
Reviewing and assessing existing meta-analysis models and
tools

Adaptively Weighted (AW) Fisher’s method [6]:

The adaptive weighted statistics can be derived following the step by step calculations be-
low:

1. Suppose we have a total of G genes in a differentially expressed data across j studies.
Define the observed weighted statistics as

ug(wg) = −
J

∑
j=1

wgj log(Pgj)

and similarly

u(b)
g (wg) = −

J

∑
j=1

wgj log(Pgj(b))

where wg is the corresponding weight for gene g across J studies, that is, wg = (wg1, . . . , wgJ)
and Pgj is the p-value of gene g in the jth study with 1 ≤ g ≤ G, 1 ≤ j ≤ J and
1 ≤ b ≤ B, where B is the total number of times permutation occurs in each study.

2. Estimate the p-value of the observed weighted statistics of a given gene g and weight
wg as,

pU
(
ug(wg)

)
=

∑B
b=1 ∑G

g′=1 I{u(b)
g′ (wg) ≥ ug(wg)}

B · G
Likewise compute,

pU
(

u(b)
g (wg)

)
=

∑B
b′=1 ∑G

g′=1 I{u(b′)
g′ (wg) ≥ u(b)

g (wg)}
B · G

3. Using a) and b), calculate the optimal weight as

w∗g = arg min
wg∈W

pU
(
ug(wg)

)
,

and likewise
w(b)∗

g = arg min
wg∈W

pU
(

u(b)
g (wg)

)
where W = {w | wg ∈ {0, 1}}. This optimal weight gives indication of which stud-
ies contribute to the statistical significance or differentially expressed evidence of the
meta-analysis. Hence, the adaptive weighted statistics

Sg = pU
(

ug(w∗g)
)

is the p-value of the minimum p-value among all possible weights. Similarly,

S(b)
g = pU

(
u(b)

g (w
(b)∗
g )

)
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4. Next, evaluate the corresponding p-value of the AW-statistics Sg as,

p
(
Sg
)
=

∑B
b=1 ∑G

g′=1 I{S(b)
g′ ≤ Sg}

B · G

5. Also, evaluate the corresponding q-value of the AW-statistics Sg as,

q
(
Sg
)
=

π̂0 ∑B
b=1 ∑G

g′=1 I{S(b)
g′ ≤ Sg}

B ∑G
g′=1 I{Sg′ ≤ Sg}

where

π̂0 =
∑G

g=1 I{p(Vg) ∈ A}
l(A) · G

is the estimated proportion of null genes with A = [0.5, 1] and l(A) = 0.5 [6, 8] where
I{·} is an indicator function. Hence, the detected genes will be the list of all genes
whose q(Vg) ≤ 0.05.

For example, let’s assume from four different studies, gene D is with p-values = (1, 1, 1e−4, 1)
and gene E is with p-values = (1e−2, 1e−2, 1e−2, 1e−2), then the adaptively weighted Fisher’s
method will generate adaptive weights w = (0, 0, 1, 0) for gene D indicating statistical signif-
icance only in the third study and w = (1, 1, 1, 1) for gene E indicating statistical significance
in all four studies.

Fixed effect model (FE) [1, 9]:

FE model assumes that all the studies under consideration shares a common/fixed true
effect size. Let Tj be the effect size estimate of each study which follows a normal distribution
with mean µ and variance σ2. Also, let the weight assigned to each study, wj = v−1

j be the
inverse of the variance, where vj is the within-study variance for study j in a meta-analysis
of J studies. The inverse-variance-weighted effect-size estimator of the true effect size is
given by

T =
∑J

j=1 wjTj

∑J
j=1 wj

.

The variance of T is calculated as,

v =
1

∑J
j=1 wj

,

and its standard error,
SE(T) =

√
v.

By default, T also follows a normal distribution and the test statistics can therefore be calcu-
lated as

SFE =
T

SE(T)
=

∑J
j=1 wjTj√
∑J

j=1 wj
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which follows N (0, 1) under the null hypothesis that there is no association. If we assumed
a one-tailed test, the p-value of the association is given by

p = 1−Φ(SFE)

while for a two-tailed test,
p = 2[1−Φ(|SFE|)]

where Φ is the standard normal cumulative distribution function. This model is mostly
applied to GWAS dataset [1, 9].

Random effect model (RE) [1, 9]:

Unlike the FE model, the RE model assumes that the effect size for each study in the meta-
analysis are different and the effect sizes are drawn from a normal distribution with mean
µ and variance σ2. The RE analysis approach is to decompose the observed variance into
its two component parts, i.e., the within-study and between-study variance. Using the
Cochran’s Q test statistics to evaluate the between-study heterogeneity as explained earlier,
that is,

Q =
J

∑
j=1

wj(Tj − T)2

=
J

∑
j=1

wjT2
j −

[
∑J

j=1 wjTj

]2

∑J
j=1 wj

The between-study variance

τ2 =

{
Q−d f

c , if Q > d f
0, if Q ≤ d f

where

c = ∑ wj −
∑ w2

j

∑ wj
.

Similarly, in RE model the weight assigned to each study,

w∗j = v∗j
−1

, where
v∗j = vj + τ2

with vj and τ2 the within-study and between-study variance respectively. Also, the inverse-
variance-weighted effect-size estimator of the true effect size is given by

T∗ =
∑J

j=1 w∗j Tj

∑J
j=1 w∗j

.

The variance of T∗ is calculated as,

v∗ =
1

∑J
j=1 w∗j

,
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and its standard error,
SE(T∗) =

√
v∗.

The test statistics is similarly calculated as

SRE =
T∗

SE(T∗)
=

∑J
j=1 w∗j Tj√
∑J

j=1 w∗j

and the p-value is
p = 1−Φ(SRE)

for one-tailed test and
p = 2[1−Φ(|SRE|)]

for a two-tailed test, where Φ is the standard normal cumulative distribution function. This
model is mostly applied to GWAS dataset [1, 9].

Binary effect model (BE) [1]:

BE is a new type of random effect model of meta-analysis that captures studies with or
without an effect together. This model is the weighted sum of z-scores method where the
m-values, the posterior probability that effect exists in each study of a meta-analysis, are
incorporated into the weights. More likely, it assigns more weight to studies predicted to
have an effect and lesser weight to the studies predicted not to have an effect. So let zj =

Tj√vj

be the z-score of the jth study. Just as the test statistics of FE model can be written in the
form of weighted sum of z-score, that is,

SFE =
∑J

j=1
√wjzj√

∑J
j=1 wj

.

The binary effect model statistics is given as

SBE =
∑J

j=1 mj
√wjzj√

∑J
j=1 m2

j wj

,

where the weight √wj ≈
√

Np(1− p) with N the sample size and p the effect size (minor
allele) frequency and √wj ≈

√
N when the effect size is the same between studies. mj is the

corresponding m-value of study j and it is given as

mj =
πN(Tj; µ, vj)

(1− π)N(Tj; 0, vj) + πN(Tj; µ, vj)

where π is the prior probability that each study will have an effect, i.e.,

π = P(Xj = 1)

where Xj is a random variable such that

Xj =

{
1, if studyj has an effect
0, if if studyj does not have an effect
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and an assumption of a beta prior is made on π, that is, π ∼ Beta(α, β) where α and β can
be chosen but most likely α = 1 and β = 1. The other terms are explained thus, if there is no
effect in study j,

P(Tj|noe f f ect) = N(Tj; 0, vj),

and
P(Tj|e f f ect) = N(Tj; µ, vj),

if there is effect in study j. N(·) is the probability density function of a normal distribution
and µ is the unknown true effect size. This model is mostly applied to GWAS dataset [1].

Bayesian meta-analysis:

Bayesian approach meta-analysis assumes that a given population cluster with the same
ethnic group will possibly shares the same effect size , but there is difference in effect sizes
among different population clusters. Assume the observed effect size of the jth study bj ∼
N(β j, sj) where sj is the corresponding standard error and β j is the population-specific effect
for the jth population cluster. Let M0 be the null hypothesis of no association and M1 the
alternative hypothesis in a Bayesian framework. The evidence of association can be assessed
by means of Bayes’ factor

Λ =
f (b, s|M1)

f (b, s|M0)

where
f (b, s|M) =

∫
θ

f (b, s|θ) f (θ|M)∂θ

is the marginal likelihood of the observed effect size under the model M with θ denoting
the unknown model parameter which includes the population specific effect β and hyper-
parameters relating to prior distribution as discussed below. The likelihood

f (b, s|θ) = f (b, s|β) =
J

∏
j=1

f (bj, sj|θj),

and

f (bj, sj|θj) ∝
1
sj

exp

[
−
(bj − β j)

2

2s2
j

]
However, the population specific allelic effect β is determined by assigning the popula-

tions to ethnic cluster, and this is based on the assumption that effect sizes are likely to vary
among different ethnic groups. Hence,

f (bj, sj|θj) = f (bj, sj|K, C, ψ) ∝
1
sj

exp

[
−
(bj −∑K

k=1 Tjkψk)
2

2s2
j

]

where C = {C1, C2, . . . , CK} is the cluster center, ψ is the corresponding allelic effect and the
tessellation Tjk = 1 if population Pj is assigned to the cluster with center Ck and 0, otherwise.

The prior density function f (θ|M0), of parameters under null model M0 is given by,

f (θ|M0) =

{
1, if β = 0
0, otherwise

5



while under the alternative model, M1,

f (θ|M) ∝ f (K)(N − K)!
exp(−σ)

σ

K

∏
k=1

exp
(
− (ψk − µ)2

2σ2

)
where

f (K) =

{
1
2 , if K = 1

2N−1

2K(2N−1−1) , otherwise

N is the total number of different populations and the cluster allelic effect have a prior
N(µ, σ) distribution, independent of C, where µ has a prior uniform distribution and σ has
a prior exponential distribution with expectation 1. Since the marginal likelihood f (b, s|M)
can’t be evaluated directly, the joint posterior density of

f (θ|b, s, M) ∝ f (b, s|θ) f (θ|M)

is considered instead and it is approximated using the Metropolis-Hastings Markov chain
Monte Carlo (MCMC) algorithm.

This approach performs better compared to fixed-effects and random effect meta-analysis,
especially in terms of power to detect association, and localization of the causal variant, over
a range of models of heterogeneity between ethnic groups and also has increased power
and mapping resolution when the similarity in allelic effects between populations is well
captured by their relatedness. This model is mostly applied to GWAS dataset [7].

RankProd (RP) & RankSum (RS) methods:

Suppose we have a total of G genes in a differential expression data across J replicated
experiments. Let ri,j be the position of the ith gene in the jth replicate experiment in a list
ordered according to fold changes (in a decreasing/increasing order if we are interested
in up-regulated/down-regulated genes respectively). On one hand, considering a single
replicate, it follows that under the null hypothesis (no differentially expressed genes present
in the dataset), the rank of a gene in the list generated comes from a uniform distribution,
that is,

P(ri = g) =
1
G

where g ∈ {1, . . . , G}. On the other hand, while considering J replicates, it is expected that
not all replicates will have same gene at the top of there list. Thus, the probability of a gene
being ranked first in each replicate is 1

G J .
Hence, the rank product (RP) statistics for the ith gene is defined as the geometric mean

of all the rank of genes obtained in each replicate. That is,

RPi =

(
J

∏
j=1

ri,j

) 1
J

Also, the rank sum (RS) statistics is defined as the arithmetic mean of all the ranks. That is,

RSi =
1
J

J

∑
j=1

ri,j
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In the case whereby the datasets we are analysing is an unpaired dataset. For example
having treatment (T) vs control (C) experiment. The RP/RS is performed using the following
algorithm. Suppose we have n studies with (niT, niC) replicates where i = 1, 2, . . . , J.

1. Form J pairwise comparison, i.e., Ji = niT × niC comparison and evaluate J list of
pairwise ratios within each study of their fold changes, i.e.,

Tip
Ciq

where p = 1, 2, . . . , niT

and q = 1, 2, . . . , niC.

2. Rank the ratios within each comparison with the largest =⇒ rank 1, where rgi is the
rank of the gth gene in the ith comparison.

3. Determine the RP/RS for each gene as;

RPg =

(
∏

i
rgi

) 1
J

,

and

RSg =

(
∑i rgi

)
J

,

respectively, with J = J1 + J2 + · · ·+ Jn.

4. Independently permute expression value within each single array relative to gene ID,
repeat step (a)-(c) and obtain the statistic RP(b)

g

5. Repeat step (d) B times, form reference distribution with RP(b)
g , (b = 1, . . . , B) and (g =

1, . . . , G), determine p-value and FDR associated with each gene using the formula
given below:

pg =
∑b ∑g I

(
|RP(b)

g | ≤ RPg

)
G · B

FDRg =
∑b ∑g I

(
|RP(b)

g | ≤ RPg

)
B ∑g I

(
|RP(b)

g | ≤ RPg

)
where I(·) is an indicator function. This model is mostly applied to gene expression
dataset [3, 4]

Heterogeneity

Heterogeneity is the difference in effect sizes between studies. This can be caused by so may
factors including; genetic factor as a result of difference in the populations between studies,
environmental factor due to using subjects from different regions, design factor which causes
statistical heterogeneity when the true effect size is invariant, heterogeneity shown by col-
lected markers as a result of difference in the linkage disequilibrium structures between
studies and also heterogeneity caused by different imputation accuracies and different geno-
typing errors when studies use different genotyping platforms.
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Once this factors has been identified in meta-analysis result, it will be easier to know
what approach to take by correctly interpreting the cause of heterogeneity which may lead
to a better understanding of the disease mechanism in the case of genetic or environmental
factor or, designing a more effective replication study in the case of statistical heterogene-
ity caused by the design factor. The existence of true heterogeneity among studies can be
determined using different test statistics such as, the Cochran’s Q test statistics [2, 5] , that
is,

Q =
J

∑
j=1

wj(Tj − T)2

where J is the number of studies, wj is the inverse of the within-study variance for the

jth study, Tj is the effect size estimate of study j and T =
∑J

j=1 wjTj

∑J
j=1 wj

is the inverse-variance-

weighted effect-size estimator of the true effect size. Q test statistic follows a χ2 distribution
with degree of freedom d f = J − 1 under the assumption of genetic homogeneity. Another
alternative heterogeneity test statistics which were reported to be more robust than Q when
considering small number of studies are; the I2 index [2, 5] ,

I2 =
[Q− (J − 1)]

Q
× 100%

I2 =

{
[Q−(J−1)]

Q × 100%, if Q > d f
0, if Q ≤ d f

the H statistics [2],

H =

√
Q

J − 1

and the R statistics [2],

R =

√
∑ wj

∑ w∗j
=

√√√√ ∑ wj

∑(w−1
j + τ2)

where the between-study variance

τ2 =

{
Q−d f

c , if Q > d f
0, if Q ≤ d f

where

c = ∑ wj −
∑ w2

j

∑ wj
.

Box plot of Malaria Study
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Box plot of Breast Cancer Study
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