Supporting Information

1,5-Hydrogen Atom Transfer–Surzur-Tanner-rearrangement: A Radical Cascade Approach for the Synthesis of 1,6-Dioxaspiro[4.5]decane and 6,8-Dioxabicyclo[3.2.1]octane Scaffolds in Carbohydrate Systems

Elisa I. León,^a Ángeles Martín,^a Adrián S. Montes,^{a,b} Inés Pérez-Martín,^{*,a} María del Sol Rodríguez,^a Ernesto Suárez^{*,a}

 ^a Síntesis de Productos Naturales, Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
 ^b Doctoral and Postgraduate School, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38200

La Laguna, Tenerife, Spain

Table of Contents:

1.	Table S1. Comparison between Experimental and Calculated Ring	
	Coupling Constant of 3-C-(Glycopyranosyl)1-propoxyphthalimides	S3
2.	Table S2. Comparison between Experimental and Calculated Ring	
	Coupling Constant of C-(Glycopyranosyl)N-methoxyphthalimides	S4
3.	Table S3. Comparison between Experimental and Calculated Ring	
	Coupling Constant of 10-Deoxy-1,6-dioxaspiro[4.5]decane Compounds	S5
4.	Table S4. Comparison between Experimental and Calculated Long-range	
	⁴ <i>J</i> _w Coupling Constants	S5
5.	Table S5. Selected signals of ¹ H NMR spectra of labelled [PhCH- ² H] 31	
	and [PhCH- ² H] 97 .	S6
6.	Table S6. Selected signals of ${}^{13}C{H}$ NMR spectra of labelled [PhCH- ${}^{2}H$] 31	
	and [PhCH- ² H] 97 .	S6
7.	Figure S1. ¹ H NMR spectrum of [PhCH- ² H] 31 .	S7
8.	Figure S2. ¹ H NMR spectrum of [PhCH- ² H] 97 .	S7
9.	Figure S3. ¹³ C{H} NMR spectrum of [PhCH- ² H] 31.	S8
10.	. Figure S4. ¹³ C{H} NMR spectrum of [PhCH- ² H] 97	S8
11.	. Table S7. Comparison between Experimental and Calculated Ring Coupling	
	Constant of 4-Deoxy-6,8-dioxabicyclo[3.2.1]octane Compounds	S9
12.	. Table S8. Comparison between Experimental and Calculated Ring Coupling	
	Constant of 3-C-(α-D-ribofuranosyl)1-propoxyphthalimides.	S9
13.	. Table S9. Reactivity Differences between LGs in the 1,5-Hydrogen Atom Transfer-	_
	Surzur-Tanner Rearrangement Sequence for the Synthesis of 1,6-Dioxaspiro[4.5]de	ecane
	and 6,8-Dioxabicyclo[3.2.1]octane Scaffolds.	S10
14.	. Figures S5–S94. ¹ H and ¹³ C{1H} NMR spectra of all new compoundsS11–	S100

Compound	Conformation ^b	${}^{3}J_{1,2}$ [Hz]	${}^{3}J_{2,3}$ [Hz]	${}^{3}J_{3,4}$ [Hz]	${}^{3}J_{4,5}$ [Hz]
1	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	6.4	9.2	9.5	9.2
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	0.9	2.5	2.8	1.2
	${}^{3}J_{\text{exp.}}{}^{c}$	5.5	9.0	7.8	n.o.
2	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	5.8	9.0	8.7	9.2
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	1.2	2.6	3.6	1.6
	${}^{3}J_{\text{exp.}}$	5.5	9.4	5.7	n.o.
3	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	8.8	9.3	9.0	9.2
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	0.8	2.4	3.4	1.4
	${}^{3}J_{\text{exp.}}$	9.5	9.5	n.o.	8.0
4	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	8.7	8.9	9.1	9.2
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	0.9	2.9	3.8	1.5
	${}^{3}J_{\text{exp.}}$	9.5	8.9	9.3	9.5
5	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	0.8	2.9	9.6	9.2
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	8.8	2.5	3.3	1.4
	${}^{3}J_{\text{exp.}}$	2.6	3.4	8.7	8.4
6	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	1.0	2.3	9.1	9.2
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	8.7	2.6	3.3	1.5
	${}^{3}J_{\text{exp.}}$	2.9	2.9	n.o.	n.o.
7	${}^{4}C_{1} ({}^{3}J_{\text{calc}})$	0.4	2.6	9.5	9.2
	${}^{1}C_{4} ({}^{3}J_{\text{calc}})$	6.1	3.0	3.4	1.3
	${}^{3}J_{\rm exp}$	1.0	3.3	9.3	9.8
8	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	0.1	2.2	9.1	9.1
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	6.2	2.7	3.8	1.5
	${}^{3}J_{\text{exp.}}$	< 1	1.9	n.o.	n.o.
9	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	0.3	3.0	2.6	5.3
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	5.4	9.0	2.7	0.5
	${}^{3}J_{\text{exp.}}$	3.0	5.9	3.2	4.5
10	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	0.5	2.4	2.6	5.2
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	5.0	9.4	2.8	0.4
	${}^{3}J_{\text{exp.}}$	3.3	6.3	3.1	4.1
11	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	1.2	1.7	4.1	10.0, 7.5
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	4.9	7.7	4.4	1.6, 1.6
	${}^{3}J_{\text{exp.}}$	2.0	3.3	5.2	7.9, 6.0
12	${}^{4}C_{1} ({}^{3}J_{\text{calc.}})$	0.8	2.8	2.5	10.4, 6.3
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	5.1	8.5	2.9	0.6, 2.2
	${}^{3}J_{\text{exp.}}$	1.3	4.1	n.o.	n.o.

Table S1. Comparison between Experimental and Calculated Ring Coupling Constant of 3-*C*-(Glycopyranosyl)1-propoxyphthalimides.^{*a*}

^{*a*}Vicinal ring coupling constants (${}^{3}J_{\text{HCCH}}$) were calculated from a generalization of the Karplus equation established by Haasnoot et al.¹ as implemented in Maestro version 9.0, Schrödinger, LLC, New York, NY, 2009.

^bMinimized structure performed with AMBER* force field as implemented in MacroModel, version 9.9.013 with the GB/SA solvent model for CHCl₃, Schrödinger, LLC, New York, NY, 2009. The structures of compounds containing phosphorous were minimized with Chem3D 19.0. ^cExperimental ${}^{3}J_{\text{HH}}$ extracted from simulated 1D ¹HNMR spectrum using the DAISY program as implemented in TOPSPIN, version 4.0.6, for Bruker.

Compound	Conformation ^b	${}^{3}J_{1,2}$ [Hz]	$^{3}J_{2,3}$ [Hz]	$^{3}J_{3,4}$ [Hz]	$^{3}J_{4,5}$ [Hz]	<i>d</i> O1'–H5 [Å] ^{<i>c</i>}
16	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	5.8	9.1	9.4	9.2	2.425
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	0.3	2.6	2.4	0.9	5.653
	${}^{3}J_{\exp}{}^{d}$	4.6	7.1	6.5	6.8	
17	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	6.6	8.2	8.6	9.1	2.411
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	0.3	2.7	2.0	1.0	5.570
	${}^{3}J_{\text{exp.}}$	5.3	7.4	7.0	7.0	
18	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	6.6	8.2	8.7	9.2	2.410
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	0.2	2.8	2.5	1.0	5.565
	${}^{3}J_{\text{exp.}}$	4.3	6.4	5.8	6.2	
19	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	6.5	8.2	8.5	9.1	2.280
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	0.5	2.8	2.1	1.0	5.589
	${}^{3}J_{\text{exp.}}$	4.7	7.3	7.3	7.9	
20	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	6.0	8.9	3.1	0.5	2.412
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	0.1	3.2	2.9	5.8	5.644
	${}^{3}J_{\text{exp.}}$	5.4	9.1	3.2	2.1	
21	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	6.1	9.0	2.1	-0.1	2.906
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	-0.1	2.8	3.3	6.2	5.583
	${}^{3}J_{\text{exp.}}$	5.6	8.2	2.9	2.7	
22	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	9.2	2.8	3.3	1.5	4.540
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	2.0	3.7	5.4	6.2	3.013
	${}^{3}J_{\text{exp.}}$	7.6	3.2	5.2	3.7	
23	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	0.2	3.1	3.1	5.7	4.674
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	5.7	9.3	2.7	0.7	3.862
	${}^{3}J_{\text{exp.}}$	5.9	9.3	3.4	2.0	
24	${}^{4}C_{1} ({}^{3}J_{\text{calc}})$	0.3	2.6	2.7	5.3	4.541
	${}^{1}C_{4} ({}^{3}J_{\text{calc}})$	5.6	9.3	2.7	0.1	3.031
	$^{3}J_{\text{exp.}}$	5.0	7.9	3.3	2.5	

Table S2. Comparison between Experimental and Calculated Ring Coupling Constant of C-(Glycopyranosyl)N-methoxyphthalimides.^{*a*}

^{*a*}Vicinal ring coupling constants (${}^{3}J_{HCCH}$) were calculated from a generalization of the Karplus equation established by Haasnoot et al.¹ as implemented in Maestro version 9.0, Schrödinger, LLC, New York, NY, 2009.

^bMinimized structure performed with AMBER* force field as implemented in MacroModel, version 9.9.013 with the GB/SA solvent model for CHCl₃, Schrödinger, LLC, New York, NY, 2009. The structures of compounds containing phosphorous were minimized with Chem3D 19.0. ^cThe minimum distance O1'–H5 for each conformational isomer, was calculated performing a coordinate scan calculation of the O1'–C1'–C1–O1 dihedral from –180 to 180° in increments of 5°.

^dExperimental ${}^{3}J_{HH}$ extracted from simulated 1D ¹HNMR spectrum using the DAISY program as implemented in TOPSPIN, version 4.0.6, for Bruker.

Compound	Conformation ^b	${}^{3}J_{2a,3}$ [Hz]	${}^{3}J_{2e,3}$ [Hz]	${}^{3}J_{3,4}$ [Hz]	${}^{3}J_{4,5}$ [Hz]	${}^{3}J_{4,5a}$ [Hz]	${}^{3}J_{4,5e}$ [Hz]
25	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	11.1	4.6	8.7	9.2		
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	2.7	3.0	3.2	1.5		
	${}^{3}J_{\text{exp.}}{}^{c}$	11.5	5.1	8.9	9.9		
31	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	2.4	3.3	2.8	5.2		
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	11.1	4.6	2.2	0.4		
	${}^{3}J_{\text{exp.}}$	12.1	4.5	2.7	1.7		
37	${}^{4}C_{1} \left({}^{3}J_{\text{calc.}} \right)$	3.2	2.5	4.1		10.2	7.1
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	10.0	6.5	3.8		1.2	1.8
	${}^{3}J_{\text{exp.}}$	8.7	6.3	5.5		2.4	1.0
38	${}^{4}C_{1}({}^{3}J_{\text{calc.}})$	2.5	3.0	3.1		10.3	6.7
	${}^{1}C_{4} ({}^{3}J_{\text{calc.}})$	10.8	5.3	2.7		0.7	2.1
	$^{3}J_{\text{exp.}}$	11.7	5.3	3.5		2.3	1.6

Table S3. Comparison between Experimental and Calculated Ring Coupling Constant of 10-Deoxy-1,6-dioxaspiro[4.5]decane Compounds.^{*a*}

^{*a*}Vicinal ring coupling constants (${}^{3}J_{HCCH}$) were calculated from a generalization of the Karplus equation established by Haasnoot et al.¹ as implemented in Maestro version 9.0, Schrödinger, LLC, New York, NY, 2009.

^bMinimized structure performed with AMBER* force field as implemented in MacroModel, version 9.9.013 with the GB/SA solvent model for CHCl₃, Schrödinger, LLC, New York, NY, 2009. The structures of compounds containing phosphorous were minimized with Chem3D 19.0.

structures of compounds containing phosphorous were minimized with Chem3D 19.0. "Experimental ${}^{3}J_{HH}$ extracted from simulated 1D ¹HNMR spectrum using the DAISY program as implemented in TOPSPIN, version 4.0.6, for Bruker.

Compound	Conformation	$\Phi_1 \left[{}^{\mathrm{o}} ight]^a$	$\Phi_2 \left[{}^{\mathrm{o}} \right]^a$	${}^{4}J_{\mathrm{W}}$	${}^{4}J_{\text{calc.}}\left[\mathrm{Hz}\right]^{b}$	${}^{4}J_{\text{exp.}} [\text{Hz}]^{c}$
31	${}^{1}C_{4}$	176.2	-176.8	${}^{4}J_{2a,4}$	1.3	1.3
[PhCH- ² H] 31	${}^{1}C_{4}$	173.8	-173.5	${}^{4}J_{2a,4}$	1.3	1.0
45	${}^{4}C_{1}$	-168.6	-160.2	${}^{4}J_{2,1'a}$	1.1	1.1
46	$^{1}H_{2}$	164.1	161.9	${}^{4}J_{2,4}$	1.1	1.5
47	$^{1}C_{4}$	170.4	-164.7	${}^{4}J_{2,4}$	1.2	1.2
(5- ² H) 47	$^{1}C_{4}$	170.4	-164.7	${}^{4}J_{2,4}$	1.2	1.2
53	${}^{4}C_{1}$	-171.8	-158.5	${}^{4}J_{2,1'a}$	1.1	1.1

Table S4. Comparison between Experimental and Calculated Long-range ${}^{4}J_{w}$ Coupling Constants.

^{*a*}Dihedral angles calculated over minimized structures using AMBER* force field as implemented in MacroModel, version 9.9.013 with the GB/SA solvent model for CHCl₃, Schrödinger, LLC, New York, NY, 2009.

^{*b*}Long-range ⁴*J*_{HH} were calculated from three-parameters equation (⁴*J*_{HH} = $\cos^2 \Phi_1 + \cos^2 \Phi_2 - 0,7$) as established by Abraham et al.²

^cAll experimental ${}^{4}J_{\rm HH}$ were extracted from simulated 1D ¹HNMR spectra using the DAISY program as implemented in TOPSPIN, version 4.0.6, for Bruker.

Table S5. Selected signals of	¹ H NMR spectra of labelled	[PhCH- ² H] 31 and	[PhCH- ² H] 97 .
Tuble bet beleeted bightib of	II I think speecha of facefied	I non not uno	11011 11/2/1

Compound	Compound 6-H [ppm] (rel. int.)		2-H _{ax} [ppm] (rel. int.)		3-H _{ax} [ppm] (rel. int.)		4-PhCHD-O [ppm] (rel. int.)	
	CDCl ₃	C_6D_6	CDCl ₃	C_6D_6	CDCl ₃	C_6D_6	CDCl ₃	C ₆ D ₆
[PhCH- ² H] 31	1.130 (d, 1.5H) ^a 1.133 (d, 0.3H) 1.135 (d, 1.2H)	1.276 (d, 1.5H) ^a 1.280 (d, 1.5H)	2.32 (dd, 1H)	2.494 (dd, 0.5H) 2.496 (dd, 0.5H)	3.929 (ddd, 0.5H) 3.931 (ddd, 0.5H)	4.02 (ddd, 1H)	4.71(br s, 0.1H) 4.72 (d, 0.4H) 4.93 (br s, 0.5H) 4.95 (d, 0.4H)	4.57 (br s, 0.1H) 4.59 (d, 0.4H) 5.02 (br s, 0.5H) 5.05 (d, 0.4H)
[PhCH- ² H] 97	n. o. ^{<i>b. c</i>}	$\begin{array}{c} 4.05 \ (\mathrm{dd}, \ 0.5)^b \\ 4.06 \ (\mathrm{dd}, \ 0.5) \\ 4.107 \ (\mathrm{dd}, \ 0.5) \\ 4.105 \ (\mathrm{dd}, \ 0.5) \end{array}$	n. o. ^c	n. o. ^c	3.56 (dd, 1H)	3.73 (dd, 1H)	4.589 (br s, 0.4H) 4.60 (d, 0.1H) 4.90 (br s, 0.4H) 4.91 (d, 0.1H)	4.58 (br s, 0.4H) 4.61 (d, 0.1H) 5.05 (br s, 0.4H) 5.07 (d, 0.1H)

^{*a*}6-Me. ^{*b*}6-CH₂. ^{*c*}Not observed, overlapped with other signals.

|--|

Compound	nd C4[ppm] (rel. int.)		4-PhCHD-O	4-PhCHD-O [ppm] (rel. int.)		
	CDCl ₃	C_6D_6	CDCl ₃	C_6D_6		
[PhCH- ² H] 31	74.97 (0.5) 75.02 (0.1) 75.09 (0.4)	76.85 (0.5) 76.88 (0.1) 76.93 (0.4)	73.59 (t, J_{CD} = 22.1 Hz) (0.6) 74.18 (s) (0.4)	74.85 (t, $J_{CD} = 22.1$ Hz) (0.6) 75.26 (s) (0.4)		
[PhCH- ² H] 97	73.56 (0.44) 73.59 (0.44) 73.64 (0.12)	75.48 (0.44) 75.51 (0.44) 75.55 (0.12)	74.35 (t, J_{CD} = 22.1 Hz) (0.88) 74.73 (s) (0.12)	75.05 (t, $J_{CD} = 21.1$ Hz) (0.44) 75.08 (t, $J_{CD} = 22.1$ Hz) (0.44) 75.45 (s) (0.12)		

Figure S1. ¹H NMR (500 MHz, CDCl₃) of [PhCH-²H]**31** (D/H 1.5:1, dr = 4:1) as a 1R/1S mixture (85:15), only major isomer shown.

Figure S2. ¹H NMR (500 MHz, C₆D₆) of [PhCH-²H]**97** (D/H 7:1, dr = 1:1).

Figure S3. ¹³C{H} NMR (125.7 MHz, C_6D_6) of [PhCH-²H]**31** (D/H 1.5:1, dr = 4:1) as a 1*R*/1*S* mixture (85:15), only major isomer shown.

Figure S4. ¹³C{H} NMR (125.7 MHz, C₆D₆) of [PhCH-²H]**97** (D/H 7:1, dr = 1:1).

Compound	Conformation	${}^{3}J_{1,2}$ [Hz]	${}^{3}J_{2,3}$ [Hz]	${}^{3}J_{3,4a}$ [Hz]	${}^{3}J_{3,4e}$ [Hz]	${}^{3}J_{1,1'a}$ [Hz]	${}^{3}J_{1,1'b}$ [Hz]
45	${}^{4}C_{1}$ (Calc.) ^b	3.6	7.5	10.2	6.3	6.1	1.1
	Exper. ^c	4.3	8.0	10.1	6.6	5.0	0.0
53	${}^{4}C_{1}$ (Calc.)	4.2	6.7	9.5	6.8	6.4	1.7
	Exper.	3.9	7.8	10.0	6.5	5.1	0.0
[4- ² H] 55	${}^{1}C_{4}$ (Calc.)	3.4	7.6	10.2	6.2	6.3	1.3
	Exper.	4.7	8.2	n.o.	6-7	4.7	0.0
61	${}^{1}C_{4}$ (Calc.)	2.6	3.2	10.3	6.1	6.3	1.2
	Exper.	2.8	4.1	11.1	6.0	5.8	0.9

Table S7. Comparison between Experimental and Calculated Ring Coupling Constant of 4-Deoxy-6,8-dioxabicyclo[3.2.1]octane Compounds.^{*a*}

^{*a*}Vicinal ring coupling constants (${}^{3}J_{\text{HCCH}}$) were calculated from a generalization of the Karplus equation established by Haasnoot et al.¹ as implemented in Maestro version 9.0, Schrödinger, LLC, New York, NY, 2009.

^bMinimized structure performed with AMBER* force field as implemented in MacroModel, version 9.9.013 with the GB/SA solvent model for CHCl₃, Schrödinger, LLC, New York, NY, 2009. The structures of compounds containing phosphorous were minimized with Chem3D 19.0.

^cExperimental ${}^{3}J_{\text{HH}}$ extracted from simulated 1D ¹HNMR spectrum using the DAISY program as implemented in TOPSPIN, version 4.0.6, for Bruker

Compound	Conformation ^{<i>a</i>}	${}^{3}J_{\mathrm{H,H}}$	${}^{3}J_{1,2}$ [Hz]	$^{3}J_{2,3}$ [Hz]	${}^{3}J_{3,4}$ [Hz]
13	${}^{3}T_{2}$ [27%, $P_{\rm N} = 2^{\rm o}$, $\varphi_{\rm m} = 13^{\rm o}$]	${}^{3}J_{\text{calc.}}$	5.69	6.49	3.86
	$^{3}T_{2}$ [73%, $P_{\rm S} = 354^{\rm o}$, $\varphi_{\rm m} = 48^{\rm o}$]	${}^{3}J_{\text{calc.}}$	2.56	3.99	7.70
		${}^{3}J_{\mathrm{avg.}}$	3.40	4.66	6.67
		${}^{3}J_{\text{exp.}}{}^{b}$	3.40	4.66	6.67
14	$^{3}T_{2}$ [55%, $P_{\rm N} = 358^{\rm o}$, $\varphi_{\rm m} = 57^{\rm o}$]	${}^{3}J_{\text{calc.}}$	2.06	3.05	8.72
	$^{2}T_{3}$ [45%, $P_{\rm S} = 179^{\rm o}$, $\phi_{\rm m} = 3^{\rm o}$]	${}^{3}J_{\text{calc.}}$	6.49	6.53	2.11
		${}^{3}J_{\rm avg.}$	4.06	4.62	5.74
		${}^{3}J_{\text{exp.}}{}^{b}$	4.06	4.62	5.74
15	$^{3}T_{2}$ [100%, $P_{\rm S} = 9^{\rm o}$, $\varphi_{\rm m} = 52^{\rm o}$]	${}^{3}J_{\text{calc.}}$	3.05	3.61	8.84
	${}^{3}T_{2} [0\%, P_{\rm S} = 1^{\rm o}, \phi_{\rm m} = 20^{\rm o}]$	${}^{3}J_{\text{calc.}}$	5.20	6.24	4.70
		${}^{3}J_{\mathrm{avg.}}$	3.05	3.61	8.84
		${}^{3}J_{\text{exp.}}{}^{b}$	2.88	3.88	9.06

Table S8. Comparison between Experimental and Calculated Ring Coupling Constant of $3-C-(\alpha-D-ribofuranosyl)1$ -propoxyphthalimides.

^{*a*}The conformation of the five-membered ring has been established by pseudorotational analysis and designed using the Altona-Sundaralingam phase angle (*P*) and puckering amplitude (φ_m).³ ^{*b*}Experimental ³J_{HH} extracted from simulated 1D ¹HNMR spectrum using the DAISY program as implemented in TOPSPIN, version 4.0.6, for Bruker.

Compound	Sugar Ring	LG	Method	Product	Yield (%)
1	α-D-gluco	Ac	В	25	50
2		PO(OPh) ₂	D	(2- ² H) 25	62
3	β-D-gluco	Ac	D	(2- ² H) 25	33
4		PO(OPh) ₂	D	(2- ² H) 25	55
5	α-D- <i>manno</i>	Ac	D		
6		PO(OPh) ₂	D	(2- ² H) 25	52
7	β-D- <i>manno</i>	Ac	Е	[2- ² H] 25	50
8		PO(OPh) ₂	Е	[2- ² H] 25	65
9	α-L- <i>fuco</i>	Ac	D	[PhCH- ² H] 31	53
10		PO(OPh) ₂	А	31	52
11	α,β-D - arabino	PO(OPh) ₂	А	37	60
12	β-D- <i>arabino</i>	PO(OPh) ₂	D	[2- ² H] 38	63
13	α-D- <i>ribo</i>	Ac	Е	[2- ² H] 39	40
14		Tf	А	39	46
15		PO(OPh) ₂	А	42 + 43	62
16	α-D-gluco	Ac	Е	[4- ² H] 45	39
17		PO(OPh) ₂	D	[4- ² H] 45	58
18		Ts	D	[4- ² H] 45	58
19		PO(OPh) ₂	А	53	30
20	α-D-galacto	Ac	G	45	21
21		PO(OPh) ₂	Е	[4- ² H] 45	41
22	α-L- <i>rhamno</i>	PO(OPh) ₂	Е	[4- ² H] 61	66
23	α-L- <i>fuco</i>	Ac	G	55	23
24		PO(OPh) ₂	Е	[4- ² H] 55	41

Table S9. Reactivity Differences between LGs in the 1,5-Hydrogen Atom Transfer–Surzur-Tanner-rearrangement Sequence for the Synthesis of 1,6-Dioxaspiro[4.5]decane and 6,8-Dioxabicyclo[3.2.1]octane Scaffolds.^{*a*}

_

^aReagents and Conditions: Method A: n-Bu₃SnH (1 equiv), AIBN (0.1 equiv), PhCH₃ (0.013 M), reflux. *Method B*: n-Bu₃SnH (1 equiv/h), AIBN (0.1 equiv), PhCH₃ (0.013 M), reflux. *Method D*: n-Bu₃SnD (1 equiv), AIBN (0.1 equiv), PhCH₃ (0.013 M), reflux. *Method E*: n-Bu₃SnD (1 equiv), BF₃•Et₂O (0.2 equiv), AIBN (0.1 equiv), PhCH₃ (0.013 M), reflux. *Method G*: Hantzsch ester (0.37 equiv/h), *fac*-Ir(ppy)₃ (0.01 equiv), THF (0.007M), rt, blue LED.

References

- (1) Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; Altona, C. The Relationship between Proton-Proton NMR Coupling Constants and Substituent Electronegativities-I. An Empirical Generalization of the Karplus Equation. *Tetrahedron* 1980, *36*, 2783–2792. <u>https://doi.org/10.1016/0040-4020(80)80155-4</u>.
- (2) Abraham, R. J.; Gottschalck, H.; Paulsen, H.; Thomas, W. A. The Proton Magnetic Resonance Spectra and Conformations of Cyclic Compounds. Part II. The p.m.r. Spectra of the Conduritols. J. Chem. Soc. 1965, 6268–6277. <u>https://doi.org/10.1039/jr9650006268.</u>
- (3) Program Matlab GUI as described in the following: (a) Hendrickx, P. M.; Martins, J. C. A User-Friendly Matlab Program and GUI for the Pseudorotation Analysis of Saturated Five-Membered Ring Systems Based on Scalar Coupling Constants. *Chem. Cent. J.* 2008, 2, 20. <u>https://doi.org/10.1186/1752-153X-2-20</u>. For a description of the pseudorotation concept, see: (b) Altona, C.; Sundaralingam, M. Conformational Analysis of the Sugar Ring in Nucleosides and Nucleotides. A New Description Using the Concept of Pseudorotation. *J. Am. Chem. Soc.* 1972, *94*, 8205–8212. <u>https://doi.org/10.1021/ja00778a043</u>. (c) Houseknecht, J. B.; Altona, C.; Hadad, C. M.; Lowary, T. L. Conformational Analysis of Furanose Rings with PSEUROT: Parametrization for Rings Possessing the Arabino, Lyxo, Ribo, and Xylo Stereochemistry and Application to Arabinofuranosides. *J. Org. Chem.* 2002, *67*, 4647–4651. <u>https://doi.org/10.1021/jo025635q</u>.

Fig. S5. 1 H NMR (500 MHz, CDCl₃) and 13 C{H} NMR (100.6 MHz, CDCl₃) of compound 1.

Fig. S6. ¹H NMR (500 MHz, $CDCl_3$) and ¹³C{H} NMR (125.7 MHz, $CDCl_3$) of compound 2.

Fig. S7. ¹H NMR (400 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 3.

Fig. S8. 1 H NMR (500 MHz, CDCl₃) and 13 C{H} NMR (100.6 MHz, CDCl₃) of compound 4.

Fig. S9. ¹H NMR (500 MHz, CDCl₃) and $^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 5.

Fig. S10. ¹H NMR (500 MHz, CDCl₃) and $^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 6.

Fig. S11. ¹H NMR (500 MHz, CDCl₃) and $^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 7.

Fig. S12. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **8**.

Fig. S13. ¹H NMR (500 MHz, CDCl₃) and $^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 9.

Fig. S14. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 10.

Fig. S15. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 12.

Fig. S16. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 13.

Fig. S17. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 14.

Fig. S18. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 15.

Fig. S19. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 16.

Fig. S20. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound 17.

Fig. S21. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **18**.

Fig. S22. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 19.

Fig. S23. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **20**.

Fig. S24. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **21**.

Fig. S25. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 22.

Fig. S26. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **23**.

Fig. S27. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **24**.

Fig. S28. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **25**.

Fig. S29. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound 26β .

Fig. S30. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound 26α .

Fig. S31. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **27β**.

Fig. S32. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound 27α .

Fig. S33. ¹H NMR (500 MHz, CDCl₃) and $^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 29 β .

Fig. S34. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound 30β .

Fig. S35. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound 30α .

Fig. S36. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 31.

Fig. S37. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **34**.

Fig. S38. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 35.

Fig. S39. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 36.

Fig. S40. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 37.

Fig. S41. 1 H NMR (400 MHz, CDCl₃) and 13 C{H} NMR (125.7 MHz, CDCl₃) of compound 38.

Fig. S42. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **39**.

Fig. S43. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 40.

Fig. S44. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 41.

Fig. S45. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **42**.

Fig. S46. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **43**.

Fig. S47. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 44.

Fig. S48. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 45.

Fig. S49. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **47**.

Fig. S50. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **48**.

Fig. S51. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 49.

Fig. S52. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **51**.

Fig. S53. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 52.

Fig. S54. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 53.

Fig. S55. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound 54.

Fig. S56. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound [4-²H]**55**.

Fig. S57. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **56**.

Fig. S58. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **57**.

Fig. S59. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 58.

Fig. S60. ¹H NMR (400 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 59.

Fig. S61. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound (1-²H)**60**.

Fig. S62. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 61.

Fig. S63. ¹H NMR (400 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 63.

Fig. S64. ¹H NMR (400 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 64.

Fig. S65. ¹H NMR (400 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 66.

Fig. S66. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **67**.

Fig. S67. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 69.

Fig. S68. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **70**.

Fig. S69. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **72**.

Fig. S70. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **73**.

Fig. S71. ¹H NMR (500 MHz, CDCl₃) and $^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 75.

Fig. S72. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **76**.

Fig. S73. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **77**.

Fig. S74. ¹H NMR (500 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (125.7 MHz, CDCl₃) of compound 83.

Fig. S75. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **85**.

Fig. S76. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **86**.

Fig. S77. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **87**.

Fig. S78. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound 88.

Fig. S79. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **90**.

Fig. S80. ¹H NMR (400 MHz, CDCl₃) and ${}^{13}C{H}$ NMR (100.6 MHz, CDCl₃) of compound 91.

Fig. S81. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **92**.

Fig. S82. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **93**.

Fig. S83. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **94**.

Fig. S84. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **95**.

Fig. S85. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **97**.

Fig. S86. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **98**.

Fig. S87. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **99**.

Fig. S88. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound 101.

Fig. S89. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **103**.

Fig. S90. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **104**.

Fig. S91. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **105**.

Fig. S92. ¹H NMR (500 MHz, C₆D₆) and ¹³C{H} NMR (125.7 MHz, C₆D₆) of compound **107**.

Fig. S93. ¹H NMR (500 MHz, CDCl₃) and ¹³C{H} NMR (125.7 MHz, CDCl₃) of compound **108**.

Fig. S94. ¹H NMR (400 MHz, CDCl₃) and ¹³C{H} NMR (100.6 MHz, CDCl₃) of compound **109**.