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1 Bayesian parameter inference

February 26 - March 15
The early phase of the epidemic is characterized by a low number of cumulative infections. We can therefore
directly use the absolute numbers of new infections as input for our agent-based model, as we are always
far away from the epidemic threshold. We choose broad, uniform priors for all the parameters that can be
found in table S1. Note that the probability for random connections varies on several orders of magnitude
p ∈ [10−6, 100] and we therefore infer this parameter on a logarithmic scale. We use nABC = 100 and obtain
an effective sample size of neff ≈ 46.

Table S1. Priors of model parameters for the time period February 26 to March 15.

Parameter Variable Prior distribution
Infection probability pI Uniform(0.01,0.07)
Probability of random links log10 p Uniform(0,-6)
Number of links k/2 DiscreteUniform(1,16)
Initially exposed nE(0) Uniform(0,47)
Initially infectious nI(0) Uniform(0,160)

March 16 - June 6
In the time period from March 16 to June 6 Germany recorded 177652 cases in total. This means that
it becomes computationally unfeasible to replicate the population directly in our model without noticing
a strong effect of the removed (immune) agents. Therefore, we scale down the total number of infections
to our system size and compare the relative number of cases per 300,000 people instead. Assuming our
hypothesis that the NPIs lead to a strongly clustered transmission network holds, we expect a large number
of unconnected communities in Germany in that time period, which we represent as distinct model instances.
We use nABC = 200 and obtain an effective sample size of neff ≈ 105. Our priors for this period can be found
in table S2.

June 7 - September 15
To infer the parameters of the system during this time period we first sample parameters from the posterior
distribution which we obtained for the previous time period, and let the system evolve for 81 days (corre-
sponding to the time period from March 16 to June 6). Next, we change the infection probability pI and
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Table S2. Priors of model parameters for the time period March 16 to June 6.

Parameter Variable Prior distribution
Infection probability pI Uniform(0.01,0.03)
Probability of random links log10 p Uniform(0,-6)
Number of links k/2 DiscreteUniform(1,11)
Initially exposed nE(0) Uniform(3,57)
Initially infectious nI(0) Uniform(38,414)

assign a new transmission network based on a new set of parameters p, k. For these parameters, we choose
the same prior distributions as for the previous time period, see Table S3. We use nABC = 200 and obtain
an effective sample size of neff ≈ 164.

Table S3. Priors of model parameters for the time period June 7 to September 15.

Parameter Variable Prior distribution
Infection probability pI Uniform(0.01,0.03)
Probability of random links log10 p Uniform(0,-6)
Number of links k/2 DiscreteUniform(1,11)

2 Parameter scan

SEIR model
To investigate the disease dynamics in the small-world network, we perform a parameter scan. We vary
the network parameters p, k while keeping the rest of the parameters fixed at n = 105, pI = 0.02, nE(0) =
0, nI(0) = 10. Our choice for pI during the parameter scan is motivated by reports of the COVID-19
individual-level secondary attack rate (SAR) in the household of 17 %. Inverting Eq 3 we obtain

pI = 1− τI
√

1− SAR ≈ 0.02. (S1)

We vary the number of contacts from k = 2, 4, . . . , 24 and sample the probability for random contacts in
eleven equally-spaced steps on the log scale from log10 p = −5, . . . , 0. As initial condition, 10 random agents
are set to the infectious state and the system is simulated until there are no more exposed and infectious
agents. We repeat this process five times per parameter combination (p, k). As output we determine the
peak of simultaneously infectious people

npeak(p, k) := max
t
nI(t, p, k), (S2)

and the cumulative infection curves

N(t, p, k) = nI(t, p, k) + nR(t, p, k). (S3)

SIR model
To compare our analytical prediction of the wave speed in the highly clustered network (see below), we define
a simplified SIR model. The difference to the SEIR model is that there is no exposed state, and that the
waiting times for the transition from the infectious to the removed state are drawn from an exponential
distribution with mean 〈τI〉 = 10d. For the parameter scan, we initialze the system of n = 105 agents in a
ring-like topology (no random links) with a single infectious agent and let it evolve for 365 time steps. We
repeat this process 20 times per parameter k. We then record the cumulative infection curves

N(t, k) = nI(t, k) + nR(t, k), (S4)
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see Fig. 5a. We calculate the linear growth rate from the cumulative infections as

c(k) :=

〈
N(tmax,k, k)−N(tmin, k)

tmax,k − tmin

〉
, (S5)

where we neglect the initial exponential growth by skipping tmin = 〈τI〉 = 10 time steps. We also determine
the maximum time tmax,k until the epidemic dies out for each parameter k so that after tmax,k time steps,
the cumulative number of infections did not increase in any realization of the system

3 Mathematical analysis

Epidemic threshold
We can calculate an upper bound for the number of contacts kc by demanding R0 = 1, i. e. a single infectious
person in a network of susceptible people will effect on average one other person. Using Eq 3 (Main Text)
we can calculate the expected number of infections as

R0 = 1 = kc [1− (1− pI)τI ]⇐⇒ kc =
1

1− (1− pI)τI
. (S6)

For pI = 0.02 and 〈τI〉 ≈ 10 we obtain kc ≈ 5.5.

Derivation of differential-equation approximation
In order to predict the linear growth of infections in the highly clustered small-world network, we consider a
simplified variant of our original model, where we neglect the exposed state and assume that the progression
times are distributed exponentially (SIR model, section 2.2 in Supplementary Information). Then we describe
the state of an agent j in our model by a set of three Boolean stochastic variables sj(t), ij(t), rj(t) = 0, 1,
where sj + ij + rj = 1 and sj = 1 indicates that the agent is susceptible, ij = 1 means he is infectious
and if rj = 1 he is removed. We represent the event "agent j becomes infectious at time t" by the Boolean
stochastic variable αj(t) with

P (αj(t) = 1) = 1− (1− pI)Ij(t), (S7)

where Ij(t) :=
∑
m∈Nj im(t) is the number of infectious agents in the neighborhood Nj of agent j. Similarly,

the event "agent j is removed at time t" is given by the stochastic variable βj(t) with

P (βj(t) = 1) = pR = 1/τI . (S8)

During one time step the state of all agents changes as

sj(t+ 1) = sj(t)− αj(t)sj(t), (S9)
ij(t+ 1) = ij(t) + αj(t)sj(t)− βj(t)ij(t), (S10)
rj(t+ 1) = rj(t) + βj(t)ij(t). (S11)

We want to calculate the expected value of the state variable under a mean-field approximation, i. e. we
replace the expected value of a function f(X) of any random variable X by the function evaluated at the
expected value of the random variable, 〈f(X)〉 ≈ f(〈X〉). In particular, this also means that we neglect any
correlations between the state variables of neighboring nodes. We denote the expected values of the state
variables as σj(t) := 〈sj(t)〉 , ιj(t) := 〈ij(t)〉 , ρj := 〈rj(t)〉. For the expected number of infectious neighbors
we obtain

〈Ij(t)〉 = (1− p)
k/2∑

m=−k/2

ιm(t) +
kp

N − 1

∑
m6=j

ιm(t), (S12)

where N is the total number of nodes in the network and p is the probability of a random link (see Model
definition).
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Next, we also introduce a small time step length τ > 0 and continuous time t̂ = τt along with the
transition rates κI := pI/τ, κR := pR/τ . In the following we only consider continuous time and drop the hat
for better readability. For τ → 0 we can approximate the expected value of αj(t) by a Taylor approximation
around pI = 0 as

P (αj(t) = 1) = 1− (1− κIτ)Ij(t) ≈ κIτIj(t). (S13)

We can further simplify our system by considering the regime N → ∞, and introducing the spatial step
length ∆x > 0 so that N∆x = L = const. We can then replace the state probabilities σj(t), ιj(t), ρj(t)
by the probability densities σ(x = j∆x, t), ι(x = j∆x, t), ρ(x = j∆x, t). This allows us to approximate
the expected number of infectious agents in the neighborhood by expanding the terms ι(x + m∆x, t) ≈
ι(x, t) +m∆x∂xι(x, t) +m2∆x2/2∂xxι(x, t) to obtain

〈Ij(t)〉 = (1− p)
k/2∑

m=−k/2,m 6=0

ιj+m(t) +
kp

N − 1

∑
m 6=j

ιm(t) ≈

≈ (1− p)k
(
ι(x, t) + ∆x2k̃∂xxι(x, t)

)
+
kp

L

∫ L

0

ι(x, t) dx =: Ψ(x, t), (S14)

where k̃ := (k/2 + 1)(k + 1)/12. Approximating all time-dependent functions by their Taylor approximation
up to second order f(t+ τ) ≈ f(t) + τf ′(t) + τ2/2f ′′(t) and rearranging terms we obtain the following set of
non-linear PDEs for the expected value of the agents’ states

∂ttσ(x, t) +
2

τ
∂tσ(x, t) = −2

τ
κIσj(t)Ψ(x, t), (S15)

∂ttι(x, t) +
2

τ
∂tι(x, t) =

2

τ
[κIσ(x, t)Ψ(x, t)− κRι(x, t)] , (S16)

∂ttρ(x, t) +
2

τ
∂tρ(x, t)) =

2

τ
κRι(x, t). (S17)

We introduce the constant Dk := ∆x2k̃
τ and can now identify two separate time scales: A fast time scale, with

terms ∝ 1
τ which characterizes the disease progression, and a slow timescale with terms ∝ Dk that describes

the wave of infections in the network. Finally, with I(t) := 1/L
∫ L

0
ι(x, t) dx as the total number of infectious

people, we obtain the following set of nonlocal PDEs

∂ttσ(x, t) = −2

τ
{∂tσ(x, t) + κIkσ(x, t) [(1− p) (ι(x, t)) + pI(t)]} − κIkσ(x, t)Dk∂xxι(x, t), (S18)

∂ttι(x, t) =
2

τ
{−∂tι(x, t) + κIkσ(x, t) [(1− p) (ι(x, t)) + pI(t)]− κRι(x, t)}+

+κIkσ(x, t)Dk∂xxι(x, t), (S19)

∂ttρ(x, t) =
2

τ
{−∂tρ(x, t)) + κRι(x, t)} . (S20)

In the regime τ → 0 we expect the the system to quickly reach a local steady state, so that the fast time
scale terms vanish. We can use this to obtain an approximate value for the wave speed of infections.

Calculation of the infection wave speed in the highly clustered network
To calculate the wave speed of infections we consider the regime p = 0, so that we can neglect the nonlocal
coupling by I(t) in Eq S18. As described above, if we let lim τ,∆x→ 0 with finite Dk, we expect the system
to always be in a local steady state, corresponding to the fast time scale terms being 0. Then, we arrive at
the following equation for the density of infected people

∂ttι(x, t) = κIkDkσ(x, t)∂xxι(x, t). (S21)

If we consider a point far away from the wave front, we have σ(x, t) ≈ 1 (everyone is susceptible), and Eq S21
reduces to the wave equation

∂ttι(x, t) = κIkDk∂xxι(x, t) (S22)
with the wave speed c =

√
κIkDk ∝ k

√
k.

4



Supplementary Figures

Figure S1. Dynamics in the agent-based SEIR model. Susceptible agents can become exposed, if they are
linked to infectious agents. Exposed agents become infectious after the waiting time τE , and infectious agents are
removed after τI . All nodes are updated simultaneously at every time step t.
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