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RNA sequencing in MESA 
 

RNA-seq was generated from peripheral blood mononuclear cells (PBMCs) of MESA participants 

obtained in the fifth clinic visit. PBMC samples were sequenced at the Broad Institute (n=498), 

and at the North West Genomics Center (NWGC; n=468). Both centers used harmonized 

protocols. RNA samples quality was assessed using RNA Integrity Number (RIN, Agilent 

Bioanalyzer) prior to shipment to sequencing centers. QC was re-performed at sequencing 

centers by RIN analysis at the NWGC and by RNA Quality Score analysis (RQS, Caliper) at the 



Broad Institute. A minimum of 250ng RNA sample was required as input for library 

construction, performed using the Illumina TruSeqTM Stranded mRNA Sample Preparation Kit. 

RNA was sequenced as 2x101bp paired-end reads on the Illumina HiSeq 4000 according to the 

manufacturer’s protocols. Target coverage was of ≥40M reads. Comprehensive information 

about the RNA-seq pipeline used for TOPMed can be found in 

https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md 

under MESA RNA-seq pilot commit 725a2bc. Here we used transcript-level expected counts 

quantified using RSEM v1.3.0 [1]. 

 

Characteristics of MESA participants 
 
Table S1: Characteristics of participants from MESA with RNA-seq and sleep study, by sex.   

Characteristic Females Males 
n 250 212 
Race (%): 
White 
Black 
Hispanic 

 
108 (43.2) 
57  (22.8) 
85  (34.0)  

 
92 (43.4) 
41 (19.3) 
79 (37.3) 

Age (mean(SD)) 68.37 (9.44) 67.56 (9.30) 
BMI (mean (SD)) 30.73 (5.90) 28.79 (4.57)    
AvgO2 (mean (SD)) 94.24 (1.78)   94.00 (2.05) 
AHI (mean (SD)) 15.41 (15.22) 22.36 (20.10)   
MinO2 (mean (SD)) 82.87 (8.39)   83.04 (7.56) 

 

Study of filtering based on distributional characteristics of transcripts  
 
We studied multiple approaches to filter transcripts and reduce the number of transcripts in 

the association analysis. The goal was to identify distributional characteristics of the transcripts 

that result in low power. Based on these, one may be able to retain a smaller number of genes 

in the analysis and increase power by reducing the multiple testing burden. We note that 

filtering also affects type 1 error, because the overall distribution of p-values under the null 

changes depending on the set of transcripts used.  

 



1. Considered filters  

The considered filters (and characteristics) were, as conditions applied on transcript 𝑗: 

F1. Expression sum filter: The sum of expression counts across all people need to satisfy 

∑ 𝑡!"#
!$% > 𝐶%.  

F2. Median filter: The median expression count across all people need to satisfy 

𝑚𝑒𝑑𝑖𝑎𝑛,𝑡%" , … , 𝑡#"/ > 𝐶&.  

F3. Max to Median Ratio filter: The maximum to median expression count across all people 

need to satisfy: 0'()!*#+,!",!$%,…#/
012+,!",!$%,…#/

1 	> 𝐶3. 

F4. Maximum filter: The maximum expression count across all people need to satisfy: 

𝑚𝑎𝑥,𝑡%" , … , 𝑡#"/ > 𝐶4. 

F5. Range filter: The range of read counts for a transcript needs to satisfy:  

,	𝑡'*5," − 𝑡'!#,"/ > 𝐶6, where 𝑡'*5,"	and 𝑡'!#,"  are the highest and lowest read counts 

observed for this transcript across all people in the sample. 

F6. Proportion zero count filter: The proportion of individuals with zero expression count needs 

to satisfy %
#
∑ 1(𝑡!" = 0)#
!$% ≤ 𝐶8.	 

F7. Coefficient of variation filter: The standard deviation divided by the mean expression value 

9)+,#",…,,$"/
'(*#+,#,…,,$"/

= 𝐶:	need to be within a specified range.  

 

2. Simulations of transcript characteristics and power 

For each transcript, we used the exposure phenotype AvgO2 to generate residuals, followed by 

the residual permutation scheme with correlation parameter 𝜌 = 0.3 to generate a simulated 

exposure variable that is associated with the transcript. We tested the phenotype-transcript 

association using linear regression after log applied on SubHalfMin transformation. We 

repeated the simulations 100,000 times, and computed power for each transcript based on the 

proportion of simulations in which the raw p-value from testing the association of the transcript 

with the simulated phenotype was smaller than 10;8. Based on these simulations, only one 

clear pattern emerges: a high number of zero expression values across samples for a given 



transcript leads to low power. Based on this, we proceeded requiring that at least 50% of 

samples have non-zero values for a transcript for it to be included in the analysis, or 

equivalently, median expression values higher than 0. Figure S1 demonstrates the loss in power 

for analyzing a continuous phenotype when the median expression value is 0. 

 

 
Figure S1: Estimated power to detect associations using linear regression analysis for a given 

transcript as a function of median expression value (after normalization) and coefficient of 

variation. Median expression values were capped at 20 in the figure. Power was estimated in 

1,000 simulations using the residual permutation approach with 𝜌 = 0.3, and 100,000 
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Permutation and empirical P-values 
A standard, well-known approach to computing p-values when the null distribution cannot be 

specified is permutation. We refer to these p-values as “permutation p-values” and here we 

provide details in order to contrast them with empirical p-values. We note here that in the 

statistical literature permutation p-values are sometimes called empirical p-values, but here we 

use the term empirical p-value as often applied in the gene expression analysis literature. 

 

1. Permutation p-values 

The idea is that for a given transcript 𝑗, the transcript expression values, or the exposure (or the 

residuals) are permuted 𝐵 times across individuals, and a p-value is computed from each study 

permutation 𝑝<
" , 𝑏 = 1,… , 𝐵. Then, the permutation p-value is  

𝑝=(>'
" =	

1
𝐵A1,𝑝<

" < 𝑝,>?(
" /,

@

<$%

 

assuming that each 𝑝<
" , 𝑏 = 1,… , 𝐵 is drown from the null distribution of 𝑝,>?(

" .  The challenge 

with permutation p-values for transcriptomics is the computation burden.  The number of 

permutations 𝐵 has to be very large, because the permutation p-values 𝑝<
"  are based on 

evaluations on the specific transcript permutation. In other words, the entire transcriptomics 

analysis has to be performed 𝐵 times, where 𝐵 is usually at least 100,000, leading to a huge 

computational burden.  

residual permutations with no associations were used to compute permutation p-values for 

each transcript.  



 

2. Empirical p-values 

We study the use of empirical p-values, computed while capitalizing over all transcripts for 

computation of the empirical p-value of every specific transcript. We use a non-parametric, 

quantile-based approach [2],  and the method implemented in the qvalue R package [3], both 

using the residual permutation approach to obtain the empirical distribution of p-values under 

the null.  The specific implementation of the quantile empirical p-values is as follows: Consider 

the distribution of permutation p-values for a transcript 𝑗, defined by {	𝑝%
" , … , 𝑝@

" }, as 𝐹"(𝑥) =

%
@
∑ 1,𝑝<

" < 𝑥/.@
<$%  Considering all transcripts 𝑗 = 1,… , 𝑘 passing the filtering criteria and 

participating in the analysis.   Suppose we permute each one of them 𝐵	times, and estimate an 

empirical p-value distribution as 

𝐹('=(𝑥) = 	
1

𝐵 × 𝑘AA1(𝑝<
" < 𝑥)

@

<$%

A

"$%

.	 

Then, if 𝐹"(𝑥) ≈ 𝐹('=(𝑥), we can use 𝐹('= rather than 𝐹"  to compute empirical p-values rather 

than permutation p-values, with a substantially smaller 𝐵, meaning with many less 

transcriptome-wide association analyses.  

 

3. Comparison of permutation p-values and empirical p-values 

We compared the quantile empirical p-values to permutation p-values using the three sleep 

exposures. We removed all transcripts with maximum counts of 10 and more than 50% zero 

counts in the sampled, and applied median normalization. We then used the residual 

permutation approach to generate data for simulation under the null of no phenotype-

transcript association, and tested for differential using linear regression after log 

transformation of subHalfMin approach for handling zero counts. We performed permutation 

analysis 𝐵 = 100,000 times (𝐵	transcriptome-wide residual permutation analyses), and 



compared the resulting permutation p-values to the empirical p-values obtained using 𝐵 = 100 

transcriptome-wide residual permutation analyses. Figure 2 provide the comparison, 

demonstrating that the two p-values are very similar, therefore, it is appropriate to use 

empirical p-values which are computationally much faster to compute.  

 

 

Figure S2: Quantile empirical p-values (computed using 𝐵 = 100 residual permutations) 
versus standard permutation p-values (computed using 𝐵 = 100,000 residual permutations) 
in simulations. 

 

  



Results from simulation study 1: assessment of false positive detections 
 

 
Figure S3: Average number of falsely-detected transcript association with the residual-permuted AHI 
phenotype, estimated over 100 permutations. We compared approaches based on linear regression, 
DESeq2, limma, and EdgeR packages; raw p-values, quantile-empirical p-values, and Storey’s empirical p-
values; and associations declared as significant according the arbitrary threshold of p-value < 10!", FDR 
adjustment using the Benjamini-Hochberg (BH) procedure and using the local FDR procedure 
implemented in the qvalue R package, and FWER adjustment using Holm procedure. 

 



 
Figure S4:  Average number of falsely-detected transcript association with the residual-permuted AvgO2 
phenotype, estimated over 100 permutation. We compared approaches based on linear regression, 
DESeq2, limma, and EdgeR packages; raw p-values, quantile-empirical p-values, and Storey’s empirical p-
values; and associations declared as significant according the arbitrary threshold of p-value < 10!", FDR 
adjustment using the Benjamini-Hochberg (BH) procedure and using the local FDR procedure 
implemented in the qvalue R package, and FWER adjustment using Holm procedure. 

 
 



 
Figure S5: Average number of falsely-detected transcript association with the residual-permuted MinO2 
phenotype, estimated over 100 permutations. We compared approaches based on linear regression, 
DESeq2, limma, and EdgeR packages; raw p-values, quantile-empirical p-values, and Storey’s empirical p-
values; and associations declared as significant according the arbitrary threshold of p-value < 10!", FDR 
adjustment using the Benjamini-Hochberg (BH) procedure and using the local FDR procedure 
implemented in the qvalue R package, and FWER adjustment using Holm procedure. 

 
 
 
  



Comparison of the effect of normalization methods on false positive 
detections 
We also performed simulation study 1 using, instead of Median normalization, two commonly 
used normalizations: the TMM normalization implemented in the edgeR package (Figure S6), 
and the size factor normalization implemented in the DESeq2 package (Figure S7). One can see 
that the results are very similar to those from Figure S4.  
 

 
Figure S6: Average number of falsely-detected transcript association with the residual-permuted 
AvgO2 phenotype, estimated over 100 permutations. The analysis was applied after TMM 
normalization.  We compared approaches based on linear regression, DESeq2, limma, and EdgeR 
packages; raw p-values, quantile-empirical p-values, and Storey’s empirical p-values; and associations 
declared as significant according the arbitrary threshold of p-value < 10!", FDR adjustment using the 
Benjamini-Hochberg (BH) procedure and using the local FDR procedure implemented in the qvalue R 
package, and FWER adjustment using Holm procedure. 

 



 
Figure S7: Average number of falsely-detected transcript association with the residual-permuted 
AvgO2 phenotype, estimated over 100 permutations. The analysis was applied after size factor 
normalization.  We compared approaches based on linear regression, DESeq2, limma, and EdgeR 
packages; raw p-values, quantile-empirical p-values, and Storey’s empirical p-values; and associations 
declared as significant according the arbitrary threshold of p-value < 10!", FDR adjustment using the 
Benjamini-Hochberg (BH) procedure and using the local FDR procedure implemented in the qvalue R 
package, and FWER adjustment using Holm procedure. 

 
 



Study of false positive detections in lower sample sizes 
 
We performed additional simulations under the null hypothesis of no association between the 
exposure and the RNA-seq, using the single selected approach, and with lower sample sizes, to 
assess whether the number of false positive detections may increase as the sample size 
becomes lower. We used MinO2 as the exposure phenotype, because it yields the highest 
number of false positive and therefore serves as a more extreme case study. We sampled 
N=150, 100, 50, and 30 individuals from the dataset used in the primary simulations. We 
applied the linear regression approach using log(SubHalfMin) transformation, with the same 
adjustments and the same residual permutation approach used in the main simulations. Figure 
S8 below visualizes the average number of false positive detections across 1,000 simulations 
applied on each of the sample sizes when applying BH FDR correction on the quantile empirical 
p-values followed by (adjusted) p-value threshold of 0.05.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S8: Average number of false positives detected in simulation studies varying the sample size. The 
exposure phenotype used was MinO2. Linear regression was applied after log(SubHalfMin) 
transformation. 

  



Results from simulations study 3: power for detecting an association 
with a simulated transcript association in a transcriptome-wide 
association analysis 
 

 
Figure S9: Estimated power for detecting a transcript simulated as associated with the three sleep traits 
when using quantile empirical p-values (compared to Storey empirical p-values in the main manuscript), 
and association is determined significant if its BH FDR-adjusted p-value is <0.05. We compared logistic 
regression, DESeq2, and edgeR in transcriptome-wide association analysis for each of the phenotypes. 

 
 
 



Comparison of association discovery using a dichotomized versus a 
continuous phenotype  
 

 
Figure S10: Number of transcripts associated and overlapping between BMI and obesity. Obesity was 
defined as BMI≥ 30. We used the same filtering criterion for both phenotypes, requiring 50% non-zero 
transcript values. For obesity, we also relaxed the filtering and required 20% and 30% non-zero values in 
other analyses, and the results were similar.  

 
  



Results from gene set enrichment analysis of sleep disordered breathing 
phenotypes and RNA-seq 
 
We performed gene set enrichment analysis using the fgsea R Bioconductor package [4] 
(version 3.12) using results from the multivariate Wald test of association of the three sleep 
disordered breathing phenotypes AHI, MinO2, and AvgO2, and using the empirical p-values. We 
used the Hallmark gene set collection [5]. Table S2 provides the two genes with BH adjusted 
empirical p-value < 0.1. Table S3 provides enriched gene sets, having FDR adjusted p-value < 
0.05.  
 
Table S2. Top genes associated with sleep disordered breathing phenotypes.  
ID Gene adjLogFC 

AvgO2 
adjLogFC 
MinO2 

adjLogFC 
AHI 

Empirical 
P-value 

BH 
empirical  
P-value 

ENSG00000145431 PDGFC 0.016 0.002 -2.95E-05 3.55E-06 0.07 
ENSG00000172059 KLF11 0.014 0.001 9.16E-05 7.09E-06 0.07 

 
 
Table S3. Enriched Hallmark gene sets (FDR p-value<0.05) in association with multiple sleep 
disordered breathing phenotypes modelled jointly.  

Pathway P-value BH  
p-value 

Enrichment 
Score 

Negative 
Enrichment 
Score 

N 
genes 

Hypoxia 4.58E-06 6.12E-05 -0.43 -2.17 168 
Inflammatory response 4.65E-06 6.12E-05 -0.47 -2.37 173 
Heme metabolism 4.80E-06 6.12E-05 -0.38 -1.95 185 
TNFA signaling via NFKB 4.89E-06 6.12E-05 -0.53 -2.74 192 
MTORC1 signaling 9.91E-06 8.49E-05 -0.34 -1.78 196 
MYC targets v2 1.02E-05 8.49E-05 0.54 2.03 58 
Cholesterol homeostasis 1.34E-05 9.58E-05 -0.48 -2.11 70 
Apoptosis 1.98E-04 1.10E-03 -0.33 -1.66 154 
Glycolysis 1.98E-04 1.10E-03 -0.32 -1.63 177 
Complement 2.66E-04 1.16E-03 -0.32 -1.61 181 
MYC targets v1 2.66E-04 1.16E-03 0.36 1.62 199 
IL-6 JAK STAT3 signaling 2.79E-04 1.16E-03 -0.41 -1.82 78 
P53 pathway 3.27E-04 1.22E-03 -0.31 -1.59 186 
Coagulation 3.41E-04 1.22E-03 -0.37 -1.73 103 
KRAS signaling up 5.85E-04 1.95E-03 -0.31 -1.58 162 
Interferon gamma response 6.82E-04 2.13E-03 -0.3 -1.53 198 
IL-2 STAT5 signaling 1.04E-03 3.05E-03 -0.29 -1.51 187 



UV response up 2.91E-03 8.08E-03 -0.3 -1.5 143 
Epithelial mesenchymal transition 4.90E-03 1.29E-02 -0.3 -1.46 142 
Adipogenesis 5.91E-03 1.48E-02 -0.27 -1.4 184 
G2M checkpoint 6.44E-03 1.53E-02 0.32 1.44 192 
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