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Web Table 1. Follow-up time and drop-out in the RCTs by study arma 

  Median follow-up (Q1, Q3) Study drop-out 

Study Randomization ratio 
for efavirenz 

Efavirenz-
containing 

Efavirenz- 
free 

Efavirenz-
containing 

Efavirenz-
free 

A5095 (n = 1,147) 2:1 48 (29, 72) 48 (28, 72) 10% 12% 

A5142 (n = 735) 2:1 112 (96, 129) 112 (96, 129) 18% 21% 

A5175 (n = 210) 2:1 139 (95, 150) 140 (96, 151) 23% 23% 

A5202 (n = 1,857)              1:1 137 (107, 168) 138 (106, 169) 19% 20% 
 

a Additional details are published in Mollan (2014, Annals of Internal Medicine, Table 1).1  

 

  



Web Appendix 1. Sensitivity analysis applying inverse probability of censoring weights in 

a trials-only analysis 

We conducted a trials-only post hoc sensitivity analysis where RCT dropout was accounted for 

using inverse probability of censoring weights (IPCW). This sensitivity analysis was conducted to 

assess our non-informative censoring assumption, which pertains to the internal validity of the 

RCT results. Let 𝐴 indicate exposure to an efavirenz-containing regimen versus efavirenz-free 

regimen. Let 𝑳 represent a vector of ten baseline covariates that may be associated with 

premature study dropout. For the IPCW analysis, we also included the ACTG study in the vector 

𝑳 plus the nine baseline covariates used for the transportability analysis, with the same functional 

forms as described in Methods section. Post-baseline (time-varying) covariates were not available 

in our data transfer and there could also be unmeasured covariates associated with premature 

study dropout that we were not able to account for here.  

Let 𝐷 be an indicator of event-free, premature dropout: 𝐷 = 1 for dropout, and 𝐷 = 0 if the planned 

or possible study follow-up was completed (or a suicidal thoughts or behavior event was 

observed). Participants who died during study follow-up were coded as 𝐷 = 0, and administrative 

censoring was coded as 𝐷 = 0. We constructed censoring weights: 𝐼𝑃𝐶𝑊 =  Pr (𝐷 =

0|𝐴)/𝑃𝑟(𝐷 = 0|𝑳, 𝐴) which remove the causal arrows on a directed acyclic graph from 𝑳 into 𝐷 in 

order to alleviate selection bias from restricting analyses to RCT participants with observed follow-

up visits. Pooled logistic regression was used to estimate the censoring weights, with follow-up 

time binned into 4-week intervals and fit using a restricted quadratic spline. Censoring weights 

were applied in a weighted Cox model using a robust variance estimator, and the unspecified 

baseline hazard was allowed to differ for each RCT. 

We included n=3,939 participants in the trials-only analysis; 10 (0.3% of 3,949) participants who 

were missing some element of the vector 𝑳 were excluded. Overall in the trials, 17% of participants 

had event-free dropout. In our unweighted, trials-only analysis the estimated hazard ratio was 

HR=2.3 (95% CI: 1.2, 4.4), n=3,939. In our IPCW sensitivity analysis, the mean of the weights 

was 0.997 (SD=0.103) and the estimated HR was 2.1 (95% CI: 1.1, 4.0).  

We maintained our a priori assumption of non-informative censoring in the main transportability 

analyses. Importantly, there could still be unmeasured factors not accounted for by 𝑳 that led to 

premature study dropout. 

 

  



Web Figure 1. Predicted probability of RCT participation conditional on baseline covariates  

  

Pr̂(𝑆𝑖 = 1|𝒁𝒊) is plotted for 𝑆 = 1 (RCTs) in blue and 𝑆 = 0 (CNICS cohort, non-randomized) in 

red to visually assess the effect measure modifier (EMM) coverage assumption, i.e., 𝑃𝑟(𝑆𝑖 =

𝑠|𝒁𝒊 = 𝒛) > 0 for 𝑠 = 0,1 if 𝑃𝑟(𝒁𝒊 = 𝒛) > 0 in the target population. Predicted probabilities 

(propensity scores) are the propensity of being selected into the RCT sample conditional upon 

baseline covariates 𝒁𝒊. 

 

  



Web Appendix 2. Algorithm for Boot MI 

We assumed the CNICS observational cohort is a representative sample of our arbitrarily large 

target population (US adults living with HIV who were engaged in care at a medical center and 

initiated ART between 1999–2015), and that there was no overlap between the CNICS sample 

and the RCT samples. The size of our US target population is not enumerated.  

To handle missing data, we used multiple imputation (MI) on the observed data set and within 

each bootstrap resample.  Let 𝒟 denote the concatenated data set, containing observations from 

CNICS and the four RCTs, from which 𝐵 = 10,000 bootstrap resamples 𝒟1
∗, . . . , 𝒟𝐵

∗  including 

observed and missing data were drawn. At each bootstrap iteration, simple random samples with 

replacement were drawn independently from CNICS and each RCT before concatenating the 

CNICS and RCT resamples to form 𝒟1
∗, . . . , 𝒟𝐵

∗ . Multiple imputation (MI) was applied to each 

bootstrap resample (see Methods for details), generating 𝑀 = 30 imputed data sets 𝒟𝑏,1
∗ , . . . , 𝒟𝑏,𝑀

∗  

for each resample 𝒟𝑏
∗, 𝑏 = 1, . . . , 𝐵.  

Point estimates for the ln(𝐻𝑅), ln(𝐼𝑅), and 𝐼𝑅𝐷 were calculated after applying MI to 𝒟 (the 

observed CNICS and RCTS data). To construct bootstrap 95% CIs we employed the following 

algorithm referred to as “Boot MI” by Schomaker and colleagues (2018): From each imputed 

resample 𝒟𝑏,𝑚
∗ , 𝑚 = 1, . . . , 𝑀, we obtained IOPW estimates for the ln(𝐻𝑅), ln(𝐼𝑅), and 𝐼𝑅𝐷. Within 

each bootstrap iteration, the 𝑀 = 30 MI-based estimates were pooled using Rubin’s rule for each 

estimand. The resulting 𝐵 = 10,000 estimates comprise the sampling distribution (plotted in 

Figure 3) and were used to construct 95% CIs for ln(𝐻𝑅), ln(𝐼𝑅), and 𝐼𝑅𝐷 using the percentile 

method (i.e., the 2.5th and 97.5th percentiles of the sampling distribution). Rubin’s MI rule for 

variance was not used herein given our reliance on the non-parametric, percentile-based 

bootstrap CI with MI conducted within each bootstrap iteration. We used a large number of 

bootstrap resamples (𝐵 = 10,000) to ensure stability of the 2.5th and 97.5th percentiles from the 

tails of each sampling distribution.  

 

  



Web Figure 2. Distribution of inverse odds weights 

 

Summary statistics for inverse odds weights from complete-case analysis 

Sample n = Mean 
Standard 
Deviation Minimum Maximum 

𝑆 = 0 7,555 0 0 0 0 

𝑆 = 1 3,939 0.99 0.88 0.15 13.11 

 

  



Web Figure 3. Sampling distributions for incidence rate difference and log hazard ratio 

From the combined data set of trial and cohort participants, 10,000 resampled data sets 
containing missingness were generated to construct a nonparametric bootstrap 95% CI for each 
estimator. Each of 10,000 estimates was calculated from 30 multiple imputation data sets using 
Rubin’s rule. Panel A shows the incidence rate difference. Panel B shows the natural-log hazard 
ratio.  

 
 

 
 

  



Web Reference 

 

1. Mollan KR, Smurzynski M, Eron JJ, et al. Association between efavirenz as initial 

therapy for HIV-1 infection and increased risk for suicidal ideation or attempted or 

completed suicide: an analysis of trial data. Ann Intern Med. 2014;161(1):1-10. 

doi:10.7326/M14-0293 


