Supplementary Tables.

	Table	S1.	Statistical	values.
--	-------	-----	-------------	---------

Figure 4a	<i>p</i> value	
HDR	0.0009	
HD+1	< 0.0001	
HD+2	< 0.0001	
HD+3	0.0003	
HD+4	< 0.0001	
HD+5	< 0.0001	
HD+6	0.0002	
HD+7	0.0006	
HD+8	0.0006	
HD+9	0.0024	
HD+10	0.0009	
HD+11	0.0029	
HD+12	0.0266	
Figure 4b	p value	
HDR	0.0002	
HD+1	< 0.0001	
HD+2	0.0002	
HD+3	0.0001	
HD+4	0.0014	
HD+5	< 0.0001	
HD+6	0.0001	
HD+7	0.0023	
HD+8	0.0005	
HD+9	0.0081	
HD+10	0.0041	
Figure 5a, Lateral tran	sfer	<i>p</i> value
0-30	0.01	0.9974
0-60		0.0899
0-90		< 0.0001
0-120		< 0.0001
0-150		< 0.0001
0-180		< 0.0001
0-210		< 0.0001
0-240		< 0.0001
0		< 0.0001
Figure 5b. Phage tit	re	<i>p</i> value
0-30		0.9975
0-60		0.9920
0-90		0.9101
0-120		0.1489
0-150		0.0017

0-180	< 0.0001
0-210	< 0.0001
0-240	< 0.0001
0	< 0.0001

Figure S5. qPCR EXCISION	p value
P22 0-30	>0.9999
P22 0-60	0,1118
P22 0-90	0,0405
P22 ts 0-30	0,1916
P22 ts 0-60	0,6757
P22 ts 0-90	>0.9999
P22 ∆ <i>pri</i> 0-30	>0.9999
P22 ∆ <i>pri</i> 0-60	0,7658
P22 ∆ <i>pri</i> 0-90	0,2902
ES18 0-60	0,6209
ES18 0-90	0,0258
ES18 0-120	0,0033

ES18 0-120	0,0033
Figure S5. qPCR CIRCULARISA	TION p value
P22 0-30	>0.9999
P22 0-60	0,5923
P22 0-90	<0.0001
P22 ts 0-30	0,9749
P22 ts 0-60	0,3107
P22 ts 0-90	0,8334
ES18 0-60	0,9989
ES18 0-90	0,0003
ES18 0-120	<0.0001
E:	

Figure S7	<i>p</i> value
HD+1	0.1760
HD+2	0.2911
HD+3	0.0741
HD+4	0.8390
HD+5	0.1275
HD+6	0.4479
HD+7	0.5348
HD+8	0.0677
HD+9	0.6282
HD+10	0.9924
HD+11	0.1713
HD+12	0.7911

Figure S8a	<i>p</i> value
HD+1	0.0207
HD+2	0.0131
Figure S8b	<i>p</i> value
HD+1	0.0013
HD+2	0.0009
Figure S9	<i>p</i> value
HD+1	0.0008
HD+2	0.0023
HD+4	0.0082
<i>tet</i> M ^G	0.9364
Figure S10. P22 LT	<i>p</i> value
wt-∆ <i>int</i>	0.0003
wt-∆ <i>xis</i>	0.0002
wt-∆ <i>int-xi</i> s	0.0002
Figure S10. P22 titre	<i>p</i> value
wt-∆ <i>int</i>	< 0.0001
wt-∆ <i>xis</i>	< 0.0001
wt-∆ <i>int-xi</i> s	< 0.0001
Figure S10. ES18 LT	<i>p</i> value
wt-∆ <i>int</i>	0.0136
wt-∆ <i>xi</i> s	0.0335
wt-∆ <i>int-xi</i> s	0.0434
Figure S10. ES18 titre	<i>p</i> value
wt-∆ <i>int</i>	< 0.0001
wt-∆ <i>xis</i>	< 0.0001
wt-∆ <i>int-xis</i>	< 0.0001

Table S2. Strains used in this study.

Strain	Description	Reference
E. coli DC10B	K-12-derivative cloning strain; dam ⁺ Ddcm DhsdRMS endA1 recA1	1
VE18590	E. faecalis V583 derivative. Non-lysogenic, EfCIV583-negative.	2
VE18562	E. faecalis V583 derivative. fp1 lysogen, EfCIV583-negative.	2
JP18938	LT2 ΔFels-1 ΔGifsy-2 ΔGifsy-1 ΔFels-2	This work
JP22117	SV1208 ΔFels-1	This work
JP18983	JP18938 P22 lysogen	This work
JP18985	JP18938 ES18 lysogen	This work
JP22119	JP22117 P22 tsc229 lysogen	This work
JP20460	JP18938 ArtbP-rtbB::KmR	This work
JP20590	JP18938 P22 lysogen <i>Lint</i>	This Work
JP20591 IP20502	JP 10930 P22 lysogen Aint-vis	This work
JP20592	IP18938 P22 lysogen Aarf12	This work
JP20595	JP18938 ES18 lysogen Δint	This work
JP20596	JP18938 ES18 lysogen Δxis	This work
JP20597	JP18938 ES18 lysogen Δ <i>int-xis</i>	This work
JP19020	JP18938 Δ <i>att</i> B P22	This work
JP22118	JP22117 Δ <i>att</i> B P22	This work
JP19086	JP19020 <i>gpt</i> ΩTetA (6 kb upstream P22 <i>att</i> B)	This work
JP19087	JP19020 STM0331ΩTetA (6 kb downstream P22 attB, HF1)	This work
JP19088	JP19020 $prpR\Omega$ LetA (47 kb downstream P22 attB, HF2)	This work
JP19089	JP 19020 mai2021 etA (88 kb downstream P22 attB, HF3)	This work
JF 19090 ID10001	JF 19020 ya/9221 etA (130 kb downstream P22 attB HE5)	This work
JP19091	JP19020 yball 27etA (170 kb downstream P22 attB, HT3)	This work
JP19093	JP19020 STM05570TetA (246 kb downstream P22 attB, HF7)	This work
JP19094	JP19020 <i>ahp</i> F Ω TetA (304 kb downstream P22 <i>att</i> B, HF8)	This work
JP19095	JP19020 ybeLΩTetA (348 kb downstream P22 attB, HF9)	This work
JP19096	JP19020 STM0699ΩTetA (392 kb downstream P22 attB, HF10)	This work
JP19097	JP19020 <i>nei</i> ΩTetA (425 kb downstream P22 <i>att</i> B, HF11)	This work
JP19098	JP19020 <i>mod</i> FΩTetA (474 kb downstream P22 <i>att</i> B, HF12)	This work
JP20469	JP18983 $gpt\Omega$ TetA (6 kb upstream P22 $attB$)	This work
JP20470	JP18983 STM0331 Ω LetA (6 kb downstream P22 attB, HF1)	This work
JP20471	JP18983 prp KD1 etA (47 kb downstream P22 attB, HF2) JP18983 matrix (47 kb downstream P22 attB, HF2)	This Work
JF20472 IP20473	IP18983 vaiGOTetA (130 kb downstream P22 attB, HF3)	This work
JP20474	$JP18983 vbaN\Omega$ TetA (170 kb downstream P22 attB, HF5)	This work
JP20475	JP18983 vbbV Ω TetA (213 kb downstream P22 attB, HF6)	This work
JP20476	JP18983 STM0557ΩTetA (246 kb downstream P22 attB, HF7)	This work
JP20477	JP18983 ahpFΩTetA (304 kb downstream P22 attB, HF8)	This work
JP20478	JP18983 <i>ybe</i> LΩTetA (348 kb downstream P22 <i>att</i> B, HF9)	This work
JP20479	JP18983 STM0699ΩTetA (392 kb downstream P22 attB, HF10)	This work
JP20480	JP18983 <i>nei</i> ΩTetA (425 kb downstream P22 <i>att</i> B, HF11)	This work
JP20481	JP18983 modF Ω TetA (474 kb downstream P22 attB, HF12)	This work
JP21928	JP22118 gpt[J] etA (6 kD downstream P22 attB)	This Work
JFZ1929 JP21922	IP22119 antOTetA (6 kh downstream P22 attR)	This work
JP21923	JP22119 prpROTetA (47 kb downstream P22 attB)	This work
JP20482	JP18985 $apt\Omega$ TetA (6 kb upstream P22 $attB$)	This work
JP20483	JP18985 STM0331 Ω TetA (6 kb downstream P22 <i>att</i> B, HF1)	This work
JP20484	JP18985 <i>prp</i> RΩTetA (47 kb downstream P22 <i>att</i> B, HF2)	This work
JP20485	JP18985 malZΩTetA (88 kb downstream P22 attB, HF3)	This work
JP20487	JP18985 <i>yba</i> NΩTetA (170 kb downstream P22 <i>att</i> B, HF4)	This work
JP20488	JP18985 ybbVΩTetA (213 kb downstream P22 attB, HF5)	This work
JP20489	JP18985 S1M0557 Ω 1etA (246 kb downstream P22 <i>att</i> B, HF6)	This work
JP20490	JP 10900 ANDELD I ETA (304 KD GOWNSTIERAM P22 AttB, HF7)	
JF20491 IP20/03	JF 10300 JUELVIEIA (J40 KD UUWIISITEATII P22 ATTB, HFO) IP18085 naiOTata (125 kh downstraam P22 attB, HFO)	This work
JFZ0493 IP20494	$P18985 \mod POTet \Delta (474 \text{ kb downetreem P22 attR HE10})$	This work
JP19438	JP20470 ArthP-rthB::KmR	This work
JP19439	JP20471 Δ <i>rfb</i> P-rfbB:: <i>Km</i> R	This work
JP19440	JP20472 ΔrfbP-rfbB::KmR	This work
JP19441	JP20473 ∆ <i>rfb</i> P- <i>rfb</i> B:: <i>Km</i> R	This work

JP19442	JP20474 Δ <i>rfb</i> P-rfbB::KmR	This work
JP19443	JP20475 Δ <i>rfb</i> P-rfbB:: <i>Km</i> R	This work
JP19444	JP20476 Δ <i>rfb</i> P-rfbB:: <i>Km</i> R	This work
JP19445	JP20477 Δ <i>rfb</i> P-rfbB:: <i>Km</i> R	This work
JP19446	JP20478 ∆ <i>rfb</i> P-rfbB:: <i>Km</i> R	This work
JP19447	JP20479 ∆ <i>rfb</i> P-rfbB:: <i>Km</i> R	This work
JP19448	JP20480 ∆ <i>rfb</i> P-rfbB:: <i>Km</i> R	This work
JP19449	JP20481 ∆ <i>rfb</i> P-rfbB:: <i>Km</i> R	This work
JP21422	JP19020 Cat marker 6 kb downstream P22 attB + TetA marker 6 kb	This work
1004 400	upstream P22 attB	.
JP21423	JP19020 Cat marker 6 kb downstream P22 attB + TetA marker 10 kb up	I his work
1004404	downstream P22 attB	This was also
JP21424	JP19020 Cat marker 6 kb downstream P22 attB + TetA marker 29 kb up	I his work
JP21425	JP19020 Cat marker 6 kb downstream P22 attB + TetA marker 32 kb up	This work
	downstream P22 <i>att</i> B	
JP21426	JP19020 Cat marker 10 kb downstream P22 attB + TetA marker 29 kb	This work
	upstream P22 attB	
JP21427	JP19020 Cat marker 10 kb downstream P22 attB + TetA marker 32 kb	This work
	upstream P22 attB	
JP21428	JP19020 Cat marker 15.6 kb downstream P22 attB + TetA marker 29 kb	This work
	upstream P22 attB	
JP21429	JP19020 Cat marker 15.6 kb downstream P22 attB + TetA marker 32 kb	This work
	upstream P22 attB	
JP21430	JP19020 Cat marker 29 kb downstream P22 attB + TetA marker 32 kb	This work
	upstream P22 attB	<u> </u>
JP21431	JP18983 Cat marker 6 kb downstream P22 attB + TetA marker 6 kb	This work
1004 400	upstream P22 attB	.
JP21432	JP18983 Cat marker 6 kb downstream P22 attB + TetA marker 10 kb up	I his work
1004400	00WINSTFEAM P22 ATCB	This work
JP21433	downstroam P22 at/P	THIS WORK
ID21/13/	ID18083 Cat marker 6 kb downstream D22 attB + TetA marker 32 kb up	This work
51 2 1454	downstream P22 at/B	
JP21435	.IP18983 Cat marker 10 kb downstream P22 attB + TetA marker 29 kb	This work
0. 21.00	upstream P22 attB	
JP21436	JP18983 Cat marker 10 kb downstream P22 attB + TetA marker 32 kb	This work
	upstream P22 attB	
JP21437	JP18983 Cat marker 15.6 kb downstream P22 attB + TetA marker 29 kb	This work
	upstream P22 attB	
JP21438	JP18983 Cat marker 15.6 kb downstream P22 attB + TetA marker 32 kb	This work
	upstream P22 attB	
JP21439	JP18983 Cat marker 29 kb downstream P22 attB + TetA marker 32 kb	This work
1000000	upstream P22 attB	
JP20600	$JP20590 \ prpR\Omega$ letA (47 kb downstream P22 attB, HF2)	This work
JP20601	$JP20591 \ prpR\Omega$ TetA (47 kb downstream P22 attB, HF2)	This work
JP20602	JP20592 prpRDTetA (47 kb downstream P22 attB, HF2)	This work
JP20605	JP20595 prpRDTetA (47 kb downstream P22 attB, HF2)	This work
JP20000	JP20596 prpROTetA (47 kb downstream P22 attB, HF2)	This work
JF20007	$J = 20597 \mu \mu R \Omega T eta (47 KD UUWIISITEATTI = 22 allo, FIF2)$	This work
JP20757	F_{coli} DC10B p IP2563	This work
JI 21704	$E_{\rm coll}$ DC10B p31 2505	This work
JF21/4/		
JP21748		
JP21896	E. COILDC10B pJP2566	
JP21706	E. coli DC10B pJP2568	This work
JP21767	VE18590 <i>celA</i> Ω <i>tet</i> M (12.3 kb upstream of pp1 <i>att</i> B)	This work
JP21855	VE18590 EF0370Ω <i>tetM</i> (12.3 kb downstream of pp1 <i>att</i> B, HF1)	This work
JP22112	VE18590 EF0394Ω <i>tetM</i> (40.7 kb downstream of pp1 attB, HF2)	This work
JP22021	VE18590 EF0480Ω <i>tetM</i> (121.1 kb downstream of pp1 attB, HF4)	This work
JP21771	VE18590 EF2276Ω <i>tetM</i> (1.87 Mb downstream of pp1 attB)	This work
JP21768	VE18562 ce/A Ω tet/M (12.3 kb upstream of pp1 at/B)	This work
JP21856	VE18562 EE03700 tetM (12.3 kb downstream of pp1 attB_HE1)	This work
IP21857	VE18562 EE03940 tetM (40.7 kb downstream of pp1 attB, HE2)	This work
10221007	V = 10002 = 100012200 m (+0.7 hb downstream of pp1 attb, 11 2)	This work
01 22110	v = 10002 = 1000221000012100001211 ND 00000150000110000000000000000000000000	THIS WULK

Mutagenesis	Primers	Sequence (5'-3')
LT2 AFels-1	LT2-AFels1-1m	GGGGCACTCCTGGGGCAGTAGATGCCAGTTGTTGATTCAG
		TATATCTACTGTGTAGGCTGGAGCTGCTTCG
	LT2-AFels1-2c	GGCATCATACTGTACACTGTCATATGCCATATATTTAAACGC
		TAAAAGGGCATATGAATATCCTCCTTA
LT2 ∆Gifsy-2	LT2-AGifsy2-13m	CGCTGGAGTATACCTTGTTTAGCGATTTATTGAACCCCGATC
	LIZ-AGITSYZ-14C	
	T2-ACifout tm	
	L12-A011591-1111	GGAGAATAGTGTGTGGGGCTGGAGCTGCTTCG
	LT2-AGifsv1-2c	GTCCCTGATATGGGCGTGCAGGGTCGGTGAACTCCGTCAG
		GCTGAAGCATATGAATATCCTCCTTA
LT2 ∆Fels-2	LT2-AFels2-1m	CTTCAAGCTCCATGCTGGTCGTAAATCCATTATCCGGGCTG
		ACAGAATGCTGTGTAGGCTGGAGCTGCTTCG
	LT2-AFels2-2c	TTCCTTGAGCATCTTCGGGCGGATCTCGGTAACGGGTGTGT
		TACCCAGAGCATATGAATATCCTCCTTA
LT2 ∆ <i>att</i> B P22	LT2-AattB-1m	CCTTCTACCCCGTGATTCACCCGCGTGAACACACCCTTCTC
	1 T2_A att D 2a	
	LIZ-AdttD-2C	CCCGCTCCATATGAATATCCTCCTTAG
I T2 ∧ <i>rfb</i> P-	I T2-ArfhP-1m	TTTTACGCAGGCTAATTTATACAATTATTATTCAGTACTTCTC
rfbB P22		GGTAAGCTTGTGTGTGGGGGCTGGAGCTGCTTCG
····	LT2-ArfbB-2c	TTTATTGGCAAATTAAATACCACATTAAATACGCCTTATGGA
		ATAGAAAACATATGAATATCCTCCTTA
tetA marker 6	LT2-tetA-11m	TCAGACACGATAAGTCTCCTTGGCGGTGGTCTGAAAAACGT
kb upstream		TCTTACAGGCCACAGGGTTCGCTGTTAATCACTTTACTT
P22 <i>att</i> B	LT2-tetA-12c	ACCCGCAGGCGGAGAAAGTGGTATTCTCAGTCGCATCTCGT
404A	1 TO 4044 2m	
teta marker 6 kb	LIZ-tetA-3M	
downstream	LT2-tetA-4c	AATGCCGTAGCGTTTGCCACCGTTCACAAGATATTGAACCA
P22 attB		GTTTCATTGCAGTCTTCTTGGTTATCAAGAGGGTCATTA
tetA marker	LT2-tetA-6m	ATTGCATCATAAAAATACCCGCCTGGGTTTCCGGCGGGTAT
47 kb		ATTTATTCCTGGCAACCGGCGCTGTTAATCACTTTACTT
downstream	LT2-tetA-7c	GCGTCCTGAATGCCTGATGGCGCTACGTTTACTGCAGGCC
P22 attB		GTCATCCGGCAAAACGGATGGGTTATCAAGAGGGTCATTA
tetA marker	LT2-tetA-9m	GCGAGGGAAGACTTAGTTTACCCGCGATTTCCGCGACGGT
88 KD		
eownstream P22 attR	LI2-tetA-10c	
totA markar	T2_tot 1.12m	
130 kh	L12-181A-13111	CTGCCGGGTCTTGTTGTTGTCGCCTGTTAATCACTTTACTT
downstream	LT2-tetA-14c	GCTGATATGTCTCAGGACACCAGTATTCACGATTTTATCAAG
P22 attB		CAAAACGCCCGTTAATAGGGTTATCAAGAGGGTCATTA
tetA marker	LT2-tetA-15m	CTGCTGATTTTTATGTGGCGGGATACCGGTGATTGATGAAAA
170 kb		GCAACAAAAGCGCTGAAGCCGCTGTTAATCACTTTACTT
downstream	LT2-tetA-16c	TGTGCTCGAAAACGGTCGAATTTACTGGCTGTGAACGACAA
P22 attB		TTGCAACAGCGATTCGTGTGGTTATCAAGAGGGTCATTA
tetA marker	LT2-tetA-17m	TCACTTTATATAAAAAGAAAGCAACGCAACGTATTGCTTCAG
213 kb		CTTAAAAATAATTATATCCGCTGTTAATCACTTTACTT
downstream	LT2-tetA-18c	GATAACGTTGTTATGGGTTTAGCTATGAGGAACAAATAAAT
P22 attB		TAAAATAAGAATTAGTAGGTTATCAAGAGGGTCATTA
tetA marker	LT2-tetA-19m	TGTAGGAATCCCCGCCGCCCGTTACCCATTGGTGGCGGGG
240 KD		AAUATTAATTATAUATGAATUGUTGTTAATUAUTTAUT

Table S3. Oligonucleotides used in this study.

downstream	LT2-tetA-20c	CATGGGACGTTAGAACAGGGGCGAGGACAAATGAGAATATT
PZZ attB		
tetA marker	LT2-tetA-25m	GCCTTTGATTATCTGATTCGCACCAAAATCGCATAAAAAGAA
downstroom	L T2_totA_260	
P22 attR	LIZ-IEIA-200	
	LT2 totA 27m	
teta marker	LIZ-tetA-27m	
348 KD		
downstream	L I 2-tetA-28C	
P22 attB		TGGCGGACGGCAACCGTCCGGTTATCAAGAGGGTCATTA
tetA marker	LT2-tetA-21m	TGAGAAAGAAGCCGTTGAAATCGTTAGCGAAGTATTGAAAA
392 kb		ACGCCTGATGGGCGATATGCGCTGTTAATCACTTTACTT
downstream	LT2-tetA-22c	AGGCCTGATAAGCGCAGCGCCGTTAATACAAAAAAGGAGC
P22 attB		CGTAAGGCTCCTTTTTCTTCGGTTATCAAGAGGGTCATTA
tetA marker	LT2-tetA-29m	CGCATTGCCAGAAATAGCCGGAACCGACATCGGCGAGCGG
425 kb		CTATTGCCTGATGGCGCGACCGCTGTTAATCACTTTACTT
downstream	LT2-tetA-30c	AGCAGTGGCCCGTTTTATATCAACCTATGCGCCCAAACAAC
P22		CTTTGTAGGGCTGATAAGCGGTTATCAAGAGGGTCATTA
tetA marker	LT2-tetA-23m	TATCGACCGTTATTATTATTCTTAATAAAAGGAGAGTGGTTC
474 kb	-	CAGAATGGCGCGCGCGCCGCTGTTAATCACTTTACTT
downstream	LT2-tetA-24c	AGGGCGAACGTTATAAGTACGTTTCCGGACGATGCAATAAT
P22 attB		TAAATGTATTATCAGAATGGGTTATCAAGAGGGTCATTA
<i>cat</i> marker 6	LT2-STM0331-cat-	GGTTGCGCATTATTCACGGCGGCCGTGGCTAAAACGCCCT
kh	1m	GCATCCCCGCGCGGTTAAGGGGCGCGCCTACCTGTGACGG
downstream	I T2-STM0331-cat-	
P22 attB	2r	
	20	GC
totA marker	T2-sthE-totA-2c	
10 kh		CCCTGAGGGGTTATCAAGAGGGTCATTA
downstream	LT2_ctbE_totA_1m	
P22 attB		GCTTGCGCTGTTAATCACTTTACTT
tetA marker	LT2-STM0352-	CGTTTCCCTCTTTACCGCAGCGTGTCGGCCATTCCGCAACG
29 kh	tetA-1m	CTGCCGCAGCGCTGTTAATCACTTTACTT
downstream	LT2-STM0352-	
P22 attB	tot A_2c	CCCTTTCCCCCTTATCAACACCCTCATTA
toth morker		
22 kb	L12-3110333-	
JZ NU downatroom		
P22 attB	L12-3110333- tetA-2c	
cat marker 10	I T2-sthE-cat-1m	
kb		GGCTTGGGCGCGCCTACCTGTGACGG
downstream	I T2-sthE-cat-2c	
P22 attB		CCCTGAGGGGAATAGGAACTTCATTTAAATGGC
cat marker	I T2-sthB-cat-1m	
15.6 kb		AGACCGTAGGGCGCGCCTACCTGTGACGG
downstream	LT2-stbB-cat-2c	GGGACAGTCGCTGCCACCCTTCAATACGCCGTTTCGTATAA
P22		ATAATTGTCGGAATAGGAACTTCATTTAAATGGC
cat marker 29	LT2-STM0352-cat-	CGTTTCCCTCTTTACCGCAGCGTGTCGGCCATTCCGCAACG
kb	1m	CTGCCGCAGGGCGCGCCTACCTGTGACGG
downstream	LT2-STM0352-cat-	CCCGTCAGGAACGCTTGACCTTTCCTTCGTTGTAACGCCTA
P22	2c	GCCTTTGCCGGAATAGGAACTTCATTTAAATGGC
P22 ∧ <i>int</i>	P22-Aint-3m	CCCGCTCGTTTTAATGCTGCCCTCCATGCAGTATTAGCGTC
(same		ATAGTGTGTAGGCTGGAGCTGCTTCG
primers used	P22-Aint-4c	GAGGAGAAGGCGCATAAGAAGTCGCTGGATGATGACAAGA
for ES18 ∧ <i>int</i>)		GTCGGGGTCCATATGAATATCCTCCTTAG
P22 Axis	P22-Axis-1m	ATGTCATCACCCGCGCTCACCTGGACAGTATGCAGCGGAG
		ATTGAAGTGCTGTGTAGGCTGGAGCTGCTTCG

	P22-Axis-2c	GAAACAGCGGAGTAAACATGGAATCACACAGCCTCACACTT
		GATGAGGCCGGTCCATATGAATATCCTCCTTAG
P22 ∆int-xis	P22-Aint-3m	CCCGCTCGTTTTAATGCTGCCCTCCATGCAGTATTAGCGTC
		ATAGTGTGTAGGCTGGAGCTGCTTCG
	P22-Axis-2c	GAAACAGCGGAGTAAACATGGAATCACACAGCCTCACACTT
		GATGAGGCCGGTCCATATGAATATCCTCCTTAG
P22 ∆ <i>orf1</i> 2	P22-Aorf12-1m	GGTGGCTTGCTGATTGGCGGATTAACACCAACCGCCAGTG
		ACGTTCTGGCTGTGTAGGCTGGAGCTGCTTCG
	P22-Aorf12-2c	GCGGCTTCCTGATGGATGACAGGCGCTTTACAAGCTCGTCC
		ATCGCTCTGGGTCCATATGAATATCCTCCTTAG
ES18 ∆ <i>xis</i>	ES18-Axis-1m	TATGCCATCACCCGCGCTCACGGCGACAGTATGCATCGGA
		GACTGAAGAGTGTGTAGGCTGGAGCTGCTTCG
	ES18-Axis-2c	AGCAATAACAATCCTCGCACTCGCGGGGGATTTCTTTATCC
		GGAGTAACCGGTCCATATGAATATCCTCCTTAG
ES18 ∆ <i>int-xis</i>	P22-Aint-3m	CCCGCTCGTTTTAATGCTGCCCTCCATGCAGTATTAGCGTC
		ATAGTGTGTAGGCTGGAGCTGCTTCG
	ES18-Axis-2c	AGCAATAACAATCCTCGCACTCGCGGGGGATTTCTTTATCC
		GGAGTAACCGGTCCATATGAATATCCTCCTTAG
Excision	Primers	Sequence (5'-3')
Excision P22 and ES18	Primers LT2-attB-1m	Sequence (5'-3')TCAGCACGCAGAAATTACATG
Excision P22 and ES18	Primers LT2-attB-1m LT2-attB-2c	Sequence (5'-3')TCAGCACGCAGAAATTACATGACGGAATCATTAACATGATGG
Excision P22 and ES18	Primers LT2-attB-1m LT2-attB-2c	Sequence (5'-3')TCAGCACGCAGAAATTACATGACGGAATCATTAACATGATGG
Excision P22 and ES18 Circularisation	Primers LT2-attB-1m LT2-attB-2c Primers	Sequence (5'-3') TCAGCACGCAGAAATTACATG ACGGAATCATTAACATGATGG Sequence (5'-3')
Excision P22 and ES18 Circularisation P22	Primers LT2-attB-1m LT2-attB-2c Primers P22-gtrA-4n	Sequence (5'-3') TCAGCACGCAGAAATTACATG ACGGAATCATTAACATGATGG Sequence (5'-3') n GTTTTGATCGATACAAGCGATC
Excision P22 and ES18 Circularisation P22	Primers LT2-attB-1m LT2-attB-2c Primers P22-gtrA-4n P22-int-7c	Sequence (5'-3') TCAGCACGCAGAAATTACATG ACGGAATCATTAACATGATGG Sequence (5'-3') n GTTTTGATCGATACAAGCGATC CCTGACTGAACATGCTCGAC
Excision P22 and ES18 Circularisation P22 ES18	Primers LT2-attB-1m LT2-attB-2c Primers P22-gtrA-4n P22-int-7c ES18-orf33-	Sequence (5'-3') n TCAGCACGCAGAAATTACATG ACGGAATCATTAACATGATGG Sequence (5'-3') n GTTTTGATCGATACAAGCGATC CCTGACTGAACATGCTCGAC 1m TCATCAACAGTGCGACAGATG
Excision P22 and ES18 Circularisation P22 ES18	Primers LT2-attB-1m LT2-attB-2c Primers P22-gtrA-4n P22-int-7c ES18-orf33- P22-int-7c	Sequence (5'-3') TCAGCACGCAGAAATTACATG ACGGAATCATTAACATGATGG Sequence (5'-3') n GTTTTGATCGATACAAGCGATC CCTGACTGAACATGCTCGAC 1m TCATCAACAGTGCGACAGATG CCTGACTGAACATGCTCGAC
Excision P22 and ES18 Circularisation P22 ES18	Primers LT2-attB-1m LT2-attB-2c Primers P22-gtrA-4n P22-int-7c ES18-orf33- P22-int-7c	Sequence (5'-3') TCAGCACGCAGAAATTACATG ACGGAATCATTAACATGATGG Sequence (5'-3') n GTTTTGATCGATACAAGCGATC CCTGACTGAACATGCTCGAC 1m TCATCAACAGTGCGACAGATG CCTGACTGAACATGCTCGAC
Excision P22 and ES18 Circularisation P22 ES18 Housekeeping	Primers LT2-attB-1m LT2-attB-2c Primers P22-gtrA-4m P22-int-7c ES18-orf33- P22-int-7c Primers	Sequence (5'-3') n TCAGCACGCAGAAATTACATG ACGGAATCATTAACATGATGG Sequence (5'-3') n GTTTTGATCGATACAAGCGATC CCTGACTGAACATGCTCGAC 1m TCATCAACAGTGCGACAGATG CCTGACTGAACATGCTCGAC Sequence (5'-3')
Excision P22 and ES18 Circularisation P22 ES18 Housekeeping P22 and ES18	Primers LT2-attB-1m LT2-attB-2c Primers P22-gtrA-4n P22-int-7c ES18-orf33- P22-int-7c Primers LT2-rapA-1r	Sequence (5'-3') TCAGCACGCAGAAATTACATG ACGGAATCATTAACATGATGG Sequence (5'-3') n GTTTTGATCGATACAAGCGATC CCTGACTGAACATGCTCGAC 1m TCATCAACAGTGCGACAGATG CCTGACTGAACATGCTCGAC Sequence (5'-3') n CGCTGACTGAACATGCTCGAC

Plasmid	Primers	Sequence (5'-3')	Comment
pBAD18			
pJP2534	P22-int-5mS	ACGC <u>GTCGAC</u> CAAATACTTACGTATTATTCGTG CC	
	P22-xis-4cE	CCG <u>GAATTC</u> ATTCTACGACATCGCTAACGC	
pBT2bgal			
pJP2563	pp1-HF-1_FB	AGTA <u>GGATCC</u> CAAAAGTAGGGGCCTTTTCTGC	celA left flank
	pp1-tetM_HF- 1_R	CTCAAATTGCGAGATTTGGGTTGCCTTTGTTTC TTGATCAAATTTGAACAAAGGACTGAAACGATA TGTCAATTTTGAAAAATG	
	tetM-F	GATCAAGAAACAAAGGCAACCCAAATCTCGCA	tetM cassette
	tetM-RS	GTCA <u>GTCGAC</u> GATCTTGTATCATTACTCCATGT ATCTATTGATG	
	pp1-HF-1_FB	AGTA <u>GGATCC</u> CAAAAGTAGGGGCCTTTTCTGC ACCTTTTACAGC	<i>celA</i> left flank- <i>tetM</i> fusion
	tetM-RS	GTCA <u>GTCGAC</u> GATCTTGTATCATTACTCCATGT ATCTATTGATG	
	pp1-HF-1_FS	CATTTTTCAAAATTGACATATCGTTTCAGTCCTT TGTTCAAATTT <u>GTCGAC</u> TTATACGTTTTGTGCTT CGACTTTTTCAAGGGTTTCTTC	<i>celA</i> right flank
	pp1-HF-1_RH	TGCA <u>AAGCTT</u> GTTTTCATTTTGTTTATGTCATCT GAAGTCAAAGATGCG	
pJP2564	pp1-HF1_FB	ATGA <u>GGATCC</u> GGCTACAACCAATTATTAGCTGA CGATTATGTG	EF0370 left flank
	pp1- tetM_HF1-R	CTCAAATTGCGAGATTTGGGTTGCCTTTGTTTC TTGATCTTAAATTGCTGTTAAATTAGGGTTATTG ATATTTTTAAAATAAAA	
	tetM-F	GATCAAGAAACAAAGGCAACCCAAATCTCGCA ATTTGAG	tetM cassette
	tetM-RS	GTCA <u>GTCGAC</u> GATCTTGTATCATTACTCCATGT ATCTATTGATG	
	pp1-HF1_FB	ATGA <u>GGATCC</u> GGCTACAACCAATTATTAGCTGA CGATTATGTG	EF0370 left flank- <i>tetM</i> fusion
	tetM-RS	GTCA <u>GTCGAC</u> GATCTTGTATCATTACTCCATGT ATCTATTGATG	
	pp1-HF1_FX	AAATATCAATAACCCTAATTTAACAGCAATTTAA <u>TCTAGA</u> TTAAACAATCACTAAACAGAGGCTTGT CGACAG	EF0370 right flank
	pp1-HF1_RNh	GTCT <u>GCTAGC</u> TGGCGCAAAATGTTCATTATCTT GTGAAAAAAC	
pJP2565	pp1-HF2_FB	TGCA <u>GGATCC</u> ACAACAATGCTAGATGCAGTTTT AGATGCGGACTC	EF0370 left flank
	pp1- tetM_HF2-R	CTCAAATTGCGAGATTTGGGTTGCCTTTGTTTC TTGATCTTAGGCTGAGTGTCCTACGATTGTGCT ACCTGAGTAACC	
	tetM-F	GATCAAGAAACAAAGGCAACCCAAATCTCGCA ATTTGAG	tetM cassette
	tetM-RS	GTCA <u>GTCGAC</u> GATCTTGTATCATTACTCCATGT ATCTATTGATG	
	pp1-HF2_FB	TGCA <u>GGATCC</u> ACAACAATGCTAGATGCAGTTTT AGATGCGGACTC	EF0370 left flank- tetM fusion
	tetM-RS	GTCA <u>GTCGAC</u> GATCTTGTATCATTACTCCATGT ATCTATTGATG	

	pp1-HF2_FS	CTCAGGTAGCACAATCGTAGGACACTCAGCCT AA <u>GTCGAC</u> TCAGCAATGATAAAAATAGACGTAA GCAGCTTC	EF0370 right flank
	pp1-HF2_RNh	ATGT <u>GCTAGC</u> ATCATCAAATTGCAAATAACGGC AACCTCTCTC	
pJP2566	pp1-HF4_FB	ATGT <u>GGATCC</u> CATTTTAGTTAAATCAGTAATTTT CAATATCGAGGG	EF0480 left flank
	pp1-HF4_RS	GAAGCTATCTTAAAATTTAAAATTAACTAA <u>GTCG</u> <u>AC</u> CTAAAAAAAGCCCCTTTCCACTTTTCTG	
	tetM-FS	GTAC <u>GTCGAC</u> GATCAAGAAACAAAGGCAACCC AAATCTCGCAATTTGAG	tetM cassette
	tetM-RS	GTCA <u>GTCGAC</u> GATCTTGTATCATTACTCCATGT ATCTATTGATG	
	pp1-HF4_FS	CAGAAAAAGTGGAAAGGGGCTTTTTTTAG <u>GTC</u> <u>GAC</u> TTAGTTAATTTTAAATTTTAAGATAGCTTC	EF0480 right flank
	pp1-HF4_RH	GTCT <u>AAGCTT</u> CTGATTAAAACTTTATTATGATGT CATAGTGAAG	
pJP2568	2196839_FB	ATGT <u>GGATCC</u> GAAATAAGCAATAATCATTGGTC AACGCCTCTC	EF2276 left flank
	2196839_RS	TAGATTATCGAATATTTTCGAAATTTAATTGAAT GACAA <u>GTCGAC</u> TCAAAGTACGAGGCGATACAT TGCTGATAATTTTTTAGAGTATTG	
	tetM-F	GATCAAGAAACAAAGGCAACCCAAATCTCGCA ATTTGAG	tetM cassette
	tetM-RS	GTCA <u>GTCGAC</u> GATCTTGTATCATTACTCCATGT ATCTATTGATG	
	2196839_FB	ATGT <u>GGATCC</u> GAAATAAGCAATAATCATTGGTC AACGCCTCTC	EF2276 left flank- <i>tetM</i> fusion
	tetM-RS	GTCA <u>GTCGAC</u> GATCTTGTATCATTACTCCATGT ATCTATTGATG	
	2196839_FSa	TGCA <u>GTCGAC</u> TTGTCATTCAATTAAATTTCGAA AATATTCGATAATCTA	EF2276 right flank
	2196839_RNh	GTCA <u>GCTAGC</u> TCAGGTGTAGAAAATTTTACTGT AGATTTTGCC	

Table S4. Plasmids used in this study.

Plasmid	Description	Reference
pKD46	Amp ^R . Thermosensitive plasmid with Red lambda system	3
pCP20	Amp ^R . Thermosensitive plasmid with FLP recombinase	3
pBAD18	Amp ^R . Expression vector	4
pBT2βgal	Amp ^R , GN; Cm ^R , GP. Vector for allelic replacement	5
pRN6680	pBluescriptΩ2.9-kb pMVN6 Smal-HindII [tetA(M)]; Amp ^R , Tet ^R	6
pJP2534	pBAD18 int-xis P22	This work
pJP2563	pBT2βgal with <i>tetM</i> from pRN6680 positioned between <i>E. faecalis</i> V583 flanking	This work
	sequences at <i>celA</i> ; Cm ^R , Tet ^R	
pJP2564	pBT2βgal with tetM from pRN6680 positioned between E. faecalis V583 flanking	This work
	sequences at <i>EF0370</i> ; Cm ^R , Tet ^R	
pJP2565	pBT2βgal with tetM from pRN6680 positioned between E. faecalis V583 flanking	This work
	sequences at <i>EF0394</i> ; Cm ^R , Tet ^R	
pJP2566	pBT2βgal with <i>tetM</i> from pRN6680 positioned between <i>E. faecalis</i> V583 flanking	This work
	sequences at <i>EF0480</i> ; Cm ^R , Tet ^R	
pJP2568	pBT2βgal with tetM from pRN6680 positioned between E. faecalis V583 flanking	This work
	sequences at <i>EF</i> 2276; Cm ^R , Tet ^R	

P22 infection

0.38

0.39

0.3690 0.3695 0.3700 0.3705

Chromosome position (Mb)

int

Time

0

30

60

90

0.41

0.40

xis

Figure S1. Detailed analysis of the expression of the int and xis genes from the different P22 phages. Amplified from Fig. 1.

Figure S2. Prophages excise late from the bacterial chromosome.

Schematic representation of sequencing reads used for calculation of integration rate (a), attL (left site attachment site) and attB (bacterial attachment site). To gain insight into the timing of phage excision, the proportion of integrated phage at each timepoint was calculated by dividing the number of chromosome-attL reads by the total number of attL/attB spanning reads (sum of chromosome-attL phage region reads plus reads spanning the attB region), obtained from the same sample, for phages P22, P22 Δpri and P22 ts c_2 29 (b), and for ES18 (c).

Figure S3. Phage production over a time course experiment after induction.

The lysogenic strains for phage P22, P22 Δint , P22 Δxis , P22 ts c_229 and ES18, were mitomycin C or thermal-induced to activate the prophages, samples were taken before (0) and at different time points (every 30 minutes) after induction and the phage titters evaluated (plaque forming units per milliltre: PFU/mL). The means and standard deviations from three independent experiments are presented (*n*=3).

Figure S4. Phage P22 replicates extra-chromosomally after infection.

The relative abundance of phage genomic DNA and the chromosomal regions proximal to where P22 integrates is represented. Samples were analyzed at 0 (red), 30 (cyan), 60 (green), and 90 min (blue) after phage P22 infection. Relative coverage is the DNA relative to the average bacterial genomic coverage (excluding phage).

a qPCR excision

b

qPCR circularisation

Figure S5. qPCR verification of the strains used in WGS

Analysis of the excision (a) or circularisation (b) of the different prophages after MC induction, using qPCR. Samples were analysed at 0, 30, 60, and 90 min after induction of the wt or mutants P22 prophages, or at 0, 60, 90, and 120 min after induction of the ES18 prophage (using mitomycin C or temperature-shift, as appropriate). Relative gene expression levels were analyzed by using the $2^{-\Delta CT}$ (where *CT* is threshold cycle). Error bars indicate standard deviation from the mean of three independent experiments. For all panels, values are means (n = 3 independent samples). A one-way ANOVA with Dunnett's multiple comparisons test was performed to compare time 0 against the other timepoints. Adjusted p values were as follows: ns>0.05; *p≤0.05; *rp≤0.01; ****p≤0.001; *****p≤0.001. The exact statistical values for each of the conditions tested are listed in Table S1.

		tetA	000		tetA		HF	tetA	tetA	
		•	P22	611						
		-6 kb		+6 kb	+10 kb	+15.6 kb		+29 kb	+32 kb	
Infection	∆ <i>att</i> B	20.3±2.1	-	— cat —	80.7±3.7			17.7±1.5	24±3	
Induction		3.3±2.5	+	cut	62.3±3.8			0.3±0.6	0±0	
Infection	∆ <i>att</i> B		-		cat			29.3±5.8	25.3±9.3	
Induction			+		<i>cui</i> —			1±1	0±0	
Infection	∆att B		-			aat		51.7±7.6	40.3±2.1	
Induction			+			<i>cui</i> ———		1±1	0±0	
Infection	∆attB		-					cat —	70.3±2.5	
Induction			+					cat	54.7±2.5	

Figure S6. Lateral transduction occurs by the headful mechanism.

Co-transduction frequencies for strains containing both chloramphenicol (*cat*) and tetracycline (*tet*A) markers at varying distances apart. Lysates were tested for co-transduction of both markers by initially selecting for the *tet*A marker, with transductants subsequently scored for the *cat* marker. At least one hundred *tet*A transductants were tested from infection (cyan) or induction (blue) and the results are represented as a percentage (*cat/tet*A) x 100%. The *att*B for P22 is highlighted in orange and the headful limit (HF) is indicated. The + indicates a P22 lysogen (induction, LT), while the - indicates a non-lysogenic strain (infection, GT). The means and standard deviations from three independent experiments are presented (*n*=3). Our results indicate that for lysates generated by P22 infection, all co-transduction frequencies were inversely proportional to their distance apart, even if they were located in two different headfuls, indicating that DNA packaging initiated at random sites. However, when we tested lysates generated by SOS induction, co-transduction was only observed for markers within a headful, indicating that packaging had primarily initiated from the bona fide *pac* site, and confirming that P22-mediated LT uses the headful mechanism for packaging.

Figure S7. Phage P22 engages in lateral transduction in an infection-resistant host.

P22

To rule out the possibility that P22 phages released early after SOS induction could superinfect the remaining cells to initiate packaging from the resident prophage genome, we deleted the rfpP-B genes that encode the P22 receptor and tested this strain for LT. a, Deletion of rfpPB renders LT2 insensitive to P22 infection. Serial dilutions of phages P22 and ES18 lysates were spotted onto lawns of non-lysogenic LT2 and non-lysogenic LT2 ΔrfpP-B strains. The presence of plaques indicates successful phage infection and replication via the lytic cycle. b, The transfer of tetracycline (tetA) markers located downstream of the P22 attB site, in twelve successive capsid headfuls (tetA"n"), was tested after P22 induction (Ind) in either wild type LT2 or LT2 lacking the phage P22 receptor (*Arfp*P-B). Transduction units (TrU) per milliliter were normalized by PFU per milliliter and represented as the log TrU of an average phage titre (1 x 10⁹ PFU). Error bars indicate standard deviation from the mean of three independent experiments. For all panels, values are means (n = 3 independent samples). An unpaired t test two-sided was performed to compare mean differences of infection and induction in each marker. Adjusted p values were as follows: ns>0.05: *p≤0.05; **p≤0.01; ***p≤0.001; ****p≤0.0001. The exact statistical values for each of the conditions tested are listed in Table S1.

+400kb

+500kb

Figure S8. P22 ts c_2 29 early excision produces low levels of lateral transduction.

a, The transfer by GT of the two first tetracycline (*tet*A) markers located downstream of the P22 *att*B site was compared for both P22 and P22 ts c_229 after phage infection (Inf). **b**, The transfer of the two first *tet*A markers located downstream of the P22 *att*B site was compared for both the P22 and the P22 ts c_229 prophages following induction (Ind). Transduction units (TrU) per milliliter were normalized by PFU per milliliter and represented as the log TrU of an average phage titre (1 x 10⁹ PFU). Error bars indicate standard deviation from the mean of three independent experiments. For all panels, values are means (n = 3 independent samples). An unpaired t test two-sided was performed to compare mean differences of infection and induction in each marker. Adjusted p values were as follows: *ns*>0.05; *p≤0.05; **p≤0.01; ****p≤0.001; ****p≤0.001. The exact statistical values for each of the conditions tested are listed on Table S1.

Figure S9. Enterococcal phage pp1 engages in lateral transduction.

The ability of phage pp1 to mobilise tetracycline (*tet*M) markers located downstream of the pp1 *att*B site in successive capsid headfuls (*tet*M^{"n"}), or from non-phage associated regions of the chromosome (*tet*M^G), was tested following induction (Ind) and infection (Inf). Transduction units (TrU) per milliliter were normalized by PFU per milliliter and represented as the log TrU of an average phage titre (1 x 10⁹ PFU). Error bars indicate standard deviation from the mean of three independent experiments. Values are means (n = 3 independent samples). An unpaired t test two-sided was performed to compare mean differences of infection and induction in each marker. Adjusted p values were as follows: *ns*>0.05; *p≤0.05; **p≤0.01; ****p≤0.001; ****p≤0.001. The exact statistical values for each of the conditions tested are listed in Table S1.

Figure S10. Effect of phage mutations on lateral transduction and phage formation.

a, P22 or P22-derivative (Δint , Δxis or Δint -xis) prophages were mitomycin C induced and tested for their ability to transduce a *tet*A marker (TrU/ml) and produce viable phage particles (PFU/ml). **b**, The same experiment was performed using phage ES18 or ES18-derivates (Δint , Δxis or Δint -xis). The means and standard deviations from three independent experiments are presented (n=3). A one-way ANOVA with Dunnett's multiple comparisons test was performed to compare mean differences between time WT and derivatives phages. Adjusted p values were as follows: ns>0.05; *p≤0.05; **p≤0.01; ****p≤0.001; ****p≤0.0001. The exact statistical values for each of the conditions tested are listed in Table S1.

References

- 1. Monk, I. R., Shah, I. M., Xu, M., Tan, M.-W. & Foster, T. J. Transforming the untransformable: application of direct transformation to manipulate genetically *Staphylococcus aureus* and *Staphylococcus epidermidis*. *MBio* **3**, (2012).
- 2. Matos, R. C. *et al. Enterococcus faecalis* prophage dynamics and contributions to pathogenic traits. *PLoS Genet.* **9**, e1003539 (2013).
- 3. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. U.S.A.* **97,** 6640–6645 (2000).
- Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J. Bacteriol.* 177, 4121–4130 (1995).
- 5. Carpena, N., Manning, K. A., Dokland, T., Marina, A. & Penadés, J. R. Convergent evolution of pathogenicity islands in helper *cos* phage interference. *Philos. Trans. R. Soc. Lond., B, Biol. Sci.* **371**, 20150505 (2016).
- 6. Charpentier, E. *et al.* Novel cassette-based shuttle vector system for gram-positive bacteria. *Appl. Environ. Microbiol.* **70**, 6076–6085 (2004).