

Fig.S1 Characterization of CRISPR/Cas9 *slgb1* mutants in tomato. (A) Schematic diagram of the wild type (WT) and mutated SIGB1 proteins. Upper row, WT SIGB1 protein indicating the position of the mutation (red arrow) upstream of the coil-coiled domain. Middle row, mutated SIGB1_d3 protein encoded by the three bp-deletion mutation. The deletion of three bases results in the omission of a threonine amino acid (a.a) in position 49 indicated by the purple mark. Lower row, mutated SIGB1_d13 protein encoded by the 13 bp-deletion mutation. The deletion of 13 bases produces a frameshift that interrupts the canonical sequence of the protein at position 47 adding an unrelated peptide of 28 a.a before encountering a translational stop codon. In SIGB1_d3 and SIGB1_d13, grey lines indicate native SIGB1 sequences, the red line indicates unrelated peptide. (B) Sanger sequencing of PCR amplicons from WT and two homozygous mutant lines *slgb1_d3d3* and *slgb1_d13d13* show three bases and 13 bases deletions, respectively. (C) Amino acid sequences of WT and mutated SIGB1 proteins. Eight residues important for interaction with G γ are highlighted in red. WD-40 repeat domains starts and ends are highlighted in green and yellow, respectively. (D) The threonine amino acid in position 49 of the SIGB1 protein indicated by a red arrow is not conserved among plant G β subunits.

Fig. S2 *In vitro* pollen germination assay. Tomato pollen grains derived from (A) WT and (B) biallelic *slgb1_d3d13* plants were germinated on a solid germination medium. Pictures were taken 24 h after incubation. Scale bars = 100 μ m. (C) Pollen germination rate and (D) average pollen tube length from WT and *slgb1_d3d13* plants were measured after incubation for 24 h. In C, bars represent averaged values from three independent experiments with standard errors. Asterisk indicates statistically significant difference evaluated by Student's t-test, * P < 0.05. In D, bars represent means ± SEM, n ≥ 65. "ns" indicates no significant difference (P > 0.05) by Student's t-test.

Fig. S3 Homozygous $slgb1_d13d13$ mutants exhibit seedling lethality. (A) Non-germinated seeds and defective germination and growth seedlings from self-pollinated heterozygous $slgb1_d13wt$ plants two weeks after sowing on soil. (B) Seedlings from self-pollinated $slgb1_d13wt$ plants were germinated on MS medium containing 1% (w/v) sucrose. White boxes show homozygous $slgb1_d13d13$ seeds/seedlings identified by Sanger sequencing of the targeted genomic region. DAG, days after germination.

B

Gohir. A03G194000 Gohir. D02G215100 Gohir. A13G034700 Gohir. D13G033100	ATGTCTGTTGCAGAGCTGAAAGAGAGCACGCGGGCGGCGACCGAGAGAGTTAATAATCTAAGGAAAGGATAAAGCAAAGAGCTCAACAGTTGCTCGACACTGATGTTGCTACATATGCA ATGTCTGTTGCAGAGCTGAAAGAGAAGCACGCGGGGGGCGGCGGGGGAGAGTGAATAATCTAAGGAAAGAGATAAAGCATAAGACGTCATGCTGCTGACACTGATGTTGCTACATATGCA ATGCCCGTTGCGGAGCTGAAAGAGAGCACGCCGCGGCGGCGATTGAGGCAGTGAACGATTAATCTAAGGAAGCGATTAAAGCAAAGACGTCAACAGTGCTGCTGACCTGATGCTACATATGCA ATGCCCGTTGCGGAGCTGAAAGAGAGCACGCCGCGGCGATTGAGGCAGTGAACGATCATAGGAGCGATTGAAGCAGGAGCGCCAGCAGTGCTCGACCTGACGTGGCCGGATATGCA ATGTCCGTTGCGGAGCTGAAAGAGAGGCACGCCGCGGCGGTTGAGGCAGTGAACGATCTTAGAGAGCGATTGAAGCAGAGACGCCAGCAGTGCCCGCACTGACGTGGCCGGATATGCA ATGTCCGTTGCGGAGCTGAAAGAGAGGCACGCCGCGGGGGATTGAGGCAGTGAACGATCTTAGAGAGCGATTGAAGCAGAGACGCCAGCAGTGCCCGACGTGGCCGGATATGCA **** * ***** ************************	120 120 120 120
Gohir. A03G194000 Gohir. D02G215100 Gohir. A13G034700 Gohir. D13G033100	AGATCACAAGGGAAGAGTCCAGTTACTTTTGGTCCTACGGATCTGGTTGTTGCAGGACCTTGCAAGGTCACACTGGCAAGGTTTACTCCTTGGATTGGACTCCAGAAAGGAACCGGATT AGATCACAAGGGAAGAGTCCAGTTACTTTTGGTCCTACGGATCTGGTTTGTTGCAGGACCTTGCAAGGTCACACTGGCAAGGTTTACTCCTTGGATTGGACTCCGCAAAGGAACCGGATT AGATCGCAAGGGAGGGAGTCAAGTTACTTTTGGTCCTACGGATCTGGTTTGCTGTAGGACCTGCAAGGTCACACCGGCAAGGTACTCATTAGATTGGACACCGGAACGAGATCGAATT AGATCGCAAGGGAGGAGTCAAGTTACTTTTGGCCCAACCGATCTGGTTTGCTGTAGGACCTTGCAAGGTCACACCGGCAAGGTAACTCATTAGATTGGACACCGGAACGAGATCGAATT AGATCGCTAGGGAGGAGTCAAGTTACTTTTGGCCCAACCGATCTGGTTTGCTGTAGGACCTTGCAAGGTCACACCGGCAAGGTATACTCATTAGATTGGACACCGGAACGAGATCGAATT AGATCGCTAGGGAGGAGTCAAGTTACTTTTGGCCCAACCGATCTGGTTTGCTGTAGGACCTTGCAGACCTGCACCCGGCAAGGTATACTCATTAGATTGGACACCGGAACGAATCGAATT *****	240 240 240 240
Gohir. A03G194000 Gohir. D02G215100 Gohir. A13G034700 Gohir. D13G033100	GTTAGCGCGTCTCAGGATGGACGATTAATTGTGTGGAACGCTCTAACTAGCCAGAAAACTCACGCCATAAAGCTGCCTTGTGCGTGGGTTATGACGTGTGCTTTTTCTCCCACG <mark>GGTCAA</mark> GTTAGCGCGTCTCAGGATGGACGATTAATTGTGTGGGAACGCTCTAACTAGCCAGAAAACTCACGCCATAAAGCTGCCTTGTGCGTGGGTTATGACGTGTGCTTTTTCTCCCAACGGGTCAA GTCAGTGCCTCTCAGGATGGACGCTTAATCGTGTGGAATGCTCAAACGAGCCAGAAAACTCATGCCATAAAGCTGCCTTGTGCATGGGTTATGACGTGTGCTTTTTCCCCAACGGGTCAA GTCAGTGCCTCTCAGGATGGACGCTTAATCGTGTGGAATGCTCAAACGAGCCAGAAAACTCATGCCATAAAGCTGCCTTGTGCATGGGTTATGACGTGTGCTTTTTCCCCAACGGGTCAA GTCAGTGCCTCTCAGGATGGACGCTTAATCGTGTGGAATGCTCAAACGAGCCAGAAAACTCATGCACTAGCCATAAAGCTGCCTTGTGCATGGGTTATGACGTGTGCTTTTTCCCCCACGGGTCAA GTCAGTGCCTCTCAGGATGGACGCTTAATCGTGTGGAATGCTCAAACGAGCCAGAAAACTCATGCCATAAAGCTGCCTTGTGCATGGGTTATGACGTGTGCTTTTTCCCCACGGGTCAA H** ** ******************************	360 360 360 360
Gohir. A03G194000 Gohir. D02G215100 Gohir. A13G034700 Gohir. D13G033100	TCAGTTGCCTGTGGTGGTCTCGATAGTATGTGTTCCCATTTTCAACTTGAATTCTCCGGACTGACAGGGATGGAAACCTACCT	480 480 480 480
Gohir. A03G194000 Gohir. D02G215100 Gohir. A13G034700 Gohir. D13G033100	TGCTGTCAGTATGTTCCGGATGAAGATATTCACATTATTACCAGTTCCGGTGATCAGACCTGTGTTCTATGGGATATTACTACTGGCCTTAGAACATCGGTTTTCGGGGGGAAATTTCAA TGTTGTCAGTATGTTCCAGATGAAGACATTCACATTATTACCAGTTCCGGTGATCAGACCTGTGTTCTATGGGATATTACTACTGGCCTTAGAACATCGGTTTTCGGGGGAGAATTTCAA TGTTGTCAGTACGTCCCCGATGAAGACATTCACATTATTACGAGTTCCGGTGATCAGACATGTGTGCTATGGGATATTACAACAGGTCTCCAGAACTACTGTTTTCGGGGGGAGAGTTCCAA TGTTGTCAGTATGTCCCGGATGAAGACATTCACATTATTACAAATTCCGGTGATCAGACATGTGTGCTATGGGATATTACAACAGGTCTCAGAACTACTGTTTTCGGGGGGAGGTTCCAA ** ******** ** ** *****************	600 600 600 600
Gohir. A03G194000 Gohir. D02G215100 Gohir. A13G034700 Gohir. D13G033100	TCCGGGACATACTGCTGATGTGCTAAGTGTCTCAATTAATGGATCGAACTCAAGAATGTTTGTCTCTGGTTCATGTGATGCAACTGCCCGATTGTGGGATACTCGTGTTGCAAGTCGAGCA TCTGGAACTACTGCTGATGTGCTAAGTGTCTCAATTAATGGATCGAACTCAAGAATGTTTGTCTCGGTTCATGTGATGCAACTGCCCGATTGTGGGATACTCGTGTTGCAAGTCGAGCA TCTGGGCATACTGCTGATGTACTGAGTGTCTCCAATAAATGGAGCAAACTCAAGAACTGTTGTTGTTGTTGCTGGTCCTGTGATGGAACTGCCCGACTATGGGATACTCGTGTTGCAAGCCGAGCA TCTGGGCATACTGCTGATGTACTGAGGGTCGCAAATGGAGGCAAACTCAAGAGTGTTTGTT	720 720 720 690
Gohir. A03G194000 Gohir. D02G215100 Gohir. A13G034700 Gohir. D13G033100	GTTCGTACATTTCATGGTCACGAGGGCGATGTAAACACCGTGAAGTTCTTTCCAGATGGCAATAGGTTTGGAACTGGATCGGATGGGACTTGTAGGTTGTTGTGACATTGAGATCGGA GTTCGTACATTTCATGGTCACGAGGGCGATGTAAACACCGTGAAGTTCTTTCCAGATGGCAATAGGTTTGGAACTGGATCGGATCGGATGGGAACTTGTAGGTGTTGGTAGAGTTGGAACTGGT ATGCGTACGTTTCAGGGTCATGAGGGGGGATGTTAACACCGTGAAGTTCTTTCCAGATGGCAATAGGTTTGGAACTGGATCGGATCGGATCGGAACTGGCAGGTGTTGTTGAAACTGGT ATGCGTACGTTTCAGGGTCATGAGGGGGGTGATGTAACACCGTGAAGTTCTTTCCAGATGGCAATAGGTTTGGAACTGGATCAGGATCAGGATCGCAGGTGGTGTTGGAACTGG ATGCGTACGTTTCAGGGTCATGAGGGGGGGGGG	840 840 840 704
Gohir. A03G194000 Gohir. D02G215100 Gohir. A13G034700 Gohir. D13G033100	CACCAATTACAAGTATACTATCAGCAACATGGCGATAACGAGGTTCCACATGTGACCTCCATCGCATTCTCCATTTCTGGAAGACTTCTCTTTGCCGGATACTCAAATGGAGATTGCTAC CACCAATTACAAGTATACTATCAGCAACAGGGGATAACGAGGTTCCACATGTGAACCTCCATCGCATTCTCCATTTCTGGAAGACTTCTCTTTTGCCGGATACTCAAATGGAGATTGCTAC CACCAGTTGCAAGTATACTATCAGCAACAGCGATAAGGAGGTTCCACTTGTGACCTCGATTGCATTCTCCATATCCGGAAGACTCCTTTTTGCTGGATACTCAAATGGAGATTGCTAT CACCAGTTGCAAGTATACTATCAGCAACACGCGATAAGGAGGTTCCACTTGTGACCTCGATTGCATTCTCCATATCCGGAAGACTCCTTTTTGCTGGATACTCAAATGGAGATTGCTAT ***** ** ***************************	960 960 960 759
Gohir. A03G194000 Gohir. D02G215100 Gohir. A13G034700 Gohir. D13G033100	GTATGGGACACGTTATTGGAAAGGGTCGTTTTGAACTTGGGATCTGTCCAGAACTCACACGAGGAACGGATTAGCTGTTTGGGTTTATCGGCCAACGGTAGTGCCTTATGTACAGGAAGT GTATGGGACACGTTATTGGAAAAGGTCGTTTTGAACTTGGGATCTGTCCAGAACTCACACGAGGACGGATTAACTGTTTGGGTTTATCAGCCGACGGTAGTGCCTTATGTACAGGAAGT GTATGGGACACGTTATTGGCAAGGGTGTGTGTGAACTTAGGATCCGTCCAGAATTCACATGAGAACCGGATTAGTTGTTTGGGTTTGTCAGCCGATGGTA GTATGGGACACATTATTGGCAAGGGTTGTGTTGAACTTAGGATCCGTCCAGAATTCACATGAGAACCGGATTAGTTGTTTGGGTTTGTCAGCCGATGGTA CTATGGGACACATTATTGGCAAGGGTTGTGTTGAACTTAGGATCCGTCCAGAATTCACATGAGAACCGGATTAGTTGTTTGGGTTTGTCAGCCGATGGTAGTCCTTATGTACAGGAAGT	1080 1080 1080 759
Gohir. A03G194000 Gohir. D02G215100 Gohir. A13G034700 Gohir. D13G033100	TGGGATACAAACCTCAAGATTTGGGGGCATTGGAAGGGCATTGGAAAGGTGATCTGA 1134 TGGGATACAAACCTCAAGATTTGGGCGCATTGGAAGGGCATAGAAAGGTGATCTGA 1134 TGGGATACAAACCTCAAGATTTGGGCGCATTGGAAGGGCAACGAAGGTTATTTGA 1134	

Fig. S4 Genomic structure of cotton *GhGB* genes and cDNA regions used for VIGS constructs. (A) Schematic diagram of the *GhGB* genes showing the position of the genomic deletion in Gohir.D13G033100. Exons are represented as boxes. (B) Sequence alignment of *GhGB1* (Gohir.A03G194000 and Gohir.D02G215100) and *GhGB2* (Gohir.A13G034700 and Gohir.D13G033100) sequences. The target regions of VIGS vectors TRV: β 1 and TRV: β 2 are indicated with red and blue boxes, respectively. The in frame stop codon in Gohir.D13G033100 is indicated with a red box.

Fig. S5 Silencing of *GhGB1* and *GhGB2* causes plant death in the upland cotton cultivar (A) 'TM1', (B) 'Coker201' and (C) the sea-island (*Gossypium barbadense*) cotton cultivar 'Hai7124'. (A and B) Plants were infiltrated with *A. tumefaciens* strain GV3101 carrying TRV:00, TRV: β 1, TRV: β 2 or TRV: β 1+TRV: β 2 vectors. Pictures were taken 14-32 days after infiltration. (C) Plants were infiltrated with *A. tumefaciens* strain GV3101 carrying TRV:00, TRV: β 1 or TRV: β 2 vectors. Pictures were taken 35 days after infiltration.

Fig. S6 Transcriptome analysis of G β -silenced cotton plants. (A) Venn diagram of differentially expressed gene (DEGs) in the leaves of cotton plants infiltrated with TRV: β 1 compared with TRV:00, 9, 11 and 13 d after VIGS infiltration. (B) Heat-map showing the expression changes of all DEGs in both three groups of samples (TRV: β 1 and TRV:00; 9 d, 11 d and13 d). (C) The TOP3 enrichment GO groups of the DEGs (TRV: β 1 vs TRV:00) in 9 d, 11 d or 13 d samples. The bottom (X-axis) is the gene numbers enriched in each term, and next to the bar (right) is the significance. (D) Heat-map of a part of the upregulated genes in both three groups of samples (TRV: β 1 and TRV:00; 9 d, 11 d and 13 d). For (B) and (D), The FPKM value of DEGs are shown by a color gradient from low (green) to high (red). The scale bar stand for the log₂ fold changes in transcription level.

Fig. S7 Expression of key genes involved in Jasmonic acid (JA)-, auxin- and ROS detoxification- signaling pathways is altered in homozygous *slgb1_d13d13* mutants. qRT-PCR was performed to measure relative expression levels of (A) JA-responsive genes, (B) auxin-responsive genes and (C) genes related to ROS detoxification in two-week-old WT and *slgb1_d13d13* tomato seedlings grown on MS medium. Gene expression was normalized to the tomato *Ubiquitin 3 (SlUB3)*. Bars represent means \pm SEM, n \geq 3. Asterisks indicates significant difference evaluated by Student's t-test, * P < 0.05, ** P < 0.01, *** P < 0.001. "ns" indicates no significant difference.

T0 line	The sequence of target site	Genotype	Zygosity	Note
	ACTCCGGTAACGTTCGGCCCAACAGATC <mark>TGG</mark>	WT		No seeds were
# 13	ACTCCGGTAACGTTCGGCCCAACA <mark>A</mark> ATC <mark>TGG</mark>	s1	Monoallelic	obtained
	ACTCCGGTATTCGGCCCAACAGATCTGG	d3		
# 18	ACGGCCCAACAGATC <mark>TGG</mark>	d13	Biallelic	
	ACTCCGGTATCGGCCCAACAGATC <mark>TGG</mark>	d4		No seeds were
# 24	ACTCCGGTAGGCCCAACAGATC <mark>TGG</mark>	d6	Biallelic	obtained

 Table S1
 Characterization of CRISPR/Cas9-targeted mutations in the T0 generation

WT, wild type-no mutation was detected at target site; s#, # number of bases substituted at target site; d#, # number of bp deleted at target site. PAM sequence (TGG) is indicated in red and underlined; the 20 bp target sequence is marked in green, the base highlighted yellow means substitution.

Table S2 The differentially expressed genes in both three groups of samples (TRV:00 and TRV: β 1; 9 d, 11 d and 13 d after VIGS infiltration) (see separate Excel file)

Table S3 Part of the upregulated genes in both three groups of samples (TRV:00 and TRV: β 1; 9 d, 11 d and 13 d after VIGS infiltration) (see separate Excel file)

Table S4 Part of the upregulated genes in both three groups of samples (TRV:00 and TRV: β 1; 9 d, 11 d and 13 d after VIGS infiltration) (see separate Excel file)

Name	Gene ID	Forward primer	Reverse primer	Reference	
Primers used for VIGS vector construction in cotton					
GhGB1	Gohir.A03G194000/Go hir.D02G215100	CGACGACAAGACCCTGGT CAATCAGTTGCCTGTGGT	GAGGAGAAGAGCCCTGTCA AACAACCTACAAGTCCCAT C	In this study	
GhGB2	Gohir.A13G034700	CGACGACAAGACCCTAAC TACTGTTTTCGGGGGGAGA	GAGGAGAAGAGCCCTTACC ATCGGCTGACAAACCC	In this study	
GhEDS1	Gh_A12G1816	AGAAGGCCTCCATGGGG ATCCTGGAACTAACAGGA ATATGGGATG	GAGACGCGTGAGCTCGGTA CCTATCCACCATTTGGTAA AGGAGG	In this study	
GhEDS5	Gh_A03G1749	AGAAGGCCTCCATGGGG ATCCTTCGTTGTGCGACC GAGTAA	GAGACGCGTGAGCTCGGTA CCAATAAGCCACCAGTCAA ACCAAC	In this study	
GhPAD4	Gh_A05G3304	AGAAGGCCTCCATGGGG ATCCTAGAAATCTGGTGG CTTTGAGTAAG	GAGACGCGTGAGCTCGGTA CCCGAGCAATGGAGAACCG AAT	In this study	
GhSAG101	Gh_D07G2218	AGAAGGCCTCCATGGGG	GAGACGCGTGAGCTCGGTA	In this study	

Table S5List of primer sequences

		ATCCGGACAGTTAATGTT	CCTCGTACCAGCATACAAC	
		TACAGCAGGAT	CACC	
		AGAAGGCCTCCATGGGG	AGAAGGCCTCCATGGGGAT	
GhSID2	Gh_D05G3199	ATCCTGCCCGTAGCAGCA	CCTGCCCGTAGCAGCAGGA	In this study
		GGATT	ТТ	
		AGAAGGCCTCCATGGGG	AGAAGGCCTCCATGGGGAT	
GhEIN2	Gh D09G1403	ATCCTTTAGGAGCCTCAG	CCTTTAGGAGCCTCAGCGG	In this study
Gilenv2	01_0001405	CGGGA	GA	In this study
	C1 D05C2471	AGAAGGCCTCCATGGGG	GAGACGCGIGAGCICGGIA	To dia at 1
GnkbonD	Gn_D05G24/1	ATCCTTACTGGGTGACAA	CCGTTAGGCTTGGCGAAGT	In this study
		GGGAGCA	GAGA	
		AGAAGGCCTCCATGGGG	AGAAGGCCTCCATGGGGAT	
GhRhohF	Gh D03G0688	ATCCTGTCCAGTGCCCTG	CCTGTCCAGTGCCCTGCTG	In this study
Gintoom		CTGTCT	тст	in this study
		cioici	101	
Primers used f	or qRT-PCR in tomato			•
GILIDA	0.1.07.0(1100.1.1	GCCGACTACAACATCCAG	TGCAACACAGCGAGCTTAA	Ricardi et al.
SIUB3	Solyc0/g064130.1.1	AAGG	СС	(2010)
		TACTCGACACCGATGTTT	AGACCTTTCCAGTGTGTCC	
SIGB1	Solyc01g109560.2.1	CTGG	Т	In this study
		GCCAAGCTATAACTACGC		Song et al
SIPR1b1	Solyc00g174340.1.1	тассаас	CC	(2010)
				(2010)
SIPR1a2	Solyc09g007020.1.1	CIIGAGGIICACAACGAC		In this study
		GC	A	
SIPR2	Solvc01g060020.2.1	CCAACATTCACATAACAG	TAGCGCATTCAAAGCTCCA	In this study
	, ,	AGGCT	TGA	, ,
SIPR 3	Solve10g055810.1.1	AACTATGGGCCATGTGGA	GGCTTTGGGGGATTGAGGAG	Song et al.
511105	5019010505010.1.1	AGA	0001110000011101100110	(2010)
SIDD /	Solve01c007240.2.1	AGATGCTTGAGGGTGACC	GTTTCCCCTCTGATAGCCC	In this study
511 K4	501yc01g097240.2.1	AAC	А	In this study
CIDD 5	0.1.00.000(40.1.1	GCAACAACTGTCCATACA		Molinari et al.
SIPKS	Solyc08g080640.1.1	CC	AGACICCACCACAAICACC	(2014)
		GAACTCGCAACCTCAACA	TCGAGGCACCTCTTTGCTT	
SIPAD4	Solyc02g032850.2.1	GC	G	In this study
		TAGGGACACAGTTTCGCA	TGCCCAGAAACAAGACTCG	
SIEDS1	Solyc06g071280.2.1	GG	G	In this study
		GGTCGACAAGTTTCAGAG	TGAGGCAAGGACTTATCAA	
SINPR1	Solyc07g040690.2.1		GCC	In this study
				Mantínaz
SIETR4	Solyc06g053710.2.1	CGIGAAIAGAGCGGIAAC	CAGGGCTAAGAACACCAAT	Martinez
		AAGTAAG	ACA	(2018)
SICTR1	Solvc10g083610.1.1	GCATATCCCCTAGTTGCA	CATGGAAACCAGTTCCTCT	Martínez
	~~~;;;===8=======	TCAC	ТСТ	(2018)
SICTR2	Solve01g097980 2 1	TGCAAGCTCAGTCAATAG	ACCAACATCATCAAACACA	Martínez
51011(2	501yc01g077900.2.1	GAAC	GGA	(2018)
CIED12	0.1.00.007070.0.1	CTTGCGCAGATTTGCAGT	CCGGTTGCAGTCAGGAAAA	Le di la stati
SIEINZ	Solyc09g007870.2.1	GA	С	In this study
		CTCTAAGCGTCGGATGGT	GACGCTGTCTAACGCCTCT	
SIERF1a	Solyc05g052050.1.1	CG	А	In this study
		GCTTTGTCACCCACCTCA	CCGTCATAGCAAAATCCGG	
SIERF1b	Solyc06g082590.1.1	GT	C	In this study
	Salva02-117080-0-1			List-1
SlRbohB	S01yc03g11/980.2.1		CATCOTCATIGGACIIGGC	(2015)
				(2015)
SIRbohD	Solyc06g068680.2.1	CCTCCTACACCACCAAAT	GCCCAGTGCTTCAATCTCT	Li et al.

		С		(2015)	
SIRbohF	Solyc07g042460.1.1	CCTTATCTGCACGAGAGG	CAGCACATTTGTGTCAGAT	Li et al.	
Sixtoin		AAAT	TCC	(2015)	
SICAT3	Solyc04g082460.2.1	TGCAGCTCCCAGTTAATG	CCGCATGACGACAAGGATC	In this study	
~~~~~		СТ	A		
SISDF	Solyc06g048410.2.1	GGATACACACCACTCCTC	TGACTGCTTCCCATGACAC	In this study	
	a 1 a <i>i</i> a a a i	ACC	C		
SIGST1	Solyc06g009020.2.1	AGTCGTGGCAGAGAACG	CTCCCCGACAAGTAGTGCA	In this study	
	G 1 00 054050 0 1	AAG	A	T 11 1 1	
SIGST2	Solyc09g074850.2.1	IGATIGGCTIGGGCAGIA	GTAAAGGAGTCGCCACCCA	In this study	
	G 1 . 0C . 000040 2 1	TCCTCACAACCCCAACC	A	To the state	
SIGST3	S01yc06g009040.2.1	IGUIGACAAGGGGAACC	CITCOTTCICCOCCACGATI	In this study	
SITUIO	Salva05a006920.2.1		TCCAACCACCACCATCT	In this study	
(Thiorodovin)	S01yc03g006850.2.1	ACCT		In this study	
	Salva03a006040.2.1	TTCACATCGTGGGACCTG	A	In this study	
(Peroviredovi	501yc05g090040.2.1		Gomercecoonnecaon	In this study	
(l'eloxiledoxi		AC			
11)	Solvc03g122340.2.1	GGCTTGCTTTACTCCTGG	AAATCAAAGCGCCAGTTCT	Sun et al	
SILOXD	50190058122510.2.1	TC	Т	(2017)	
		CGATTACCTCCGATTCTG	AAATCTTCATCCCACCGAA	Sun et al	
SIAOS	Solyc03g120500.2.1	GT	G	(2017)	
		CAGCAGGACTCTGCATTC	CGGTGACGGCTAGGTAAGT	Sun et al.	
SIAOC	Solyc02g085730.2.1	TG	Т	(2017)	
alopp A		ATGTTGGTCGTGCATCTC		Sun et al.	
SIOPR3	Solyc0/g00/8/0.2.1	AT	GGTICCAATIGCICTIGGT	(2017)	
CILA D 1	Solyc10g011660.2.1	CTAAGCCATTTATAAGAA	CTGCCATTCAGACCCCATT	In this study	
SIJAKI		AGGAGGG	G		
SICOLI	Solyc05g052620.2.1	GTGCGGTTACACACAGAG	CTGTCAAGCAAAACCAGCC	In this study	
SICOII		GA	G		
511 4 4 2	Solyc06g084070.2.1	TAACAATGATGAACCACC	TTTCCTTAAATAAGCCGCA	Deng et al.	
5111112		AC	С	(2012)	
SILA A 8	Solyc03g120390.2.1	CCTAACAATCTGTAATTC	GCATCCAGTCTCCATCTTTA	Deng et al.	
Shirito		TCAAAGTGAAA	TCTTC	(2012)	
SISAUR	Solyc01g110920.2.1	ATGTTGGGGAAAAGCAG	ACCCATCGGATGATTAAAG	In this study	
		AAG	С		
SIGH3.2	Solvc01g107390.2.1	GTGAACTTTGCACCTATT	AAACACTTCTCCTCCTCT	Liao et al.	
	, ,			(2015)	
SIGH3.4	Solyc02g092820.2.1	CTCCAGGGTGATTTCTGT	TTCTTTGGTCCACTGTCT	Liao et al.	
D: 16				(2015)	
Primers used for qRT-PCR in cotton					
GhUBI7	Gh_A12G1102	GAAGGCATTCCACCTGAC	CITGACCITCITCITCITGI	In this study	
	Cabin A02C104000/Ca			In this study	
GhGB1	bir D02C215100	GAC	AGTAG	In this study	
	III.D020213100		ATACCCCTTCTCCCCATTA	In this study	
GhGB2	Gohir.A13G034700	ATTGTC	AGG	in uns study	
		GAGTCAACATTAACCGCC	GAGTCAACATTAACCGCCA	In this study	
GhPAD4	Gh_A05G3304	ATAGAC	TAGAC	in uns study	
		GCCGATGCTATTCTTCAA	GATCTCATCCCATATTCCTG	In this study	
GhEDS1	Gh_A12G1816	CTACT	TTAGT	in this study	
		TTCGTTGTGCGACCGAGT	TTCGTTGTGCGACCGAGTA	In this study	
GhEDS5	Gh_A03G1749	АА	Α		

ChSAC101	Gh_D07G2218	CTCCGATCACGGTGGTTG	GAGGCTCAATAAGCATCTC	In this study
GIISAGIUI		TAT	ATACT	
GhSID2	Gh_D05G3199	TGCCCGTAGCAGCAGGAT	AACTGCTGGAGTTGGGTGG	In this study
		Т	AG	
GhAOC4	Gh_A12G1551	GGCATCACGGCTGGACTC	CCCATCCTCCCACTCCC	In this study
		Т	GUGAIGGIGGUAUIGGU	
GhEIN2	Gh_D09G1403	TTTTGATCTGGTAGCCCC	CAATATGAAACCTGCCGCA	In this study
		С	Т	
GhERF1	Gh_A08G1686	CGCAGCGGAGATAAGGG	CCTAAATCCTCAAACACCA	In this study
		Α	CCA	
ChDhahD	Gh_D05G2471	TTACTGGGTGACAAGGGA	TTACTGGGTGACAAGGGAG	In this study
GIIKUUIID		GCA	CA	
ChDhahE	Gh D03G0688	TGTCCAGTGCCCTGCTGT	TTTGAACCAATCAAATGAA	In this study
GIIKOOIII	011_0000000	СТ	CCTTG	
GhPR1	Gh_A12G0274	ACCTCAACGCTCACAACA	GGTCCACTGGAGTGCACAA	Du et al.
		CA	G	(2017)
GhPR4	Gh_D13G1816	CCGCAGAACATAAACTGG	AGCCCTCCATTGCTACATT	In this study
		GACT	GAT	in uns study
GhPR5	Gh_A12G2071	GGACCATCGATGTGCCTG	CACCCCAACCTTTGCATTG	Du et al.
		С	Α	(2017)

References

- Deng W, Yan F, Liu M, Wang X, Li Z (2012) Down-regulation of SIIAA15 in tomato altered stem xylem development and production of volatile compounds in leaf exudates. Plant Signaling & Behavior 7: 911-913
- Du X, Wang S, Gao F, Zhang L, Zhao JH, Guo HS, Hua C (2017) Expression of pathogenesis-related genes in cotton roots in response to *Verticillium dahliae* PAMP molecules. Science China Life sciences **60**: 852-860
- Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F (2015) Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against *Botrytis cinerea* and tolerance to drought stress. Frontiers in Plant Science 6: 463
- Liao D, Chen X, Chen A, Wang H, Liu J, Liu J, Gu M, Sun S, Xu G (2015) The characterization of six auxininduced tomato GH3 genes uncovers a member, *SlGH3.4*, strongly responsive to arbuscular mycorrhizal symbiosis. Plant & Cell Physiology **56**: 674-687
- Martínez CIM. 2018. Ethylene signal transduction during climacteric tomato fruit ripening. PhD thesis, KU Leuven University, Leuven, Belgium.
- **Molinari S, Fanelli E, Leonetti P** (2014) Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in *Mi-1*-mediated and SA-induced resistance to root-knot nematodes. Molecular Plant Pathology **15**: 255-264
- **Ricardi MM, González RM, Iusem ND** (2010) Protocol: fine-tuning of a Chromatin Immunoprecipitation (ChIP) protocol in tomato. Plant Methods 6: 11
- Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One 5: 1-11
- Sun YC, Pan LL, Ying FZ, Li P, Wang XW, Liu SS (2017) Jasmonic acid-related resistance in tomato mediates interactions between whitefly and whitefly-transmitted virus. Scientific Reports 7: 566