup>a</sup>        | (%)    | N <sup>a</sup>       | (%)    | $\mathbf{N}^{\mathbf{a}}$ | (%)    |
| Age (years)             |                       |        |                      |        |                           |        |
| ≤65                     | 41                    | (43.6) | 53                   | (51.0) | 94                        | (47.5) |
| >65                     | 53                    | (56.4) | 51                   | (49.0) | 104                       | (52.5) |
| Age at menarche         |                       |        |                      |        |                           |        |
| (years)                 |                       |        |                      |        |                           |        |
| ≤11                     | 4                     | (4.3)  | 7                    | (6.7)  | 11                        | (5.6)  |
| 11-16                   | 71                    | (75.5) | 67                   | (64.4) | 138                       | (69.7) |
| ≥16                     | 19                    | (20.2) | 30                   | (28.8) | 49                        | (24.7) |
| Menopausal status       |                       |        |                      |        |                           |        |
| Premenopausal           | 22                    | (23.4) | 32                   | (30.8) | 54                        | (27.3) |
| Postmenopausal          | 72                    | (76.6) | 72                   | (69.2) | 144                       | (71.7) |
| Family history of       |                       |        |                      |        |                           |        |
| cancer                  |                       |        |                      |        |                           |        |
| Positive                | 15                    | (16.0) | 8                    | (7.7)  | 23                        | (11.6) |
| Negative                | 79                    | (84.0) | 96                   | (92.3) | 175                       | (88.4) |
| BMI <sup>b</sup>        |                       |        |                      |        |                           |        |
| ≤25                     | 39                    | (41.5) | 41                   | (39.4) | 80                        | (40.4) |
| >25                     | 55                    | (58.5) | 63                   | (60.6) | 118                       | (59.6) |
| FIGO <sup>c</sup> stage |                       |        |                      |        |                           |        |
| Ι                       | 67                    | (71.3) | 79                   | (76.0) | 146                       | (73.7) |
| II                      | 14                    | (14.9) | 7                    | (6.7)  | 21                        | (10.6) |
| III                     | 13                    | (13.8) | 18                   | (17.3) | 31                        | (15.7) |
| Histologic type         |                       |        |                      |        |                           |        |
| Endometrioid            | 74                    | (78.7) | 91                   | (87.5) | 165                       | (83.3) |
| Non-endometrioid        | 20                    | (21.3) | 13                   | (12.5) | 33                        | (16.7) |
| Grade                   |                       |        |                      |        |                           |        |
| G1                      | 25                    | (26.6) | 44                   | (42.3) | 69                        | (34.8) |
| G2                      | 57                    | (60.6) | 53                   | (51.0) | 110                       | (55.6) |
| G3                      | 12                    | (12.8) | 7                    | (6.7)  | 19                        | (9.6)  |

Supplemental table 1. Clinicopathological characteristics of endometrial cancer patients in Chinese population.

<sup>a</sup>N, Number of patients

<sup>b</sup>BMI, Body mass index.

°FIGO, The International Federation of Gynecology and Obstetrics.

| <b>Supplementary</b> | Table 2. | Oligonucleotides | used in PCRs |
|----------------------|----------|------------------|--------------|
|                      |          |                  |              |

| PCR                     |         |                                 |  |  |
|-------------------------|---------|---------------------------------|--|--|
| Hsa-circ-0000437        | Forward | 5'- GGTGACAGCAGTATTCGCTATTT -3' |  |  |
|                         | Reverse | 5'- TGGTTCCTGCATATTTTTCTGG -3'  |  |  |
| CORO1C                  | Forward | 5'- AAGAGGGTAGAGCAGGAGCTTT -3'  |  |  |
|                         | Reverse | 5'-CAGCAGCTCGAATTTCTTCC -3'     |  |  |
| Linear CORO1C           | Forward | 5'- CAGGAACCAATTGCTCTTCAT -3'   |  |  |
|                         | Reverse | 5'- TTAACATCAAGTCCCCTCTTGG -3'  |  |  |
| ARNT                    | Forward | 5'- GCTACCCAGGCTACTGCTAAGA -3'  |  |  |
|                         | Reverse | 5'- CGATTGGTGAGACTAGGGTAGG -3'  |  |  |
| TACC3                   | Forward | 5'-CACAGACGCACAGGATTCTAAG-3'    |  |  |
|                         | Reverse | 5'-TAGTTTTGGCATCCACTTCCTT-3'    |  |  |
| VEGFA                   | Forward | 5'-ATGAGCTTCCTACAGCACAACA-3'    |  |  |
|                         | Reverse | 5'-ACGTACACGCTCCAGGACTTAT-3'    |  |  |
| CD31                    | Forward | 5'-GACCAAGGTGAAAGACTGAACC-3'    |  |  |
|                         | Reverse | 5'-TGCAGATATACGTCCCACTGTC-3'    |  |  |
| circHIPK3               | Forward | 5'-TCGGCCAGTCATGTATCAAA-3'      |  |  |
|                         | Reverse | 5'-ACCAAGACTTGTGAGGCCAT-3'      |  |  |
| <i>GAPDH</i> cDNA       | Forward | 5'-GAAGGTGAAGGTCGGAGTC-3'       |  |  |
|                         | Reverse | 5'-GAAGATGGTGATGGGATTTC-3'      |  |  |
| siRNA                   |         |                                 |  |  |
| Hsa-circ-0000437 siRNA1 |         | 5'- ATGTGAGATTGCCAGAAAA -3'     |  |  |
| Hsa-circ-0000437 siRNA2 |         | 5'- CCAGAAAAATATGCAGGAA -3'     |  |  |
| Hsa-circ-0000437 siRNA3 |         | 5'- GAGATTGCCAGAAAAATAT -3'     |  |  |
| ARNT siRNA 1            |         | 5'- GAGAAGTCAGATGGTTTATTTCTC-3' |  |  |
| ARNT siRNA 2            |         | 5'- GAGAAATAAACCATCTGACTTCTC-3' |  |  |
| Northernblot            |         |                                 |  |  |
| Hsa-circ-0000437        | Forward | 5'- GGTGACAGCAGTATTCGCTATTT -3' |  |  |
|                         | Reverse | 5'- TGGTTCCTGCATATTTTTCTGG -3'  |  |  |
| CHIP                    |         |                                 |  |  |
| C1-VEGFA                | Forward | 5'- GAGCGTTTTGGTTAAATTGAGG -3'  |  |  |
|                         | Reverse | 5'- GAAGAGTGGGACCAGTCAGTCT -3'  |  |  |
| C2-VEGFA                | Forward | 5'- GGGTAGGTTTGAATCATCACG -3'   |  |  |
|                         | Reverse | 5'- CACGTATGCACTGTGGAGTCTG -3'  |  |  |
| C3-VEGFA                | Forward | 5'-GCCAGACTCCACAGTGCATAC -3'    |  |  |
|                         | Reverse | 5'- GTCCTTTGGGAAGTGTCCAG -3'    |  |  |
| C4-VEGFA                | Forward | 5'- ATTCCTAGCAAAGAGGGAACG -3'   |  |  |
|                         | Reverse | 5'- GTTCACAGCCTGAAAATTACCC -3'  |  |  |