Supplementary Table 1. SNPs underlying the pathway-based genetic risk scores for age-related macular degeneration.

Suggested Pathway of AMD	dbSNP ID	Chr	Pos. (hg19)	RefSeq Gene	Risk	Other	Weight
Complement Pathways	rs187328863	1	106380158	KCNT2	T		0.38623
Complement Pathways	rs148553336	1	196613173	CEH	T	C C	1 1637
Complement Pathways	rs570618	1	196657064	CEH	Ť	G	0.55141
Complement Pathways	rs10922109	1	196704632	CFH	Ċ	A	0.66958
Complement Pathways	rs35292876	1	196706642	CFH	T	C	0.43398
Complement Pathways	rs121913059	1	196716375	CFH	T	Ċ	3,8635
Complement Pathways	rs61818925	1	196815450	CFHR1	T	G	0.16257
Complement Pathways	rs191281603	1	196958651	CFHR5	С	G	0.89702
Extracellular Matrix Remodeling	rs11884770	2	228086920	LOC654841	С	Т	0.080248
Extracellular Matrix Remodeling	rs62247658	3	64715155	ADAMTS9	С	Т	0.12671
Extracellular Matrix Remodeling	rs140647181	3	99180668	COL8A1	С	Т	0.61508
Extracellular Matrix Remodeling	rs55975637	3	99419853	COL8A1	Α	G	0.14899
Complement Pathways	rs10033900	4	110659067	CFI	Т	С	0.1427
Complement Pathways	rs141853578	4	110685820	CFI	Т	С	1.633
	rs114092250	5	35494448	SPEF2	G	Α	0.33716
Complement Pathways	rs62358361	5	39327888	C9	Т	G	0.51329
Complement Pathways	rs116503776	6	31930462	SKIV2L	G	А	0.66418
Complement Pathways	rs144629244	6	31946792	STK19	A	G	1.0253
Complement Pathways	rs181705462	6	31947027	STK19	Т	G	0.44737
Complement Pathways	rs114254831	6	32155581	PBX2	G	A	0.12483
Extracellular Matrix Remodeling	rs943080	6	43826627	LINC01512	Т	С	0.13934
	rs7803454	7	99991548	PILRA	Т	С	0.14304
	rs1142	7	104756326	SRPK2	Т	С	0.13057
	rs79037040	8	23082971	LOC389641	Т	G	0.11331
	rs71507014	9	73438605	TRPM3	G	GC	0.11024
	rs10781182	9	76617720	LOC101927358	T	G	0.10031
	rs1626340	9	101923372	TGFBR1	G	A	0.12318
Lipid Metabolism	rs2740488	9	107661742	ABCA1	A	C	0.11123
	rs12357257	10	24999593	ARHGAP21	A	G	0.11008
ARMS2/HTRA1	rs3/50846	10	124215565	ARMS2	C		1.0744
	rs3138141	12	56115778	FAM138D	A	0	0.16536
	rs61941274	12	112132610	ACADIU	A	G	0.46924
	rs9564692	13	31821240	BJGLUT			0.10425
	1985130	14	68769199	RAD31B			0.12523
 Lipid Motabolism	rc2042339	14	58680054		G	A T	0.10403
	rc2070805	15	58722020		G	۱ ۸	0.14337
Lipid Metabolism	rs17231506	16	5600/528		с т	A C	0.10207
Lipid Metabolism	re5817082	16	560073/0	CETP	C I		0.1358/
	rs728023/2	16	7523/872	CTRB2	C C		0.10004
Complement Pathways	rs11080055	17	26649724	TMFM97	C C	Δ	0.22303
	rs6565597	17	79526821	NPLOC4	т	C	0.10928
	rs67538026	19	1031438	CNN2	Ċ	T	0.1053
Complement Pathways	rs12019136	19	5835677	FUT6	G	A	0 29875
Complement Pathways	rs147859257	19	6718146	C3	G	Т	1 1683
Complement Pathways	rs2230199	19	6718387	C3	G	Ċ	0.38789
Lipid Metabolism	rs429358	19	45411941	APOE	T	Č	0.39882
Lipid Metabolism	rs73036519	19	45748362	MARK4	G	Č	0.092776
	rs142450006	20	44614991	ZNF335	TTTTC	T	0.17438
	rs201459901	20	56653724	C20orf85	T	TA	0.28024
Extracellular Matrix Remodeling	rs5754227	22	33105817	TIMP3	Т	С	0.23796
	rs8135665	22	38476276	SLC16A8	Т	С	0.13406

Supplementary Figure 1. Scree plot showing the proportion of variance explained by each principal component, following principal components analysis applied to the cross-sectional dataset of phenotypic characteristics.

Supplementary Figure 2. Plot showing the proportion of the unexplained sums of squares according to cluster number, following k-means cluster analysis applied to the cross-sectional dataset of phenotypic characteristics.

Supplementary Figure 3. Plot showing the Calinski-Harabasz scores according to cluster number, following k-means cluster analysis applied to the cross-sectional dataset of phenotypic characteristics.

Supplementary Figure 4. Dendrograms following agglomerative hierarchical cluster analysis applied to the cross-sectional dataset of phenotypic characteristics, according to linkage type. Dissimilarity is plotted on the y-axis and each participant is shown on the x-axis. Each horizontal line represents the fusion of a pair of clusters, with the height of the segment showing the dissimilarity between the members of the pair. Clusters that fuse near the bottom of the tree are more similar, while clusters that fuse near the top are less similar.

Single linkage (cophenetic correlation coefficient 0.83)

Average linkage (cophenetic correlation coefficient 0.88)

Complete linkage (cophenetic correlation coefficient 0.63)

Supplementary Figure 5. Plot showing the Calinski-Harabasz scores according to cluster number, following agglomerative hierarchical cluster analysis applied to the cross-sectional dataset of phenotypic characteristics, according to linkage type.

Single linkage

Supplementary Figure 6. Scree plot showing the proportion of variance explained by each principal component, following principal components analysis applied to the longitudinal dataset of phenotypic characteristics.

Supplementary Figure 7. Plot showing the proportion of the unexplained sums of squares according to cluster number, following k-means cluster analysis applied to the longitudinal dataset of phenotypic characteristics.

Supplementary Figure 8. Plot showing the Calinski-Harabasz scores according to cluster number, following k-means cluster analysis applied to the longitudinal dataset of phenotypic characteristics.

Supplementary Figure 9. Dendrograms following agglomerative hierarchical cluster analysis applied to the longitudinal dataset of phenotypic characteristics, according to linkage type. Dissimilarity is plotted on the y-axis and each participant is shown on the x-axis. Each horizontal line represents the fusion of a pair of clusters, with the height of the segment showing the dissimilarity between the members of the pair. Clusters that fuse near the bottom of the tree are more similar, while clusters that fuse near the top are less similar.

Single linkage (cophenetic correlation coefficient 0.82)

Average linkage (cophenetic correlation coefficient 0.88)

Complete linkage (cophenetic correlation coefficient 0.73)

Supplementary Figure 10. Plot showing the Calinski-Harabasz scores according to cluster number, following agglomerative hierarchical cluster analysis applied to the longitudinal dataset of phenotypic characteristics, according to linkage type.

Average linkage

Complete linkage

Single linkage

Supplementary Figure 11. CART classification trees and related confusion matrices and performance metrics for the clusters identified by phenotypic characteristics, based on CART classification by the same phenotypic characteristics.

* Classification by CART was not possible for cluster F, owing to very small numbers (n=5).

Cluster A Confusion matrix predicted N Y N 230 0 Y 1 367 Accuracy = 0.998328 Sensitivity = 1.000000	Cluster B Confusion matrix predicted N Y N 367 1 Y 0 230 Accuracy = 0.998328 Sensitivity = 0.995671	<pre> Cluster C Confusion matrix predicted N Y N 117 20 Y 12 449 Accuracy = 0.946488 Sensitivity = 0.957356</pre>
Specificity = 0.995671	Specificity = 1.000000	Specificity = 0.906977
Cluster D Confusion matrix predicted N Y N 477 22 Y 9 90 Accuracy = 0.948161 Sensitivity = 0.803571 Specificity = 0.981481	Cluster E Confusion matrix predicted N Y N 586 0 Y 0 12 Accuracy = 1.000000 Sensitivity = 1.000000 Specificity = 1.000000	+
Cluster G Confusion matrix predicted N Y N 597 1 Y 0 0 Accuracy = 0.998328 Sensitivity = 0.000000 Specificity = 1.000000	Cluster H Confusion matrix predicted N Y N 584 0 Y 0 14 Accuracy = 1.000000 Sensitivity = 1.000000 Specificity = 1.000000	

Supplementary Figure 12. Results of logistic regression with LASSO, with related confusion matrices and performance metrics, for the clusters identified by phenotypic characteristics, based on logistic regression according to the same phenotypic characteristics.

NAME	А	В	С	D	Е
DrAreaGrd			0.34	-0.51	
MaxDrSz			0.17	-0.27	
edu1			-0.08	0.44	
edu3				-0.04	
GAconf1	1.02	-1.02			
GAconf3			-1.82		5.04
GAconf4			-2.19	2.70	
GAconf5					

Log odds ratio estimates

Variables never selected: white, age, male, GAconf2, GAsqrt, GArate, CGA, CalcDrsn, GA_FE, RPDprob, VA, edu2, smkever1, smkever2, and smkever3.

* Logistic regression not possible for cluster F, owing to very small numbers (n=5).

Name	G	Н
GAconf3		
smkever2	0.36	-0.36

Variables never selected: age, male, white, GArate, CGA, CalcDrsn, DrAreaGrd, MaxDrSz, GA_FE, RPDprob, VArate, edu1, edu2, edu3, GAconf1, GAconf2, GAconf4, GAconf5, smkever1, and smkever3.

Cluster A	Cluster B	Cluster C
Confusion matrix	Confusion matrix	Confusion matrix
pred N Y	pred N Y	pred N Y
N 230 0	N 367 1	N 57 11
Y 1367	Y 0 230	Y 72 458
Accuracy = 0.998328	Accuracy = 0.998328	Accuracy = 0.861204
Sensitivity = 1.000000	Sensitivity = 0.995671	Sensitivity = 0.976546
Specificity = 0.995671	Specificity = 1.000000	Specificity = 0.441860
	+	+
Cluster D	Cluster E	l
Confusion matrix	Confusion matrix	l
pred N Y	pred N Y	l
N 474 57	N 586 0	l
Y 12 55	Y 0 12	l
Accuracy = 0.884615	Accuracy = 1.000000	I
Sensitivity = 0.491071	Sensitivity = 1.000000	I
Specificity = 0.975309	Specificity = 1.000000	I
	+	+
Cluster G	Cluster H	
Confusion matrix	Confusion matrix	l
У	Г Х	l
pred N Y	pred N Y	
N 288 0	N 310 0	l
Y 0 310	Y 0 288	l
Accuracy = 1.000000	Accuracy = 1.000000	l
Sensitivity = 1.000000	Sensitivity = 1.000000	I
Specificity = 1.000000	Specificity = 1.000000	1

Supplementary Figure 13. Cohen's effect sizes for the clusters identified by phenotypic characteristics, based on effect sizes for the same phenotypic characteristics.

Cluster C

Cluster D

Cluster F

The effect sizes are plotted in ascending order on the y axis. Horizontal reference lines mark effect sizes for +/-0.2, +/-0.5, and +/-0.8. Points are colored red or black according to whether they are for Cohen's d (continuous features) or Cohen's h (binary features). The green and blue curves are expected values and 95% confidence intervals from a simulation of 1000 iterations under the null hypothesis that the cluster is unrelated to the features.

Cluster E

Supplementary Figure 14. CART classification trees and related confusion matrices and performance metrics for the clusters identified by phenotypic characteristics, based on CART classification by the genetic characteristics.

* Meaningful classification by CART was not possible for clusters D-F, owing to small numbers.

Summary statistics for cluster A	Summary statistics for cluster B	I.	Summary statistics for cluster C
Confusion matrix	Confusion matrix	1	Confusion matrix
Predicted N Y	Predicted N Y	1	Predicted N Y
N 61 20	N 180 52	1	N 16 10
Y 52 180	Y 20 61	1	¥ 47 240
Accuracy = 0.769968	Accuracy = 0.769968	I.	Accuracy = 0.817891
Sensitivity = 0.900000	Sensitivity = 0.539823	I.	Sensitivity = 0.960000
Specificity = 0.539823	Specificity = 0.900000	L	Specificity = 0.253968
	+	-+-	

```
Summary statistics for cluster G
Confusion matrix
predicted N Y
N 101 41
Y 45 126
Accuracy = 0.725240
Sensitivity = 0.754491
Specificity = 0.691781
```

Supplementary Figure 15. Cohen's effect sizes for the clusters identified by phenotypic characteristics, based on effect sizes for the genetic characteristics.

The effect sizes are plotted in ascending order on the y axis. Horizontal reference lines mark effect sizes for +/-0.2, +/-0.5, and +/-0.8. Points are colored red or black according to whether they are for Cohen's d (continuous features) or Cohen's h (binary features). The green and blue curves are expected values and 95% confidence intervals from a simulation of 1000 iterations under the null hypothesis that the cluster is unrelated to the features.

In all figures, the dots are mostly inside the blue intervals, suggesting that there is no strong evidence that the genetic variables are closely related to the phenotypic clusters.

Note: the logistic regression with LASSO either failed to converge or the predicted classification for every participant was either always inside (for clusters A, C, and G) or outside (for clusters B, D, and H). Essentially, the method failed to use the genetic data to classify the participants in a way similar to the clusters.

Supplementary Figure 16. Scree plot showing the proportion of variance explained by each principal component, following principal components analysis applied to the dataset of genetic characteristics.

Supplementary Figure 17. Plot showing the proportion of the unexplained sums of squares according to cluster number, following k-means cluster analysis applied to the dataset of genetic characteristics.

Supplementary Figure 18. Plot showing the Calinski-Harabasz scores according to cluster number, following k-means cluster analysis applied to the dataset of genetic characteristics.

Supplementary Figure 19. Dendrograms following agglomerative hierarchical cluster analysis applied to the dataset of genetic characteristics, according to linkage type. Dissimilarity is plotted on the y-axis and each participant is shown on the x-axis. Each horizontal line represents the fusion of a pair of clusters, with the height of the segment showing the dissimilarity between the members of the pair. Clusters that fuse near the bottom of the tree are more similar, while clusters that fuse near the top are less similar.

Single linkage (cophenetic correlation coefficient 0.49)

Average linkage (cophenetic correlation coefficient 0.62)

Complete linkage (cophenetic correlation coefficient 0.48)

Supplementary Figure 20. Plot showing the Calinski-Harabasz scores according to cluster number, following agglomerative hierarchical cluster analysis applied to the dataset of genetic characteristics, according to linkage type.

Average linkage

Single linkage

Complete linkage

Supplementary Table 2. Demographic, phenotypic, and genetic characteristics of the genetic clusters.

Variable		Cluster K (N=106)	Cluster L (N=135)	Cluster M (N=19)	Cluster N (N=11)	Cluster O (N=11)	Cluster P (N=16)	Cluster Q (N=7)	Cluster R (N=6)	Cluster S (N=2)
Age (years): median (IQR)		75.1 (70.0, 79.3)	75.1 (69.3, 79.5)	73.8 (64.4, 77.4)	72.4 (71.4, 77.4)	77.5 (73.1, 80.0)	71.4 (65.3, 76.3)	66.5 (58.0, 77.3)	74.2 (70.6, 77.3)	67.0 (65.7, 68.2)
Male: n (%)		50 (47.2)	49 (36.3)	10 (52.6)	4 (36.4)	3 (27.3)	6 (37.5)	1 (14.3)	2 (33.3)	1 (50.0)
White: n (%)		106 (100.0)	135 (100.0)	16 (84.2)	11 (100.0)	11 (100.0)	16 (100.0)	7 (100.0)	6 (100.0)	2 (100.0)
Education: n (%)	High School or Less	34 (32.1)	48 (35.6)	7 (36.8)	5 (45.5)	5 (45.5)	4 (25.0)	1 (14.3)	2 (33.3)	1 (50.0)
	At least some College	54 (50.9)	63 (46.7)	8 (42.1)	3 (27.3)	6 (54.5)	9 (56.3)	2 (28.6)	2 (33.3)	1 (50.0)
	Post-graduate	18 (17.0)	24 (17.8)	4 (21.1)	3 (27.3)	0 (0.0)	3 (18.8)	4 (57.1)	2 (33.3)	0 (0.0)
Smoking status: n (%)	Current	4 (3.8)	8 (5.9)	2 (10.5)	0 (0.0)	0 (0.0)	0 (0.0)	2 (28.6)	0 (0.0)	0 (0.0)
	Former	52 (49.1)	75 (55.6)	9 (47.4)	8 (72.7)	4 (36.4)	10 (62.5)	3 (42.9)	5 (83.3)	1 (50.0)
	Never	50 (47.2)	52 (38.5)	8 (42.1)	3 (27.3)	7 (63.6)	6 (37.5)	2 (28.6)	1 (16.7)	1 (50.0)
Central GA: n (%)	Yes	40 (37.7)	45 (33.3)	4 (21.1)	4 (36.4)	2 (18.2)	3 (18.8)	1 (14.3)	0 (0.0)	1 (50.0)
Calcified Drusen: n (%)	Yes	42 (39.6)	57 (42.2)	5 (26.3)	8 (72.7)	5 (45.5)	7 (43.8)	3 (42.9)	4 (66.7)	1 (50.0)
GA Configuration: n (%)	Small (single patch <1DA)	76 (71.7)	74 (54.8)	13 (68.4)	6 (54.5)	10 (90.9)	11 (68.8)	4 (57.1)	5 (83.3)	1 (50.0)
	Multifocal	18 (17.0)	35 (25.9)	2 (10.5)	3 (27.3)	1 (9.1)	2 (12.5)	1 (14.3)	1 (16.7)	1 (50.0)
	Horseshoe, Ring	1 (0.9)	4 (3.0)	1 (5.3)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Solid (center or not)	10 (9.4)	20 (14.8)	3 (15.8)	2 (18.2)	0 (0.0)	3 (18.8)	1 (14.3)	0 (0.0)	0 (0.0)
	Indeterminate	1 (0.9)	2 (1.5)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (14.3)	0 (0.0)	0 (0.0)
Drusen Area Within the ETDRS Grid: n (%)	Definite, < circle C1	1 (0.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Definite, < circle C2	2 (1.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Definite, < circle I2	0 (0.0)	3 (2.2)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Definite, < circle O2	5 (4.7)	5 (3.7)	1 (5.3)	0 (0.0)	0 (0.0)	0 (0.0)	1 (14.3)	0 (0.0)	1 (50.0)
	Definite, < 1/2 DA	25 (23.6)	22 (16.3)	3 (15.8)	2 (18.2)	3 (27.3)	3 (18.8)	2 (28.6)	0 (0.0)	0 (0.0)
	Definite, < 1 DA	20 (18.9)	37 (27.4)	5 (26.3)	6 (54.5)	0 (0.0)	6 (37.5)	2 (28.6)	5 (83.3)	0 (0.0)

Variable		Cluster K (N=106)	Cluster L (N=135)	Cluster M (N=19)	Cluster N (N=11)	Cluster O (N=11)	Cluster P (N=16)	Cluster Q (N=7)	Cluster R (N=6)	Cluster S (N=2)
	Definite, >= 1 DA	53 (50.0)	68 (50.4)	10 (52.6)	3 (27.3)	8 (72.7)	7 (43.8)	2 (28.6)	1 (16.7)	1 (50.0)
Maximum Drusen Size: n (%)	Definite, <63 um (circle C0)	1 (0.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	Definite, <125 um (circle C1)	3 (2.8)	1 (0.7)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (14.3)	0 (0.0)	0 (0.0)
	Definite, <250 um (circle C2)	45 (42.5)	69 (51.1)	11 (57.9)	1 (9.1)	4 (36.4)	7 (43.8)	5 (71.4)	2 (33.3)	1 (50.0)
	Definite, >=250 um (circle C2)	57 (53.8)	65 (48.1)	8 (42.1)	10 (90.9)	7 (63.6)	9 (56.3)	1 (14.3)	4 (66.7)	1 (50.0)
GA in Fellow Eye: n (%)		26 (24.5)	31 (23.0)	7 (36.8)	0 (0.0)	2 (18.2)	2 (12.5)	1 (14.3)	0 (0.0)	2 (100.0)
RPD score: median (IQR)		0.28 (0.06, 0.69)	0.37 (0.13, 0.80)	0.19 (0.08, 0.66)	0.77 (0.04, 0.89)	0.28 (0.11, 0.85)	0.40 (0.14, 0.84)	0.22 (0.05, 0.43)	0.48 (0.12, 0.69)	0.22 (0.13, 0.31)
Square Root of GA area (mm): median (IQR)		0.8 (0.6, 1.2)	0.9 (0.6, 1.3)	0.7 (0.6, 1.3)	1.1 (0.9, 2.0)	0.8 (0.6, 1.1)	0.8 (0.6, 1.1)	1.3 (0.6, 1.8)	0.6 (0.6, 1.0)	1.1 (0.9, 1.3)
GA Enlargement from Regression of Square Root of GA area (mm/year): median (IQR)		0.19 (0.08, 0.37)	0.33 (0.08, 0.55)	0.18 (0.11, 0.30)	0.33 (0.24, 0.51)	0.18 (0.10, 0.29)	0.13 (0.04, 0.22)	0.48 (0.36, 0.64)	0.05 (0.02, 0.59)	0.62 (0.21, 1.03)
Visual acuity (ETDRS letters): median (IQR)		76.0 (66.0, 83.0)	75.0 (64.0, 81.0)	74.0 (72.0, 87.0)	67.0 (48.0, 73.0)	71.0 (60.0, 85.0)	78.0 (72.0, 82.5)	75.0 (71.0, 84.0)	79.0 (77.0, 81.0)	80.5 (73.0, 88.0)
52 SNP-based Genetic Risk Score: median (IQR)		15.1 (14.3, 15.8)	16.0 (15.0, 16.6)	15.6 (14.3, 16.4)	16.4 (16.1, 16.8)	13.2 (12.2, 14.5)	17.1 (16.4, 17.3)	14.5 (13.8, 14.9)	15.5 (14.9, 16.1)	19.0 (18.8, 19.2)
Complement GRS: median (IQR)		9.0 (8.3, 9.5)	8.5 (8.1, 9.0)	9.2 (8.7, 9.7)	8.7 (8.3, 9.3)	8.0 (6.8, 8.3)	8.7 (8.5, 9.2)	6.4 (6.3, 7.1)	8.5 (8.0, 8.8)	12.7 (12.0, 13.3)
Extracellular matrix GRS: median (IQR)		0.9 (0.8, 1.0)	0.8 (0.7, 0.9)	1.0 (0.9, 1.1)	0.8 (0.8, 0.9)	0.5 (0.5, 0.7)	1.2 (1.2, 1.3)	1.0 (0.9, 1.2)	1.5 (1.5, 1.6)	0.9 (0.8, 0.9)
Lipid metabolism GRS: median (IQR)		1.7 (1.5, 1.8)	1.8 (1.7, 1.9)	1.2 (1.1, 1.3)	1.3 (1.2, 1.4)	1.9 (1.7, 2.0)	1.8 (1.7, 1.9)	1.9 (1.6, 2.1)	1.8 (1.8, 1.9)	2.1 (1.9, 2.3)
ARM52 GRS: median (IQR)		0.0 (0, 0)	1.1 (1.1, 2.1)	1.1 (0, 1.1)	2.1 (2.1, 2.1)	0.0 (0, 0)	2.1 (1.1, 2.1)	1.1 (1.1, 2.1)	0.0 (0, 1.1)	0.0 (0, 0)

	l vs J		K vs L	
Phenotypic	Raw	Adjusted*	Raw	Adjusted*
characteristic				
Age	0.71	1.00	0.63	1.00
Sex	0.052	1.00	0.088	1.00
White / non-white	0.067	1.00	1.00	1.00
Educational level 1 (y/n)	0.92	1.00	0.57	1.00
Educational level 2 (y/n)	0.65	1.00	0.51	1.00
Educational level 3 (y/n)	0.48	1.00	0.88	1.00
Smoking level 1 (y/n)	0.42	1.00	0.18	1.00
Smoking level 2 (y/n)	0.66	1.00	0.32	1.00
Smoking level 3 (y/n)	0.42	1.00	0.45	1.00
Square root of GA area (mm)	0.26	1.00	0.38	1.00
GA central involvement (y/n) ⁺	0.86	1.00	0.47	1.00
GA configuration level 1 (y/n) ⁺	0.014	0.64	0.007	0.35
GA configuration level 2 (y/n) ⁺	0.23	1.00	0.088	1.00
GA configuration level 3 (y/n) ⁺	0.49	1.00	0.26	1.00
GA configuration level 4 (y/n) ⁺	0.13	1.00	0.21	1.00
GA configuration level 5 (y/n) ⁺	0.37	1.00	0.71	1.00
GA fellow eye involvement (y/n)†	0.70	1.00	0.77	1.00
Square root of GA enlargement rate (mm/year)	0.020	0.86	0.023	0.95
Total drusen area within AREDS grid (7 levels) ⁺	0.50	1.00	0.26	1.00
Maximum drusen size within AREDS grid (4 levels) ⁺	0.95	1.00	0.82	1.00
Calcified drusen presence (y/n) ⁺	0.58	1.00	0.69	1.00
Reticular pseudodrusen score (0.0-1.0) ⁺	0.79	1.00	0.23	1.00
BCVA (ETDRS letter score) ⁺	0.18	1.00	0.23	1.00
GA central involvement (y/n)‡	0.27	1.00	0.41	1.00
GA configuration level 1 (y/n)‡	0.008	0.37	0.023	0.96
GA configuration level 2 (y/n)‡	0.75	1.00	0.64	1.00
GA configuration level 3 (y/n)‡	0.077	1.00	0.34	1.00
GA configuration level 4 (y/n)‡	0.003	0.16	0.083	1.00
GA configuration level 5 (y/n)‡	0.62	1.00	0.88	1.00
GA fellow eye involvement (y/n)‡	0.52	1.00	0.39	1.00
Total drusen area within AREDS grid (7 levels)‡	0.48	1.00	0.10	1.00
Maximum drusen size within AREDS grid (4 levels)‡	0.18	1.00	0.20	1.00
Calcified drusen presence (y/n)‡	0.93	1.00	0.70	1.00
Reticular pseudodrusen score (0.0-1.0)‡	0.72	1.00	0.38	1.00
BCVA rate (change in ETDRS letter score/year)‡	0.14	1.00	0.96	1.00

Supplementary Table 3. Results: p-values for pairwise comparisons of the genetic clusters, according to phenotypic characteristics, by t test.

* Adjusted for multiple testing: adjusted for the 35 phenotypic characteristics by MULTTEST bootstrap and adjusted for the 2 cluster groupings by multiplying by 2.

+ considered cross-sectionally

‡ considered longitudinally (as defined in Table 1)

Supplementary Figure 21. CART classification trees and related confusion matrices and performance metrics for the clusters identified by genetic characteristics, based on CART classification by the same genetic characteristics.

Cluster I vs J		Cluster K vs L
Confusion matrix		Confusion matrix
predicted N Y	i	predicted N Y
N 132 5		N 106 7
Y 16 160	I	Y 0 128
Accuracy = 0.932907	I	Accuracy = 0.970954
Sensitivity = 0.969697	I	Sensitivity = 0.948148
Specificity = 0.891892	Ι	Specificity = 1.000000

Supplementary Figure 22. Results of logistic regression with LASSO, with related confusion matrices and performance metrics, for the clusters identified by genetic characteristics, based on CART classification by the same genetic characteristics.

Log odds ratio estimates from logistic regression with LASSO

Coefficients	for cluster I v	sJ	cluster K vs	L	
(Intercept)	31.783035	- I	(Intercept)	3.137322	
complement	-7.010674	1	complement	-1.156121	
lipids	19.859494		lipids	2.188386	
ecm	-30.966055		ecm	•	
arms2	24.786952		arms2	4.188201	
		- I			
Confusion mat	trix		Confusion matrix		
pred N Y			pred N Y	<u>r</u>	
N 148 0			N 97 ()	
Y 0165		1	Y 9135	5	
Accuracy = 1	.000000		Accuracy = 0	0.962656	
Sensitivity = 1.000000			Sensitivity	= 1.000000	
Specificity =	= 1.000000	I	Specificity	= 0.915094	

Supplementary Figure 23. Cohen's effect sizes for the clusters identified by genetic characteristics, based on CART classification by the same genetic characteristics.

Cluster I vs J

Cluster K vs L

The effect sizes are plotted in ascending order on the y axis. Horizontal reference lines mark effect sizes for +/-0.2, +/-0.5, and +/-0.8. Points are colored red or black according to whether they are for Cohen's d (continuous features) or Cohen's h (binary features). The green and blue curves are expected values and 95% confidence intervals from a simulation of 1000 iterations under the null hypothesis that the cluster is unrelated to the features.

Supplementary Figure 24. CART classification trees and related confusion matrices and performance metrics for the clusters identified by genetic characteristics, based on CART classification by the phenotypic characteristics.

Cluster I vs J Cluster K vs L I Confusion matrix Confusion matrix I predicted Y predicted Y Ν Ν I 21 N 114 35 L Ν 76 Y 34 130 Y 30 114 T Accuracy = 0.779553Accuracy = 0.788382L Sensitivity = 0.787879Sensitivity = 0.844444Specificity = 0.770270Specificity = 0.716981Т

Supplementary Figure 25. Cohen's effect sizes for the clusters identified by genetic characteristics, based on CART classification by the phenotypic characteristics.

The effect sizes are plotted in ascending order on the y axis. Horizontal reference lines mark effect sizes for +/-0.2, +/-0.5, and +/-0.8. Points are colored red or black according to whether they are for Cohen's d (continuous features) or Cohen's h (binary features). The green and blue curves are expected values and 95% confidence intervals from a simulation of 1000 iterations under the null hypothesis that the cluster is unrelated to the features.

In all figures, the dots are mostly inside the blue intervals, suggesting that there is no strong evidence that the phenotypic variables are closely related to the genetic clusters.

Note: the logistic regression with LASSO failed. Specifically, all coefficients except the intercept term were set to 0, such that the predicted classification for every participant was either always inside or always outside the cluster. Essentially, the method failed to use the phenotypic data to classify the participants in a way similar to the clusters.