

Fig. S1. A to E: Integrated transcriptomic and epigenomic profiling of NKG2C⁺ and NKG2A⁺ NK cells from HCMV-seropositive donors. (A) MA plot depicts average transcripts-per-million (TPM) over a log10 scale on x-axis and log2 fold change on y-axis. Red dots highlight DE (FDR-adjusted p < 0.05) genes when comparing NKG2C⁺ versus NKG2A⁺ NK cells. Highlighted are top 10 DE genes ranked by TPM that show higher than a log2 FC of 1 in either direction. Dotted vertical and horizontal lines mark FC at +/- 1. Diamond signifies gene with capped TPM value. (B) Heatmaps (right) of chromatin accessibility measured by ATAC-seq, with each row representing a peak. Heatmap is split by peak categories as demarcated by color blocks (left). Categories are defined by whether they show increased accessibility in NKG2C⁺ or NKG2A⁺ NK cells and by peak type. (C) Bar plot of -log₁₀(p-values) calculated from gene ontology enrichment analysis. Depicted are all or top 25 pathways enriched among genes associated with peak regions showing higher accessibility in NKG2C+ (black) or NKG2A+ (gray) NK cells. Numbers within bar plot show fraction of DA genes out of the total gene set. (D) Genomic tracks of mapped ATAC-seq reads at the CD3E locus, with dashed lines indicating DA peak regions. The y-axis depicts normalized counts, while the x-axis displays genomic axis with scale bar. (E) Genomic tracks of mapped ATAC-seq reads at the BCL11B locus, with dashed box indicating a differentially accessible (DA) peak region when comparing NKG2C⁺ to NKG2A⁺ NK cells. y-axis depict normalized counts, while x-axis displays genomic axis with scale bar. FDR = false discovery rate; FC = fold change. F to I: Phenotype of CD3 ϵ^+ NK cells in healthy donors. (F) Percentages or geometric mean fluorescence intensity (gMFI) of PD-1, CD2, CD16, Bcl-2, NKp46, and PLZF on cyCD3e⁺ NK cells and cyCD3e⁻ NK cells from each donor. Populations from the same donors are paired. (G) Frequencies of NKG2C+FccRIY+, NKG2C+FccRIY-, NKG2C-FccRIY+, and NKG2C-FccRIY- NK cells among cyCD3e+ NK cells are shown. (H) Frequencies of cyCD3&+NKG2C+ and cyCD3&+FccRIY NK cells among CD56dim NK cells are shown (n=25). (I) Geometric mean fluorescence intensity (gMFI) of HLA-Bw4 on lymphocytes from donors grouped based on cyCD3ɛ expression is shown.

Fig. S2. Detection of $cyCD3\epsilon^+$ NK cells in UCBT recipients. (A) Surface expression of NKG2C and intracellular expression of CD3 ϵ and Fc ϵ RI γ in total NK cells from UCBT recipients at indicated timepoints post-UCBT. (B) Expression of NKG2A and NKG2C on $cyCD3\epsilon^+$ NK cells from UCBT patients with or without HCMV reactivation post-transplant. The percentages of NKG2A⁺ (open square) or NKG2A⁻NKG2C⁻ (open circle) or NKG2A⁻NKG2C⁺ (black circle) cells among $cyCD3\epsilon^+$ NK cells were evaluated. The day of HCMV reactivation post-UCBT is indicated.

Fig. S3. A and B: Detection of HCMV-induced NK cells in fibroblast-adapted HCMV vaccines infected subjects and HCMV-seronegative donors. Expressions of NKG2C, cyCD3 ϵ , and Fc ϵ RI γ among CD56^{dim} NK cells from (A) vaccinated subjects at one-year post-vaccination and (B) HCMV-seronegative donors. C to E: Bcl11b and is a target of Notch signaling (C) NK cells were purified from cyCD3 ϵ ⁺ NK cell positive donors and incubated with OP9 cells or OP9-DL1 cells. The gMFI of CD3 ϵ was evaluated among cyCD3 ϵ ⁺ NK cell (n=8). One representative HCMV seropositive donor whose NK cells of cyCD3 ϵ expression overlap with NKG2C expression is shown. Data are representative of two independent experiments with the same results. (D) Human cyCD3 ϵ expression among murine NK cells isolated from indicated organs harvested from human CD3 ϵ transgenic F1 heterozygotes mice. (E) Bcl11b expression of purified NK cells after culture with parental OP9 cells (open blue) or OP9-DL1 cells (red tint) was shown. Isotypes are shown in black lines. F to H: CyCD3 ϵ ⁺ NK cells response to cell targets. (F) Mock infected fibroblasts (dashed) or HCMV infected fibroblasts (solid) were stained with anti-HCMV IEA antibody. (G) Surface expression of HLA-ABC on HCMV infected fibroblasts (green), non-infected fibroblasts (red), and IFN- γ treated non-infected fibroblasts (blue) is shown with isotype controls. (H) CD107a and IFN- γ responses were assessed in cyCD3 ϵ ⁺ and cyCD3 ϵ ⁺ NK cells against K562 cells. Responses of cyCD3 ϵ ⁺ or cyCD3 ϵ ⁻ populations from the same individual are paired (n=10).

Fig. S4. Detection of cyCD3 ε **among cell lines.** (A) Surface and intracellular expression of CD3 ε in NK92, MOLT4, and NKL cells. Isotype controls are indicated in dashed lines. (B) MOLT4, NKL, and NK92 cells were lysed and immunoprecipitated with control IgG or anti-CD3 ε antibodies and blotted using anti-CD3 ε , anti-CD3 γ , anti-CD3 δ , and anti-CD247. Results are representative of two independent experiments. (C) *LCK* raw counts of NKG2A⁺ and NKG2C⁺ NK cells were shown. Paired symbols indicate populations from the same donor. (D) The purity of NK cells used for immunoprecipitated with control IgG or anti-CD3 ε antibody for CD247 and Lck detection. (F) CD16⁺ NK92MI cells were stimulated with anti-CD16 antibody (3G8) or control antibody for 5 hours in the presence of GolgiStop. IFN- γ activity was evaluated in CD3 positive and CD3 negative CD16⁺ NK92MI cells. The indicated percentages of positive cells in FACS plot were determined as percentage of CD3 positive and CD3 negative NK cell populations revealing a higher frequency of responsive cells among the CD3⁺ population. Plots are representative of two independent experiments, both with similar results.