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BONE SEGMENTATION: 

Bone segmentation network implementation: 

The first step of the study was to accurately segment the bones from the 3D-DESS volumes in the 

OAI dataset. An ensemble of five 3D V-Net1 architectures were trained and tested on 72 and 30 

3D-DESS volumes, respectively, and used to segment the bone from the entire OAI dataset 

(Supplemental Figure 1a). 

 

A modified V-Net architecture was adapted from an existing TensorFlow 1.0 (Google, Mountain 

View, CA) implementation (https://github.com/MiguelMonteiro/VNet-Tensorflow) for the femur, 

tibia and patella bone segmentation. The 3D V-Net architecture consisted of an encoder-decoder 

network with the encoder network compressing the most relevant features for the segmentation 

task while the decoder network decompresses these features to reconstruct the labeled segmented 

volume. The decoder network had five levels, with each level doubling the number of 

convolutional filters and using short shortcut connections between each layer input and output in 

the form of element-wise addition. The network also used long shortcut connections between each 

mirroring level by concatenating the layer output of each encoder layer to the layer input of its 

corresponding mirrored decoder layer. These connections have been shown to improve the uniform 

update of weights for deeper CNNs and improve gradient stability2. The activation function used 

after each convolution was a rectified linear unit (ReLU), trained on the last dimension of the input, 

and the last fully connected layer was activated with a softmax function for all the classes (femur, 

tibia, patella, background). Additionally, a dropout rate of 0.05 was used to improve 

generalizability of the model during training, randomly turning off activations at a rate of 5%. 

 

Each of the five V-Net models was trained with a different distance-weighted loss functions3. The 

distance weighting was an added penalty to ensure that the segmentation accuracy was prioritized 

along the surface of the bone and cartilage. This ensured that the articular bone surface was as 

accurate as possible prior to the biomarker projection. Additionally, given the class imbalance 

between the different bones, with the femur being much larger than the patella, class weights were 

added to four of the losses to ensure that the learning process was balanced. The distance-weighted 

loss functions were: class-weighted Dice Score Coefficient (DSC) loss, class-weighted cross-

entropy loss, mixed weighted cross-entropy and class-weighted DSC loss (with the weighting 

factor for the cross-entropy loss equal to 0.1), class-weighted penalized confident output cross-

entropy loss4, and regular DSC loss. 

 

Bone segmentation network training: 

A batch size of one sample per feed-forward was used, which was the memory limit of the 

graphical processing unit (GPU). The network was trained using Adam optimizer5 with a learning 

rate of 5e-4 using TensorFlow 1.10 in a Titan 1080 Ti 12GB GPU (NVIDIA, Santa Clara, CA). 

All the weights for the 3D convolutional layers were randomly initialized with a Xavier uniform 

distribution6. The training was performed for a total of 500 epochs and stopped early after a 30-

epoch patience for validation loss non-improvement over the best validation loss reached. Data 

augmentation was performed online with an independent 50% chance of flipping the input volume 

along the lateral-medial dimension and an independent 50% chance to randomly rotate the sagittal 

plane in a range of -5 to +5 degrees in 1-degree increments. The labels were truncated to the integer 

part after the 2D sagittal affine rotation to ensure there were no artificial partial volume effects 

introduced by the augmentation. 

https://github.com/MiguelMonteiro/VNet-Tensorflow
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The bone segmentation training set consisted of 102 3D-DESS volumes that were carefully 

annotated by trained users. The age and BMI for the training split with the respective standard 

deviation was 57.2 ± 7.4 year and 27.5 ± 5.2 kg/m2 respectively. The age and BMI for the 

validation split with the respective standard deviation was 60.9 ± 10.6 year and 28.9 ± 4.2 kg/m2 

respectively. The age and BMI for the test split with the respective standard deviation was 59.4 ± 

7.6 year and 27.2 ± 4.7 kg/m2 respectively. The sex split for training, validation and test splits was 

31 males/26 females, 7 males/8 females, and 11 males/19 females respectively. The network 

training was performed with 72 patients, 57 used for training, 15 for validation. The model was 

evaluated using a test set with 30 unseen patient volumes. Table 1 summarizes the distribution of 

OA cases and healthy controls for the bone segmentation dataset as well as the statistical 

independence tests for confounding demographic factors across splits. 

 

Bone segmentation inference and ensembling 

The trained V-Net bone ensemble segmentation model was used to segment the femur, tibia, and 

patella from a total of 47,078 3D-DESS volumes in the OAI. The inference was performed in 8 

batches of 6,000 volumes and each batch lasted 3 hours. The inferred bone segmentation masks 

for all five models were then subsequently ensembled by averaging the softmax values for each 

bone across all models. The accuracy of the bone segmentation models was calculated using the 

DSC, which is proportional to the intersection over the union and calculates the doubled proportion 

of correctly classified pixels divided by the total number of pixels segmented and in the ground 

truth. The MPTS distance error calculated the mean of the errors between each closest points in 

two 3D surfaces. For large volume 3D surfaces, the MPTS becomes more useful for determining 

the accuracy of the segmentation on the surface, since the DSC would be skewed by the inner 

pixels of the volume. 

 

CARTILAGE SEGMENTATION: 

Cartilage segmentation networks implementation: 

A cartilage and menisci segmentation model ensemble was trained on 148 3D-DESS volumes and 

tested on 28 3D-DESS volumes7. The trained ensemble consisted of three 2D V-Net and three 3D 

V-Net architectures and was used to segment the cartilage and menisci in the OAI dataset 

(Supplemental Figure 1a).  

 

The same 3D V-Net architecture as the bone segmentation V-Net was implemented in Tensorflow 

1.10. The 2D V-Net architectures were derived from the 3D V-Net, where the convolution kernels 

are modified to accommodate 2D data. The 2D V-Nets were 2 levels deep with 4 convolutions at 

each level, and 4 convolutions at the bottom level, all activated with ReLU functions. At the output 

layers, a softmax activation produced the tissue segmentations. Dropout was used to improve 

generalizability of the model during training, randomly turning off activations at a rate of 5%. 

 

Cartilage segmentation networks training: 

The networks were trained using Adam optimizer with a learning rate of 1x10-4 using TensorFlow 

in a Titan 1080 Ti 12GB GPU or V100 32GB GPU. All the weights for the convolutional layers 

were randomly initialized with a Xavier uniform distribution. The training was performed with an 

early stopping patience criterion of 30 epochs, when validation loss non-improvement over the 

best validation loss was reached. Training volumes were augmented offline using a random 
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combination of geometric and intensity-based transforms, chosen to simulate 3D variations in 

patient positioning, bone shape, cartilage thickness, and MR imaging artifacts. Pooled 

training/validation data totaled 2812 3D-DESS volumes: 148 original volumes plus 2664 

augmented volumes. Volumes were also flipped to medial-first orientation, center-cropped to 

344x344x140 and normalized to their 85-th intensity percentile. 2D models were trained using 

slices of the original dataset, while 3D models were trained using the augmented dataset to prevent 

overfitting. 

 

The cartilage and menisci segmentation dataset consisted of 176 3D-DESS volumes that were 

provided by IMorphics. The age and BMI for the training-validation split with the respective 

standard deviation was 59.9 ± 1.6 and 30.9 ± 0.7 respectively. The age and BMI for the test split 

with the respective standard deviation was 71.4 ± 2.9 and 30.8 ± 1.6 respectively. The sex split for 

training-validation and test splits was 72 males/76 females and 18 males/10 females respectively. 

Each of the six segmentation models was trained on an independent data split of 50 training and 

98 validation volumes, with the same 28 testing volumes, for which the manual segmentation was 

available. 

 

Cartilage segmentation inference and ensembling: 

The 6 trained V-Nets for cartilage and menisci segmentation, were used to segment the femoral, 

tibial, and patellar cartilage, as well as the menisci, from a total of 47,078 3D-DESS volumes in 

the OAI. The inference was performed in 8 batches of 6,000 volumes and each batch lasted 3 

hours. Softmax prediction values from the 3D and 2D models from each of the independent splits 

were ensembled to produce the final probability maps. Since the OAI only collected matching T2 

MSME, needed for the compositional T2 spherical maps, MRI scans for the right knee of each 

patient, a subset of 21,118 out of the 47,078 segmented volumes were selected for this study. 

 

OA DIAGNOSIS: 

OA diagnosis model dataset: 

The 21,118 spherical images were used to train a model to diagnose OA. The dataset was divided 

into 12,634 training, 2,558 validation and 5,926 test images, with no patient overlap across splits. 

The healthy controls were patient scans that had no radiographic OA (KL<2) while the positive 

cases were patient scans with radiographic OA (KL>1). Right knee scans for each patient were 

randomly assigned to a single split while controlling for the demographic factors (age, BMI, sex). 

To test the independence of demographic factors for the OA cases across splits, two different 

statistical tests were performed. The independence of sex was tested with a Pearson’s chi-squared 

test implemented in scikit-learn8 using Python (Python Software Foundation, 

https://www.python.org/). The independence of age and BMI was tested with a one-way 

MANOVA using a MATLAB implementation. Table 1 summarizes the training, validation and 

test set splits for the bone segmentation and OA diagnosis models, along with the p-values of the 

statistical tests showing independence of demographic factors. 

 

OA diagnosis network implementation: 

A total of 18 binary classification models, one for each biomarker strategy per bone, were trained 

to extract biomarker features from the spherical biomarker representations and use them to 

diagnose OA (Supplementary Figure S1d). A Resnet9 architecture with 50 layers (Resnet50) pre-

trained with ImageNet weights was implemented in PyTorch10. The choice of architecture and 

https://www.python.org/
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hyperparameters was informed by our previous study on the relationship between bone shape and 

radiographic OA11. The Resnet50 network architecture uses shortcut residual connections that 

improve the training performance for deeper models over similar shallower models. The basic 

structure of the Resnet50 follows the pattern of three convolutional layers with a 1 x 1, 3 x 3, and 

a 1 x 1 convolutional filter size respectively. Each of these layers is paired with batch normalization 

and a ReLU activation function. 

 

All OA diagnosis model variants were initialized with ImageNet weights and fine-tuned using 

Adam optimizer with a learning rate of 1e-5 with a regularization weight decay value of 0.9, in 

order to finetune while preventing overfitting on the training set. The training was performed for 

100 epochs with an early stopping 15-epoch patience for validation loss non-improvement over 

the best validation loss reached. The models were also trained end-to-end using a weighted binary 

cross entropy loss, based on the class imbalance, with a batch size of 300 in a Tesla V100 32GB 

GPU. 

 

The OA diagnosis models were trained using the different biomarker strategies outlined in Fig. 3. 

The OA diagnosis models for each biomarker strategy were ensembled across the bones by 

averaging the softmax values outputted by each network. Therefore, each of the six biomarker 

models had a total of five predictive values: for the patella, for the tibia, for the femur, for the 

averaged predictive values of the tibia and femur, and for the average predictive values of all three 

bones. For the averaged ensembles, each anatomical region contributes equally to the final 

prediction. 

 

SUPPLEMENTAL FIGURES 

Supplementary Figure S1: (a) A bone and a cartilage segmentation model ensemble were trained 

on 72 and 148 manually segmented 3D-DESS volumes to segment the femur, tibia, and patella 

bones and corresponding cartilage. The trained models were used to segment 21,118 3D-DESS 

volumes. (b) Bone shape feature and cartilage thickness maps were obtained from the segmented 

masks. T2 values were calculated by registering 3D-DESS cartilage masks to the matching MSME 

MRI volumes and performing parametric T2 fitting on the cartilage. Each biomarker was then 

projected onto the articular bone surface, where each point contained information from each 

biomarker. (c) The articular bone surface projections were transformed into spherical coordinates. 

Six different strategies were performed to merge spherical maps per bone. (d) A total of 21,118 

merged spherical maps with corresponding KL grades were used to train classifier models to 

diagnose radiographic OA using the biomarker learned features. A different model was trained 

and tested for each biomarker strategy per bone, for a total of 18 OA diagnosis models. Each of 

the two inputs into the OA diagnosis models represents a class in the binary classifier (healthy 

KL<2 vs. OA KL>1). (e) A total of 7,437 merged spherical maps with corresponding chronic pain 

labels were used to train classifier models pretrained on its corresponding OA diagnosis model to 

predict chronic pain. A different model trained and tested for each biomarker strategy per bone, 

for a total of 18 OA diagnosis models. Each of the two inputs into the chronic pain models 

represents a class in the binary classifier (chronic pain vs. no chronic pain). 
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Supplementary Figure S2: Examples of bone and cartilage segmentation errors for three 

patients from the respective bone and cartilage segmentation test sets. Representative slices of 

the 3D bone and cartilage segmentation are shown along with their respective 3D-DESS images 

with the mean MPTS distance errors over the entire volume. The pixels in agreement between 

the trained segmentation model inference and the ground truths are labeled as green, representing 

the true positive cases. The two types of model error, false positives, where the segmentation 

misclassified non-bone or non-cartilage regions and false negatives, where the model missed the 

existing bone or cartilage, are highlighted as cyan and magenta respectively. (a, b) Bone 

segmentations and corresponding 3D-DESS slices for the three patients show minor errors along 

the articular bone surface for all three bones. The errors present can be observed along the 

femoral and tibial shaft, as well as the distal facet of the patella. (c, d) Cartilage segmentations 

and corresponding 3D-DESS slices shown for three different patients shows diffuse 

segmentation errors along the cartilage. Both of these errors are likely caused by signal 

heterogeneity and partial voluming effects. Only the articular bone surface was sampled during 

the spherical transformation, reducing the effect of certain bone segmentation errors along the 

shaft and intercondylar notch on the overall results. 
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Supplementary Figure S3: Bland-Altman plots comparing the original average values of 

cartilage thickness and cartilage T2 to the spherically transformed average values for each bone. 

The differences between the average biomarker values were calculated using the original average 

values as a reference, by subtracting the original average values from the average spherical 

values for each biomarker. The solid black line represents the zero difference. The solid gray line 

represents the mean difference and the dashed gray lines represent two standard deviations above 

or below the mean. (a) Differences between average spherical cartilage thickness and average 

original cartilage thickness for the femur. (b) Differences between average spherical cartilage 

thickness and average original cartilage thickness for the tibia. (c) Differences between average 

spherical cartilage thickness and average original cartilage thickness for the patella. (d) 

Differences between average cartilage T2 values and average original cartilage T2 values for the 

femur. (e) Differences between average cartilage T2 values and average original cartilage T2 

values for the tibia. (f) Differences between average cartilage T2 values and average original 

cartilage T2 values for the patella. 
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Supplementary Figure S4: Model training optimization results shown for all 18 models using 

the training and validation splits with two different learning rates (1x10-4 and 1x10-5), three 

types of Resnet (Resnet18, Resnet34, Resnet50), three initialization strategies (Random, 

ImageNet, OA), and four variants of layer freezing during training (first layer, first two layers, 

all layers, no layers), for a total of 612 combinations. The best performing models for each 

initialization strategy are shown with the validation AUC for each biomarker and bone. 
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SUPPLEMENTAL TABLES 

Supplementary Table S1: Summary of the bone and cartilage segmentation test set performances, 

shown both as DSC and MPTS distance errors, with their corresponding 95% confidence intervals. 

Segmentation 

model 
Class 

DSC 

(95% CI) 

MPTS (mm) 

(95% CI) 

Bone 

(n = 30) 

Femur 98.0% (98.3, 97.7) 0.406 (0.457, 0.355) 

Tibia 98.0% (98.3, 97.7) 0.390 (0.437, 0.343) 

Patella 96.4% (97.1, 95.7) 0.370 (0.425, 0.315) 

Cartilage 

(n = 28) 

Femoral 90.0% (90.7, 89.3) 0.247 (0.268, 0.226) 

Tibial 88.6% (89.9, 86.7) 0.223 (0.259, 0.187) 

Patellar 85.7% (88.2, 82.5) 0.555 (0.749, 0.361) 

 

 

Supplementary Table S2: Bootstrapped (n=100) test set OA diagnosis ROC performance for 

all six biomarker models per bone, as well as an average ensemble across all bones. Sensitivity, 

specificity, and AUC values are shown respectively, along with their corresponding 95% 

confidence intervals. The best performances per bone and ensemble are bolded. PTF = Patella + 

Tibia + Femur ensemble. 

 

Biomarker 

type 

Biomarker 

model 

Test set ROC (Sensitivity/Specificity/AUC) (95% CI) 

Patella Tibia Femur PTF 

Single 

Cartilage T2 

67.5 (67.3, 67.7) 

73.9 (73.7, 74.1) 

77.6 (77.5, 77.8) 

70.0 (69.8, 70.2) 

85.3 (85.2, 85.4) 

86.0 (85.9, 86.1) 

75.5 (75.3, 75.6) 

81.5 (81.3, 81.6) 

86.0 (85.9, 86.1) 

77.2 (77.0, 77.3) 

87.5 (87.4, 87.6) 

89.9 (89.8, 90.0) 

Cartilage 

Thickness 

68.1 (67.9, 68.3) 

72.7 (72.6, 72.9) 

77.0 (76.9, 77.1) 

68.5 (68.3, 68.7) 

86.7 (86.6, 86.8) 

85.5 (85.4, 85.6) 

69.4 (69.2, 69.6) 

90.9 (90.8, 91.0) 

89.0 (88.9, 89.1) 

73.7 (73.5, 73.9) 

90.8 (90.7, 90.9) 

90.6 (90.5, 90.7) 

Bone shape 

62.2 (62.0, 62.4) 

81.2 (81.0, 81.3) 

78.3 (78.1, 78.4) 

67.0 (66.8, 67.1) 

91.6 (91.5, 91.7) 

87.9 (87.8, 88.0) 

73.1 (73.0, 73.3) 

86.3 (86.2, 86.4) 

88.5 (88.4, 88.6) 

71.2 (71.0, 71.3) 

91.9 (91.8, 92.0) 

89.9 (89.8, 89.9) 

Fusion 

Morphological 

bone and 

cartilage fusion 

55.3 (55.2, 55.5) 

88.0 (87.9, 88.1) 

80.8 (80.7, 80.9) 

71.7 (71.6, 71.9) 

89.6 (89.5, 89.7) 

89.6 (89.5, 89.7) 

72.5 (72.3, 72.7) 

90.0 (89.9, 90.1) 

90.1 (90.0, 90.2) 

72.9 (72.8, 73.1) 

93.1 (93.0, 93.2) 

91.7 (91.6, 91.8) 

Morphological 

and 

compositional 

cartilage fusion 

67.0 (66.8, 67.1) 

76.7 (76.5, 76.8) 

78.5 (78.4, 78.6) 

78.0 (77.9, 78.2) 

76.8 (76.6, 76.9) 

86.1 (86.0, 86.2) 

75.0 (74.8, 75.2) 

83.6 (83.4, 83.7) 

87.7 (87.6, 87.8) 

78.6 (78.4, 78.7) 

85.4 (85.3, 85.5) 

89.5 (89.4, 89.6) 

All 

biomarkers 

fusion 

64.3 (64.2, 4.5) 

83.0 (82.9, 3.1) 

81.0 (80.9, 1.1) 

76.4 (76.2, 6.5) 

86.0 (85.9, 6.1) 

89.8 (89.7, 9.8) 

76.3 (76.1, 6.4) 

85.5 (85.3, 5.6) 

89.2 (89.2, 9.3) 

78.2 (78.0, 78.3) 

89.6 (89.5, 89.7) 

91.7 (91.6, 91.8) 
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Supplementary Table S3: Bootstrapped (n=100) test set chronic pain ROC performance for all 

six biomarker models per bone, as well as an average ensemble across all bones. Sensitivity, 

specificity, and AUC values are shown respectively, along with their corresponding 95% 

confidence intervals. The best performances per bone and ensemble are bolded. PTF = Patella + 

Tibia + Femur ensemble. Result metrics are for the last timepoint for each patient. 

 

Biomarker 

type 

Biomarker 

model 

Test set ROC (sensitivity/specificity/AUC) (95% CI) 

Patella Tibia Femur PTF 

Single 

Cartilage T2 

61.0 (60.6, 61.5) 

63.6 (63.1, 64.1) 

67.4 (67.0, 67.7) 

53.0 (52.4, 53.6) 

77.2 (76.8, 77.6) 

70.6 (70.2, 71.0) 

64.7 (64.2, 65.2) 

63.5 (63.1, 63.8) 

70.0 (69.6, 70.3) 

64.6 (64.1, 65.2) 

70.7 (70.3, 71.1) 

72.4 (72.1, 72.8) 

Cartilage 

thickness 

60.0 (59.5, 60.5) 

64.8 (64.3, 65.2) 

66.2 (65.9, 66.6) 

53.2 (52.7, 53.8) 

76.8 (76.4, 77.2) 

68.8 (68.4, 69.2) 

58.2 (57.7, 58.7) 

72.3 (71.9, 72.7) 

70.7 (70.3, 71.0) 

59.0 (58.5, 59.5) 

72.6 (72.3, 73.0) 

71.1 (70.7, 71.5) 

Bone shape 

59.7 (59.2, 60.1) 

72.1 (71.7, 72.6) 

69.3 (69.0, 69.7) 

56.9 (56.4, 57.4) 

78.2 (77.8, 78.5) 

71.1 (70.7, 71.5) 

60.2 (59.8, 60.7) 

75.2 (74.8, 75.5) 

72.9 (72.6, 73.3) 

59.8 (59.2, 60.3) 

77.7 (77.3, 78.1) 

73.4 (73.1, 73.8) 

Fusion 

Morphological 

bone and 

cartilage fusion 

66.2 (65.7, 66.6) 

65.6 (65.2, 66.0) 

71.7 (71.4, 72.0) 

57.2 (56.7, 57.8) 

79.2 (78.8, 79.6) 

72.0 (71.6, 72.4) 

52.9 (52.4, 53.5) 

76.4 (76.0, 76.8) 

69.7 (69.4, 70.0) 

57.5 (57.0, 58.0) 

78.1 (77.7, 78.4) 

73.2 (72.9, 73.6) 

Morphological 

and 

compositional 

cartilage fusion 

59.3 (58.7, 59.9) 

61.3 (60.9, 61.7) 

67.1 (66.7, 67.4) 

51.2 (50.6, 51.7) 

76.7 (76.4, 77.1) 

71.2 (70.8, 71.5) 

53.2 (52.6, 53.7) 

80.5 (80.2, 80.8) 

72.9 (72.6, 73.3) 

57.9 (57.4, 58.4) 

76.4 (76.1, 76.7) 

73.1 (72.7, 73.4) 

All 

biomarkers 

fusion 

55.1 (54.5, 55.6) 

74.0 (73.6, 74.4) 

69.5 (69.2, 69.9) 

51.7 (51.2, 52.2) 

80.0 (79.6, 80.3) 

72.8 (72.4, 73.1) 

57.1 (56.6, 57.6) 

76.8 (76.4, 77.2) 

70.9 (70.6, 71.3) 

54.2 (53.7, 54.7) 

80.8 (80.5, 81.2) 

73.1 (72.7, 73.4) 

 

 

REFERENCES: 

[1] Milletari, F., Navab, N. & Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for 

Volumetric Medical Image Segmentation. (2016). 

[2] Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S. & Pal, C. The Importance of Skip 

Connections in Biomedical Image Segmentation. ArXiv160804117 Cs (2016). 

[3] Caliva, F., Iriondo, C., Martinez, A. M., Majumdar, S. & Pedoia, V. Distance Map Loss 

Penalty Term for Semantic Segmentation. ArXiv190803679 Cs Eess (2019). 

[4] Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł. & Hinton, G. Regularizing Neural 

Networks by Penalizing Confident Output Distributions. ArXiv170106548 Cs (2017). 

[5] Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs 

(2014). 

[6] Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural 

networks. 8. 

[7] Iriondo, C. et al. Towards Understanding Mechanistic Subgroups of Osteoarthritis: 8 Year 

Cartilage Thickness Trajectory Analysis. J. Orthop. Res. n/a,. 



 12 

[8] Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Mach. Learn. PYTHON 6. 

[9] He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. 

ArXiv151203385 Cs (2015). 

[10] Paszke, A. et al. Automatic differentiation in PyTorch. in 4. 

[11] Martinez, A. M. et al. Learning osteoarthritis imaging biomarkers from bone surface 

spherical encoding. Magn. Reson. Med. n/a,. 

 


