A potent truncated form of human soluble CR1 is protective in a mouse model of renal ischemia-reperfusion injury

Anjan K. Bongoni^{1†}, Ingela B. Vikstrom^{2†}, Jennifer L. McRae¹, Evelyn J. Salvaris¹, Nella Fisicaro¹, Martin J. Pearse², Sandra Wymann³, Tony Rowe², Adriana Baz Morelli², Matthew P. Hardy^{2‡}, and Peter J. Cowan^{1,4‡}

¹ Immunology Research Centre, St. Vincent's Hospital, Melbourne, VIC 3065, Australia

²CSL Limited, Melbourne, VIC 3052, Australia

³CSL Behring AG, 3014 Bern, Switzerland

⁴ Department of Medicine, University of Melbourne, Melbourne, VIC 3052, Australia

Supplementary Figure 1. Reduction of IR-induced cleaved caspase-3 positive apoptotic cells by CSL040 treatment. (A) Representative immunofluorescence images of cleaved caspase-3 positive apoptotic cells in the kidney. Scale bar: 50 μ m. (B) The numbers of cleaved caspase-3 positive cells were expressed as count per high-power field (HPF), and quantitatively measured by image J analysis. Significance was tested using Mann-Whitney U test (^{##} p < 0.01 for sham vs. IRI/vehicle), and One-way ANOVA Kruskal–Wallis and Dunn multiple comparisons test (*p < 0.05 for IRI/vehicle vs. IRI/CSL040). The data shown are mean \pm SEM (n = 5 per group).