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Supplementary Figure 1: Illustration of the effect of non-preserved equivalence in different dataset. BB T2D 
is a Biobank Type 2 diabetes cohort defined as diabetes diagnosed over 30 years of age and non-insulin 
treated. BB WTCCC T2D cohort is defined as first degree relative with type 1 diabetes diagnosed over 30 up to 
40 years of age to recreate the WTCCC cohort. The WTCCC T2D cohort is also shown. p-values are from two-
tailed t-tests and indicate that GRS of BB WTCCC T2D and WTCCC T2D cohorts have the same mean value, that 
is different from the mean of BB T2D cohort. The outline shows kernel density estimate of the GRS distribution 
(outlines end at the maxima and minima of the samples). The boxplots show median (circle), the box (thick 
vertical line) extends from the 25th to the 75th percentile, the whiskers (thin vertical line) extend by 1.5 IQR 
from the box. Thin horizontal lines indicate means, dashed horizontal line indicates mean GRS of the BB T2D 
cohort. 
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Supplementary Figure 2: A comparison of the four methods prevalence estimates and confidence intervals for 
varying proportion of disease and cohort sizes using the T1DGRS from the WTCCC dataset (𝒏 = 𝟑, 𝟖𝟖𝟕). (Top 
row) Illustration of how the reference samples (WTCCC dataset) were divided into subsamples. Half of each 
reference sample was used as a reference distribution and the other half was used to construct mixture 
samples. (Second row) Estimate of prevalence (𝒑(𝐂) in the constructed mixtures. (Third row) Bias of the 
prevalence estimates (𝒑(𝐂) across the constructed mixtures. (Fourth row) deviation from the true proportion 
(𝒑𝐂 − 𝒑(𝐂) across the constructed mixtures. (Bottom row) The width of confidence (𝑪𝑰𝐔 − 𝑪𝑰𝐋) intervals of the 
estimates across the constructed mixtures. The purple colour (bottom row) indicates regions in which the 
confidence interval did not include the true value (𝒑𝐂), 𝑪𝑰𝐔 = 𝑪𝑰𝐋 or CI are undefined (both latter cases can 
happen if 𝒑(𝑪 = 𝟎 or  𝒑(𝑪 = 𝟏). Sample sizes: 𝐑𝐂 – cases WTCCC type 1 diabetes (𝒏 = 𝟗𝟖𝟐), 𝐑𝐍 – non-cases 
WTCCC Type 2 diabetes (𝒏 = 𝟗𝟔𝟐), mixtures – sampled with replacement from a holdout half of the 𝐑𝐂 (𝒏 =
𝟗𝟖𝟏) and 𝑹𝑵 (𝒏 = 𝟗𝟔𝟐) samples. 
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Supplementary Note 1: Quantitative characterisation of methods 

To compare bias and precision (quantified as the width of CI) of all the methods we compared 
their performance assuming that 𝑝! = 𝑝̂! and acceleration=0. Again, the proportion and 

sample size were systematically varied, with 𝑝!  ranging from 0 to 1 in 0.01 (1%) steps while 
𝑛 ranged from 100 to 2,500 in steps of 100 samples. All four methods were applied to each 
combination of these parameters. At each point in the parameter space, we estimated the 
bias and confidence intervals. This idealised scenario allows a direct head-to-head 
comparison of accuracy between all four methods without the randomness originating from 
the sampling process. Results of this comparison are presented in Supplementary Figs 3-4. 

Supplementary Figs 3-4 show: 

- (1st row) Median of the 100,000 bootstrap samples med({{𝑝!" }#$$$}#$$), 
- (2nd row) Median bias B = med({{𝑝!" }#$$$}#$$) − 𝑝̂!.	, 
- (3rd row) The width of confidence (𝐶𝐼% − 𝐶𝐼&) intervals, 

  



 5  
 

 

Supplementary Figure 3: Evaluation of the four Estimation Methods using T2DGRS from the WTCCC dataset 
(𝒏 = 𝟑, 𝟖𝟖𝟕). (Top row) Median value of the 100,000 estimates of prevalence (𝒑𝐂' ) in the bootstrap samples 
across defined mixture proportions (𝒑𝐂 ) and the mixture sample size (𝒏) of the dataset for each method. 
(Second row) Median bias of the methods across the constructed samples. (Bottom row) The width of 
confidence intervals (𝑪𝑰𝐔 − 𝑪𝑰𝐋) of the individual estimates across the defined mixture proportions (𝒑𝐂 ) and 
the mixture sample size (𝒏). The purple colour (row 3) indicates regions in which the confidence interval did 
not include the true value (only observed for the Excess method), 𝑪𝑰𝐔 = 𝑪𝑰𝐋 or CI are undefined (both latter 
cases can happen if 𝒑𝐂 = 𝟎 or  𝒑𝐂 = 𝟏). It can be observed that across the parameter space, the Means, EMD 
and KDE methods all typically outperform the Excess method. It is also evident that the Means and KDE 
methods practically do not exhibit any bias. A further increase of sample sizes would be recommended to 
reduce the width of the 𝑪𝑰 below 10% (see Table 1). Sample sizes: 𝐑𝐂 – cases WTCCC type 1 diabetes (𝒏 =
𝟗𝟖𝟐), 𝐑𝐍 – non-cases WTCCC Type 2 diabetes (𝒏 = 𝟗𝟔𝟐), mixtures – sampled with replacement from a 
holdout half of the 𝐑𝐂 (𝒏 = 𝟗𝟖𝟏) and 𝐑𝐍 (𝒏 = 𝟗𝟔𝟐) samples. 
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Supplementary Figure 4: Evaluation of four Estimation Methods using the T1DGRS from the WTCCC dataset 
(𝒏 = 𝟑, 𝟖𝟖𝟕). (Top row) Median value of the 100,000 estimates of prevalence (𝒑𝐂' ) in the bootstrap samples 
across defined mixture proportions (𝒑𝐂 ) and the mixture sample size (𝒏) of the dataset for each method. 
(Second row) Median bias of the methods across the constructed samples. (Bottom row) The width of 
confidence intervals (𝑪𝑰𝐔 − 𝑪𝑰𝐋) of the individual estimates across the defined mixture proportions (𝒑𝐂 ) and 
the mixture sample size (𝒏). The purple colour (row 3) indicates regions in which the confidence interval did 
not include the true value (only observed for the Excess method), 𝑪𝑰𝐔 = 𝑪𝑰𝐋 or CI are undefined (both latter 
cases can happen if 𝒑𝐂 = 𝟎 or  𝒑𝐂 = 𝟏). It can be observed that across the parameter space, the Means, EMD 
and KDE methods all typically outperform the Excess method. Sample sizes: 𝐑𝐂 – cases WTCCC type 1 diabetes 
(𝒏 = 𝟗𝟖𝟐), 𝐑𝐍 – non-cases WTCCC Type 2 diabetes (𝒏 = 𝟗𝟔𝟐), mixtures – sampled with replacement from a 
holdout half of the 𝐑𝐂 (𝒏 = 𝟗𝟖𝟏) and 𝐑𝐍 (𝒏 = 𝟗𝟔𝟐) samples. 
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Supplementary Figure 5: Panel (a) illustrates a worked example using T2DGRS to estimate non-insulin treated 
diabetes cases within a cohort with glaucoma. All three new methodologies provide robust estimates of the 
proportion of individuals with type 2 diabetes with their 95% CIs (square brackets) encompassing the known 
proportion of 6.6%: Means = 7.9% [0.8%, 14.2%], EMD = 8.2% [2.0%, 13.8%], KDE = 8.4% [0.7%, 16.8%]. The 
6.6% ground truth value was estimated using the reported number of type 2 diabetes cases within the 
glaucoma cohort in UK Biobank. Conversely the Excess method performs poorly (2.1% [1%, 5.8%]) and does 
not capture the known proportion. Cases of self-reported glaucoma (n = 9,857) were taken from unrelated 
individuals of white European descent in the UK Biobank. As estimating cases of type 2 diabetes analysis was 
restricted to exclude insulin treated diabetes cases. Diabetes was defined as self-reported or HbA1C ≥48 mmol 
mol-1 to identify undiagnosed cases. Reference controls used were white European participants without 
diabetes and glaucoma and cases were non-insulin treated diabetes cases from UK Biobank without glaucoma. 
Top, the reference and the mixture distributions (𝐑𝐂, shaded red, 𝐑𝐍, shaded blue, 𝐌4 , shaded grey, 
respectively). Bottom, the estimated values of prevalence 𝒑(𝐂 (grey bullseyes) and 95% confidence intervals 
(horizontal lines with vertical bars at the ends). The violin plots show the distribution of the 100,000 estimates 
of prevalence (𝒑𝐂' ) in the bootstrap samples. Vertical dashed line indicates the known proportion of 6.6%. 
Panel (b) illustrates an experiment to evaluate the assumption that the GRS distribution in the mixture cohort 
𝐌4  (the glaucoma cases) is only affected by T2D prevalence. Using the GRS of the mixture cohort, 𝐌4  (𝒏 =
𝟗, 𝟖𝟓𝟕), we constructed 21 samples (𝒏 = 𝟐, 𝟓𝟎𝟎, each) with prevalence of T2D varying from 0 to 100% (with 
5% steps); sampling (with replacement) from the T2D cases and non-cases in the mixture cohort, 𝐌4 . For each 
of the constructed samples we computed an estimate of T2D prevalence (+ marker) and its confidence 
intervals (black vertical line and shading). The Means, EMD and KDE methods, return accurate estimates for 
T2D proportions varying from 0 to 100%.  For Means and KDE method, the prevalence estimate for 𝒑𝑪 = 𝟎 is 
assumed to be 𝒑(𝐂 = 𝟎 (sample mean is smaller than both means of the reference samples and KDE estimate 
is <0). 
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Supplementary Figure 6:  Panel (a) illustrates a worked example using T2DGRS to estimate non-insulin treated 
diabetes cases within a cohort with microalbuminuria. All three new methodologies provide robust estimates 
of the proportion of individuals with type 2 diabetes with their 95% CIs (square brackets) encompassing the 
known proportion of 14.04%: Means = 11.4% [7.2%, 16.5%], EMD = 10.4% [5.6%, 14.8%], KDE = 10.3% [4.7%, 
16.9%]. The 14.04% ground truth value was estimated using the reported number of type 2 diabetes cases 
within the microalbuminuria cohort in UK Biobank. Conversely the Excess method performs poorly (4.5% 
[5.3%, 7.5%]) and does not capture the known proportion. Markings and colours are the same as in the 
Supplementary Fig. 5. Panel (b) illustrates an experiment to evaluate the assumption that the GRS distribution 
in the mixture cohort 𝐌4	(the microalbuminuria cases) is only affected by T2D prevalence. Methods and plots 
are the same as in the Supplementary Fig. 5. We observe that at higher proportions of T2D the performance 
of the methods reduces so under-estimates are returned. This reflects the fact that in T2D cases there is a 
subtle reduction in mean T2DGRS in those with microalbuminuria (6.93 (SD 0.45)) compared to those without 
(6.98 (SD 0.46)). This result may reflect collider bias because the microalbuminuria phenotype reflects a cohort 
with higher multifactorial environmental risk for T2D so T2D occurs with less T2D genetic predisposition. There 
is no difference in mean T2DGRS in non-T2D cases with (6.77 (SD 0.46)) or without microalbuminuria (6.77 (SD 
0.46)). This explains the good performance for small T2D proportions. 
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Supplementary Figure 7: A comparison of the four methods using an artificial genetic risk score with increasing 
discriminative ability as measured by AUC, from AUC = 0.5 (no discriminative ability) through to AUC = 1 
(complete differentiation). (a) The estimated proportion (+ marker) with confidence intervals (vertical lines 
and shading) for each of the methods (Excess, Means, EMD, KDE) are shown using mixture sample size, 𝒏 =
{𝟏𝟎𝟎𝟎, 𝟓𝟎𝟎𝟎}. (b) Examples of the mixture distributions for AUC = {𝟎. 𝟓, 𝟎. 𝟕𝟓, 𝟏}. N(µ,s) is a normal 
distribution with mean µ and standard deviation s  and 𝐌4  is a mixture of the two normal distributions; 𝒑𝐂 =
𝟎. 𝟓 (pale red) or 𝒑𝐂 = 𝟎. 𝟏 (light blue). Reference distributions are indicated in red and blue. At several small 
AUC values, mean of the constructed mixture samples was smaller than both means of the reference samples, 
in these cases the prevalence estimate from the Means method is assumed to be 𝒑(𝐂 = 𝟎 and confidence 
intervals are undefined due to undetermined acceleration value. This figure is generated using artificial data. 
To generate reference samples with AUC varying from 0.5 to 1 with 0.02 step, one of the reference samples 
(blue) was fixed, sampled from N(0,1), the other reference sample (red) was sampled from normal distribution 
from N(0,1.2), and had its mean was shifted, by adding a constant, to the following values µ = {0.0, 0.093, 
0.17, 0.25, 0.33, 0.41, 0.49, 0.57, 0.65, 0.4, 0.82, 0.91, 1.01, 1.1, 1.21, 1.31, 1.43, 1.55, 1.68, 1.83, 2, 2.17, 2.42, 
2.73, 3.2, 9}. Both reference samples have 𝒏 = 𝟐𝟎𝟎𝟎. 
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Supplementary Figure 8: Illustration of the approaches used to estimate 𝒑(𝐂 throughout the paper. The 𝒑(𝐂 can 
be estimated from data (real or simulated) or can be fixed by hand. We used simulated data generated with 
a specified value of 𝒑𝐂  to evaluate the methods by comparing the estimated value, 𝒑(𝐂, with the true 
prevalence, 𝒑𝐂  (results illustrated in Figs 3, 4 and 5, Supplementary Figs 2 and 5-7). In Supplementary Figs 3 
and 4 with assume that 𝒑𝐂 = 𝒑(𝐂. In this way we compare bias and width of the CI of the methods without the 
random effects caused by simulating mixture data. 
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Supplementary Figure 9: Illustration of the steps used in estimation of the confidence intervals of the 
prevalence estimate 𝒑(𝐂. To find bias corrected and accelerated (BCa) confidence intervals, we used the 
estimate 𝒑(𝐂, sample size of the original mixture sample, and the reference samples. We generated 𝑵𝐌 = 𝟏𝟎𝟎 
mixture samples with a given composition (𝒑(𝐂) and sample size (𝒏) equal to the size of the original mixture 
sample. Next, we resampled (with replacement) each of the 𝑵𝐌 = 𝟏𝟎𝟎 new mixtures, generating 𝑵𝐁 =
𝟏, 𝟎𝟎𝟎	bootstrap samples for each. We applied each chosen method to all generated samples to obtain 𝑵𝐌 ∙
𝑵𝐁 = 	𝟏𝟎𝟎, 𝟎𝟎𝟎 bootstrapped estimates 𝒑𝐂' . We then used the methods described in section Calculating 
confidence intervals to find BCa confidence intervals. 
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Supplementary Note 2: The pure mixture assumption 

To check if the mixture assumption, 𝑝! + 𝑝' = 1, is satisfied, three different errors of the 
point estimates of prevalence derived from the EMD and KDE methods, eEMD,1, eEMD,2, eKDE 
could be further analysed. The eEMD,1 error captures the deviation of the mixture from the 
convex combination of the two reference samples. The eEMD,2 error is the EMD between the 
mixture and a model cumulative density function (CDF) based on the two independently 
estimated not normalised prevalence values 𝑝!()* and 𝑝'()*. The eKDE error is the sum of 
squared residuals (multiplied by the Gaussian kernels bandwidth) from the least-squares 
fitting procedure, which forms part of the KDE method. To interpret the initial point values of 
the errors, we compared them to 100,000 bootstrapped error values (as in all other 
computations we used 100 mixtures * 1,000 bootstraps). The bootstrap samples are 
generated using the two reference samples and their composition is based on the estimate 
of prevalence. In this way, we compare the error value of the investigated mixture sample 
with 100,000 values from a model that explicitly assumes there are only two reference 
populations (i.e., 𝑝! + 𝑝' = 1). This approach allows us to check how likely the occurrence 
of the observed error value is in the model for a given sample size and reference samples. The 
obtained bootstrap p-values are the number of bootstrapped modelled errors that are higher 
than the sample error and can be interpreted as the probability that the observed values of 
eEMD,1, eEMD,2 and eKDE are a result of the sampling error. The bootstrap p-values are equivalent 
to p-values of a traditional statistical test (7, 11). 
 
Supplementary Figure 10 shows an example of a mixture of two samples (𝑝! + 𝑝' = 1) and 
an example of a mixture of three samples (with the third sample constituting 7.5% of the 
mixture, 𝑝! + 𝑝' + 0.075 = 1). It illustrates how the eEMD,1, eEMD,2 and eKDE errors could be 
used to test the assumption that the mixture is composed of only two samples. In the first 
case where the mixture is composed of just two samples, the observed eEMD,1, eEMD,2 and eKDE 
values are small, and when compared with the 100,000 bootstrapped error values, they 
indicated that there is a high chance: p=0.19 (eEMD,1), p=0.95 (eEMD,2) and p=0.96 (eKDE) of 
observing them due to the sampling error in the mixture sample. In the second case where 
the mixture is composed of three samples, comparison of the observed eEMD,1, eEMD,2 and eKDE 
values with the bootstrapped values shows that they are unlikely to be a result of the sampling 
error: p=0.0001 (eEMD,1), p<1e-5 (eEMD,2) and p=0.003 (eKDE). In fact, the value of eEMD,2 is 
smaller than any of the bootstrapped error values. However, the figure shows only one 
particular example and the performance of the methods will depend on the mixture 
composition (contribution of the other sample) and features of the reference and the other 
samples. 
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Supplementary Figure 10: Worked examples of checking the mixture assumption, 𝒑𝐂 + 𝒑𝐍 = 𝟏. (a) An 
example of a mixture that consists of samples from two reference distributions (𝒑𝐂 = 𝟎. 𝟓, 𝒑𝐍 = 𝟎. 𝟓). The 
reference distributions are the T1DGRS from the WTCCC dataset. (b) An example of a mixture that consists of 
samples from three reference distributions. Sample from the third reference distribution (green) has a small 
contribution (𝒑𝐂 = 𝟎. 𝟓, 𝒑𝐍 = 𝟎. 𝟒𝟐𝟓, 𝒑𝟑 = 𝟎. 𝟎𝟕𝟓; the reference distribution R3 is a truncated normal 
distribution with mean 0.17 and std 0.025). (c) Illustration of the methods for checking the mixture 
assumption: eEMD,1, deviation from collinearity between the two reference distributions and the mixture; 
eEMD,2, EMD between the mixture and a model CDF based on the two independently estimated prevalence 
values; eKDE, the sum of squared residuals of the final fit. 
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